APPROXIMATE FUNCTIONAL EQUATION AND MEAN VALUE FORMULA FOR THE DERIVATIVES OF L-FUNCTIONS ATTACHED TO CUSP FORMS

Yoshikatsu Yashiro

Abstract

Let f be a holomorphic cusp form of weight k with respect to the full modular group $S L_{2}(\mathbb{Z})$. We suppose that f is a normalized Hecke eigenform. Let $L_{f}(s)$ be the L-function attached to the form f. Good gave the approximate functional equation and mean square formula of $L_{f}(s)$. In this paper, we shall generalize these formulas for the derivatives of $L_{f}(s)$.

Keywords: cusp forms, L-functions, derivative, approximate functional equation, mean value formula.

1. Introduction

Let S_{k} be the space of cusp forms of even weight $k \in \mathbb{Z} \geqslant 12$ with respect to the full modular group $S L_{2}(\mathbb{Z})$. Let $f \in S_{k}$ be a normalized Hecke eigenform, and $a_{f}(n)$ the n-th Fourier coefficient of f. Set $\lambda_{f}(n)=a_{f}(n) / n^{(k-1) / 2}$. The L-function attached to f is defined by

$$
\begin{equation*}
L_{f}(s)=\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)}{n^{s}}=\prod_{p: \text { prime }}\left(1-\frac{\alpha_{f}(p)}{p^{s}}\right)^{-1}\left(1-\frac{\beta_{f}(p)}{p^{s}}\right)^{-1} \tag{Re}
\end{equation*}
$$

where $\alpha_{f}(p)$ and $\beta_{f}(p)$ satisfy $\alpha_{f}(p)+\beta_{f}(p)=\lambda_{f}(p)$ and $\alpha_{f}(p) \beta_{f}(p)=1$. Then it is well-known that the function $L_{f}(s)$ is analytically continued to the whole s-plane by

$$
\begin{equation*}
(2 \pi)^{-s-\frac{k-1}{2}} \Gamma\left(s+\frac{k-1}{2}\right) L_{f}(s)=\int_{0}^{\infty} f(i y) y^{s+\frac{k-1}{2}-1} d y \tag{1.2}
\end{equation*}
$$

and has a functional equation

$$
L_{f}(s)=\chi_{f}(s) L_{f}(1-s)
$$

where $\chi_{f}(s)$ is given by

$$
\begin{align*}
\chi_{f}(s) & =(-1)^{\frac{k}{2}}(2 \pi)^{2 s-1} \frac{\Gamma\left(1-s+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)} \tag{1.3}\\
& =(-1)^{\frac{k}{2}}(2 \pi)^{2 \sigma-1}|t|^{1-2 \sigma} e^{i\left(\frac{\pi}{2}(1-k) \operatorname{sgn}(t)-2 t \log \frac{|t|}{2 \pi e}\right)}\left(1+O\left(|t|^{-1}\right)\right) \tag{1.4}
\end{align*}
$$

where $\operatorname{sgn}(t)$ is defined by $\operatorname{sgn}(t)=1$ for $t \in \mathbb{R}_{>0}$ and $\operatorname{sgn}(t)=-1$ for $t \in \mathbb{R}_{<0}$, and (1.4) is obtained by Stirling's formula (see [3, (19)]).

Good [3] gave the approximate functional equation for $L_{f}(s)$:

$$
L_{f}(\sigma+i t)=\sum_{n \leqslant x} \frac{\lambda_{f}(n)}{n^{s}}+\chi_{f}(s) \sum_{n \leqslant y} \frac{\lambda_{f}(n)}{n^{1-s}}+O\left(|t|^{\frac{1}{2}-\sigma+\varepsilon}\right)
$$

where $\varepsilon \in \mathbb{R}_{>0}$, $s=\sigma+i t$ such that $\sigma \in[0,1]$ and $|t| \gg 1$, and $x, y \in \mathbb{R}_{>0}$ satisfying $(2 \pi)^{2} x y=|t|^{2}$. The feature of his proof of this equation is to introduce characteristic function and use the residue theorem. Moreover, he gave the mean square formula for $L_{f}(s)$ using the above equation:

$$
\int_{1}^{T}\left|L_{f}(\sigma+i t)\right|^{2} d t= \begin{cases}A_{f} T \log T+O(T), & \sigma=1 / 2, \tag{1.5}\\ T \sum_{n=1}^{\infty} \frac{\left|\lambda_{f}(n)\right|^{2}}{n^{2 \sigma}}+O\left(T^{2(1-\sigma)}\right), & 1 / 2<\sigma<1, \\ T \sum_{n=1}^{\infty} \frac{\left|\lambda_{f}(n)\right|^{2}}{n^{2 \sigma}}+O\left(\log ^{2} T\right), & \sigma=1,\end{cases}
$$

where A_{f} is a positive constant depending on f.
Let $\zeta(s)$ be the Riemann zeta function and $\zeta^{\prime}(s)$ be its first derivative. Since Speiser [6] proved that the Riemann Hypothesis (for short RH) is equivalent to the non-existence of zeros of $\zeta^{\prime}(s)$ in $0<\operatorname{Re} s<1 / 2$, zeros of $\zeta^{\prime}(s)$ have been interested by many researchers. Recently Aoki and Minamide [1] studied the density of zeros of $\zeta^{(m)}(s)$ in the right hand side of critical line Re $s=1 / 2$ by using Littlewood's method. However there is no result concerning zeros of derivatives of L-functions attached to cusp forms. The m-th derivative of $L_{f}(s)$ is given by

$$
L_{f}^{(m)}(s)=\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{m}}{n^{s}} \quad(\operatorname{Re} s>1)
$$

Differentiating both sides of (1.2), we find

$$
\begin{equation*}
L_{f}^{(m)}(s)=\sum_{r=0}^{m}\binom{m}{r}(-1)^{r} \chi_{f}^{(m-r)}(s) L_{f}^{(r)}(1-s) \tag{1.6}
\end{equation*}
$$

In this paper, we shall show the approximate functional equation and the mean value formula for $L_{f}^{(m)}(s)$ for the purpose of studying the zero-density for $L_{f}^{(m)}(s)$.

Following [3], we shall introduce characteristic functions. Let φ be the real valued C^{∞} function on $[0, \infty)$ satisfying $\varphi(\rho)=1$ for $\rho \in[0,1 / 2]$ and $\varphi(\rho)=0$ for $\rho \in[2, \infty)$. Let \mathcal{R} be the set of these characteristic functions φ. Write $\varphi_{0}(\rho)=$ $1-\varphi(1 / \rho)$. It is clear to show that if $\varphi \in \mathcal{R}$ then $\varphi_{0} \in \mathcal{R}$. Let $\varphi^{(j)}$ be the j-th derivative function of $\varphi \in \mathcal{R}$. Then $\varphi^{(j)}$ becomes absolutely integrable function on $[0, \infty)$. Let $\left\|\varphi^{(j)}\right\|_{1}$ be L_{1}-norm of $\varphi^{(j)}$, that is, $\left\|\varphi^{(j)}\right\|_{1}=\int_{0}^{\infty}\left|\varphi^{(j)}(\rho)\right| d \rho$. For $r \in\{0, \ldots, m\}, j \in \mathbb{Z}_{\geqslant 0}, \rho \in \mathbb{R}_{>0}$ and $s=\sigma+i t$ such that $|t| \gg 1$, let $\gamma_{j}^{(r)}(s, \rho)$ be

$$
\gamma_{j}^{(r)}(s, \rho)=\frac{1}{2 \pi i} \int_{\mathcal{F}} \frac{\left(\chi_{f}^{(r)} / \chi_{f}\right)(1-s-w)}{w(w+1) \cdots(w+j)} \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\rho e^{-i \frac{\pi}{2} \operatorname{sgn}(t)}\right)^{w} d w
$$

where \mathcal{F} is given by $\mathcal{F}=\left\{-1 / 2-\sigma+\sqrt{|t|} e^{i \pi \theta} \mid \theta \in(1 / 2,3 / 2)\right\} \cup\left\{3 / 2-\sigma+\sqrt{|t|} e^{i \pi \theta} \mid\right.$ $\theta \in(-1 / 2,1 / 2)\} \cup\{u \pm \sqrt{|t|} \mid u \in[-1 / 2-\sigma, 3 / 2-\sigma]\}$.

Then using (1.6) and the approximate formula for $\chi_{f}^{(r)}(s)$ as $|t| \rightarrow \infty$ where $r \in\{0, \ldots, m\}$, we obtain the approximate functional equation for $L_{f}^{(m)}(s)$ with characteristic functions.

Theorem 1.1. For any $m \in \mathbb{Z}_{\geqslant 0}, l \in \mathbb{Z}_{\geqslant(k+1) / 2}, \varphi \in \mathcal{R}$, $s=\sigma+$ it such that $\sigma \in[0,1]$ and $|t| \gg 1$, and $y_{1}, y_{2} \in \mathbb{R}_{>0}$ satisfying $(2 \pi)^{2} y_{1} y_{2}=|t|^{2}$, we have

$$
\begin{align*}
L_{f}^{(m)}(s)= & \sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{m}}{n^{s}} \varphi\left(\frac{n}{y_{1}}\right) \\
& +\sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \chi_{f}^{(m-r)}(s) \sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{1-s}} \varphi_{0}\left(\frac{n}{y_{2}}\right)+R_{\varphi}(s), \tag{1.7}
\end{align*}
$$

where $R_{\varphi}(s)$ is given by

$$
\begin{aligned}
R_{\varphi}(s)= & \sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{m}}{n^{s}} \sum_{j=1}^{l} \varphi^{(j)}\left(\frac{n}{y_{1}}\right)\left(-\frac{n}{y_{1}}\right)^{j} \gamma_{j}^{(0)}\left(s, \frac{1}{|t|}\right) \\
& +\chi_{f}(s) \sum_{r=0}^{m}(-1)^{j}\binom{m}{r} \sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{1-s}} \\
& \times \sum_{j=1}^{l} \varphi_{0}^{(j)}\left(\frac{n}{y_{2}}\right)\left(-\frac{n}{y_{2}}\right)^{j} \gamma_{j}^{(m-r)}\left(1-s, \frac{1}{|t|}\right) \\
& +O\left(y_{1}^{1-\sigma}\left(\log y_{1}\right)^{m}|t|^{-\frac{l}{2}}\left\|\varphi^{(l+1)}\right\|_{1}\right) \\
& +O\left(y_{2}^{\sigma}\left(\sum_{r=0}^{m}\left(\log y_{2}\right)^{r}(\log |t|)^{m-r}\right)|t|^{1-2 \sigma-\frac{l}{2}}\left\|\varphi_{0}^{(l+1)}\right\|_{1}\right) .
\end{aligned}
$$

Introducing new functions $\xi \notin \mathcal{R}$ and $\psi_{\alpha} \in \mathcal{R}$ for making the main term of without characteristic function and the error term depending on $\alpha \in \mathbb{R}_{\geqslant 0}$ of the approximate functional equation, replacing φ to φ_{α} in Theorem 1.1, using Deligne's result (see [2]): $\left|\lambda_{f}(n)\right| \leqslant d(n)$ and choosing α to minimize the error term, we obtain the approximate functional equation for $L_{f}^{(m)}(s)$:
Theorem 1.2. For any $m \in \mathbb{Z}_{\geqslant 0}$ and $s=\sigma+$ it such that $\sigma \in[0,1]$ and $|t| \gg 1$, we have

$$
\begin{align*}
L_{f}^{(m)}(s)= & \sum_{n \leqslant \frac{|t|}{2 \pi}} \frac{\lambda_{f}(n)(-\log n)^{m}}{n^{s}} \\
& +\sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \chi_{f}^{(m-r)}(s) \sum_{n \leqslant \frac{|t|}{2 \pi}} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{1-s}}+O\left(|t|^{1 / 2-\sigma+\varepsilon}\right), \tag{1.8}
\end{align*}
$$

where ε is an arbitrary positive number.
Using Rankin's result (see [5, (4.2.3), p.364]):

$$
\begin{equation*}
\sum_{n \leqslant x}\left|\lambda_{f}(n)\right|^{2}=C_{f} x+O\left(x^{\frac{3}{5}}\right) \tag{1.9}
\end{equation*}
$$

where C_{f} is a positive constant depending on f, the approximate formula of $\chi_{f}^{(r)}(s)$ and the generalizations of Lemmas 6, 7 of [3] to estimate a double sum containing $\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}$ where $r_{1}+r_{2}=r$, we obtain the mean square for $L_{f}^{(m)}(s)$.
Theorem 1.3. For any $m \in \mathbb{Z}_{\geqslant 0}$ and large $T \in \mathbb{R}_{>0}$, we have

$$
\begin{array}{rll}
\int_{0}^{T} & \left|L_{f}^{(m)}(\sigma+i t)\right|^{2} d t \\
& = \begin{cases}A_{f, m} T(\log T)^{2 m+1}+O\left(T(\log T)^{2 m}\right), & \sigma=1 / 2, \\
T \sum_{n=1}^{\infty} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{2 m}}{n^{2 \sigma}}+O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & 1 / 2<\sigma<1, \\
T \sum_{n=1}^{\infty} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{2 m}}{n^{2 \sigma}}+O\left((\log T)^{2 m+2}\right), & \sigma=1,\end{cases} \tag{1.10}
\end{array}
$$

where $A_{f, m}$ is given by

$$
A_{f, m}=\left(\frac{1}{2 m+1}+\sum_{r=0}^{2 m} \frac{(-2)^{2 m-r}}{r+1} \sum_{r_{1}+r_{2}=r}\binom{m}{r_{1}}\binom{m}{r_{2}}\right) C_{f} .
$$

Theorems 1.1-1.3 is applied to the study of zero-density estimate for $L_{f}^{(m)}(s)$ in [7]. In order to prove Theorems 1.1-1.3, we shall show preliminary lemmas in Section 2. Using these lemmas we shall give proof of Theorems 1.1-1.3 in Sections $3-5$ respectively.

2. Preliminary lemmas

To prove Theorem 1.1, we introduce a new function. For $\varphi \in \mathcal{R}$, let $K_{\varphi}(w)$ be the function

$$
K_{\varphi}(w)=w \int_{0}^{\infty} \varphi(\rho) \rho^{w-1} d \rho \quad(\operatorname{Re} w>0)
$$

Then the following fact is known:
Lemma 2.1 ([3, p.335, Lemma 3]). The function $K_{\varphi}(w)$ is analytically continued for to the whole w-plane, and has the functional equation

$$
\begin{equation*}
K_{\varphi}(w)=K_{\varphi_{0}}(-w) \tag{2.1}
\end{equation*}
$$

Furthermore we have the integral representation

$$
\begin{equation*}
\frac{K_{\varphi}(w)}{w}=\frac{(-1)^{l+1}}{w(w+1) \cdots(w+l)} \int_{0}^{\infty} \varphi^{(l+1)}(\rho) \rho^{w+l} d \rho \tag{2.2}
\end{equation*}
$$

for $l \in \mathbb{Z}_{\geqslant 0}$. Especially $K_{\varphi}(0)=1$.
Next the following fact is useful for estimating the integrals (3.1), I_{1}^{\prime} and I_{2}^{\prime} in Section 1.1:

Lemma 2.2 ([3, p.334, Lemma 2]). Put $s=\sigma+i t$ and $w=u+i v$. For $c_{1}, c_{2} \in \mathbb{R}$ let D_{1} be the strip such that $\sigma \in\left[c_{1}, c_{2}\right]$ and $t \in \mathbb{R}$ in s-plane, and D_{2} a half-strip such that $\sigma \in(-\infty,-1 / 2-(k-1) / 2)$ and $t \in(-1,1)$. For fixed $c_{3}, c_{4} \in \mathbb{R}_{>0}$, there exist $c_{5} \in \mathbb{R}_{>0}$ and $c_{6} \in \mathbb{R}_{>0}$ such that

$$
\begin{align*}
& \left|\frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(e^{-i \frac{\pi}{2} \operatorname{sgn}(t)}\right)^{w}\right| \\
& \quad \leqslant \begin{cases}c_{5} \frac{(1+|t+v|)^{\sigma+u-\frac{1}{2}+\frac{k-1}{2}}}{|t|^{\sigma-\frac{1}{2}+\frac{k-1}{2}},} & s \in D_{1}, s+w \in D_{1} \backslash D_{2},|t| \geqslant c_{3} \\
c_{6}|t|^{u}, & s \in D_{1},|w| \leqslant c_{4}|t|^{1 / 2}\end{cases} \tag{2.3}
\end{align*}
$$

The following fact is required to obtain the approximate formula for $\left(\chi_{f}^{(r)} / \chi_{f}\right)(s)$:
Lemma 2.3. Let F and G be holomorphic function in the region D such that $F(s) \neq 0$ and $\log F(s)=G(s)$ for $s \in D$. Then for any fixed $r \in \mathbb{Z}_{\geqslant 1}$, there exist $l_{1}, \cdots, l_{r} \in \mathbb{Z}_{\geqslant 0}$ and $C_{\left(l_{1}, \cdots, l_{r}\right)} \in \mathbb{Z}_{\geqslant 0}$ such that

$$
\begin{equation*}
\frac{F^{(r)}}{F}(s)=\sum_{1 l_{1}+\cdots+r l_{r}=r} C_{\left(l_{1}, \cdots, l_{r}\right)}\left(G^{(1)}(s)\right)^{l_{1}} \cdots\left(G^{(r)}(s)\right)^{l_{r}} \tag{2.4}
\end{equation*}
$$

for $s \in D$. Especially $C_{(r, 0, \cdots, 0)}=1$.

Proof. The case $r=1$ is true because of $\left(F^{\prime} / F\right)(s)=G^{\prime}(s)$ for $s \in D$. If we assume (2.4) and $C_{(r, 0 \cdots, 0)}=1$, then we have

$$
\begin{aligned}
F^{(r+1)}(s)= & \sum_{1 l_{1}+\cdots+r l_{r}=r} C_{\left(l_{1}, \cdots, l_{r}\right)}\left(\left(F^{\prime} G^{(1) l_{1}} \cdots G^{(r) l_{r}}\right)(s)\right. \\
& +l_{1}\left(F G^{(1) l_{1}-1} G^{(2) l_{2}+1} \cdots G^{(r) l_{r}}\right)(s)+\cdots \\
& +l_{r-1}\left(F G^{(1) l_{1}} \cdots G^{(r-1) l_{r-1}-1} G^{(r) l_{r}+1}\right)(s) \\
& \left.+l_{r}\left(F G^{(1) l_{1}} \cdots G^{(r) l_{r}-1} G^{(r+1)}\right)(s)\right) \\
= & F(s) \sum_{1 l_{1}^{\prime}+\cdots+(r+1) l_{r+1}=r+1} C_{\left(l_{1}^{\prime}, \cdots, l_{r+1}^{\prime}\right)}^{\prime}\left(G^{(1) l_{1}^{\prime}} \cdots G^{\left.(r+1) l_{r+1}^{\prime}\right)(s)}\right.
\end{aligned}
$$

and $C_{(r+1,0, \cdots, 0)}^{\prime}=1 \cdot C(r, 0, \cdots, 0)=1$. Hence (2.4) is true for all $r \in \mathbb{Z}_{\geqslant 1}$.
Using Lemma 2.3, we can get the approximate formula for $\left(\chi_{f}^{(r)} / \chi_{f}\right)(s)$ as follows:

Lemma 2.4. For any $r \in \mathbb{Z}_{\geqslant 1}$, the function $\left(\chi_{f}^{(r)} / \chi_{f}\right)(s)$ is holomorphic in $D=$ $\mathbb{C} \backslash\{z \in \mathbb{C}||\sigma| \geqslant k / 2-1,|t| \leqslant 1 / 2\}$. For any $s \in D$ we have

$$
\frac{\chi_{f}^{(r)}}{\chi_{f}}(s)= \begin{cases}\left(-2 \log \frac{|t|}{2 \pi}\right)^{r}+O\left(\frac{(\log |t|)^{r-1}}{|t|}\right), & |t| \gg 1 \\ O(1), & |t| \ll 1\end{cases}
$$

Proof. Apply Lemma 2.3 with $F(s)=\chi_{f}(s)$ and $G(s)=k \log i+(2 s-1) \log 2 \pi+$ $\log \Gamma\left(1-s+\frac{k-1}{2}\right)-\log \Gamma\left(s+\frac{k-1}{2}\right)$. Then we have

$$
\begin{align*}
G^{(1)} & (s) \\
= & 2 \log 2 \pi-\frac{\Gamma^{\prime}}{\Gamma}\left(1-s+\frac{k-1}{2}\right)-\frac{\Gamma^{\prime}}{\Gamma}\left(s+\frac{k-1}{2}\right) \\
= & -\log \left(s+\frac{k-1}{2}\right)-\log \left(1-s+\frac{k-1}{2}\right)+\frac{1}{2\left(s+\frac{k-1}{2}\right)}+\frac{1}{2\left(1-s+\frac{k-1}{2}\right)} \tag{2.5}\\
& +2 \log 2 \pi+\int_{0}^{\infty} \frac{1 / 2-\{u\}}{\left(u+s+\frac{k-1}{2}\right)^{2}} d u+\int_{0}^{\infty} \frac{1 / 2-\{u\}}{\left(u+1-s+\frac{k-1}{2}\right)^{2}} d u \\
= & \begin{cases}-2 \log |t|+2 \log 2 \pi+O\left(|t|^{-1}\right), & |t| \gg 1, \\
O(1), & |t| \ll 1\end{cases}
\end{align*}
$$

for $s \in D$ where we used the following formula obtained by Stirling's formula (see [4, p.342, Theorem A.3.5]):

$$
\frac{\Gamma^{\prime}}{\Gamma}(s)=\log s-\frac{1}{2 s}-\int_{0}^{\infty} \frac{1 / 2-\{u\}}{(u+s)^{2}} d u
$$

and the following the approximate formula (see [3, p.335]):

$$
\log s=\log |t|+i \frac{\pi}{2} \operatorname{sgn} t+O\left(\frac{1}{|t|}\right), \quad \frac{1}{s}=-\frac{i}{t}+O\left(\frac{1}{|t|^{2}}\right) .
$$

By differentiating both sides of (2.5), for any $j \in \mathbb{Z}_{\geqslant 2}$ and $s \in D, G^{(j)}(s)$ is approximated as $G^{(j)}(s) \ll 1 /|t|^{j-1}$ when $|t| \gg 1$ or $G^{(j)}(s) \ll 1$ when $|t| \gg 1$. Since $C_{(r, 0, \cdots, 0)}=1$, it follows that the main term of $\left(\chi_{f}^{(r)} / \chi_{f}\right)(s)$ becomes $\left(G^{(1)}(s)\right)^{r}$.

In order to prove Theorem 1.3, that is, to obtain the approximate formula of the mean square for $L_{f}^{(m)}(s)$ as sharp as possible, we divide the characteristic function φ as a sum of φ_{1} and φ_{2}. For $\varphi \in \mathcal{R}, \delta, \delta_{1} \in(0,1 / 2)$ such that $\delta<\delta_{1}<\delta_{2}$ where $\delta_{2}=2, \varphi_{1}$ and φ_{2} are defined by

$$
\varphi_{1}(\rho)=\left\{\begin{array}{ll}
1, & \rho \in[0, \delta], \tag{2.6}\\
0, & \rho \in\left[\delta_{1}, \infty\right),
\end{array} \quad \varphi_{2}(\rho)= \begin{cases}0, & \rho \in[0, \delta] \\
1, & \rho \in\left[\delta_{1}, 1 / 2\right] \\
\varphi(\rho) & \rho \in\left[1 / 2, \delta_{2}\right] \\
0, & \rho \in\left[\delta_{2}, \infty\right)\end{cases}\right.
$$

satisfying $\left(\varphi_{1}+\varphi_{2}\right)(\rho)=1$ for $\rho \in\left[\delta, \delta_{1}\right]$. Similarly for $\varphi_{0} \in \mathcal{R}, \varphi_{01}$ and φ_{02} are defined by the above, where $\delta_{01}=\delta_{1}$ and $\delta_{02}=\delta_{2}=2$. We shall generalize Lemma 7 of p. 351 in [3]:
Lemma 2.5. Fix $\alpha \in \mathbb{Z}_{\geqslant 0}$ and $\beta \in \mathbb{R}_{\geqslant 0}$.
(a) For $X \in\{1,01\}$, we have

$$
\begin{aligned}
& \int_{1}^{T} \overline{\varphi_{X}\left(\frac{2 \pi n}{t}\right)} \varphi_{X}\left(\frac{2 \pi n}{t}\right) \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{\beta}} d t \\
& = \begin{cases}T^{1-\beta}(\log T)^{\alpha} /(1-\beta)+O\left(\left(n^{1-\beta} \log n+T^{1-\beta}\right)(\log T)^{\alpha-1}\right), \\
T^{1-\beta} /(1-\beta)+O\left(n^{1-\beta}\right), & n \in[1, \delta T / 2 \pi), \beta \in[0,1), \alpha \in \mathbb{Z}_{\geqslant 1}, \\
O\left(|\log (T / n)|(\log T)^{\alpha}\right), & n \in[1, \delta T / 2 \pi), \beta \in[0,1), \alpha=0, \\
O\left((\log n)^{\alpha} / n^{\beta-1}\right), & n \in[1, \delta T / 2 \pi), \beta=1, \\
O\left(n^{1-\beta}(\log n)^{\alpha}\right), & n \in[1, \delta T / 2 \pi), \beta \in(1, \infty), \\
0, & n \in\left[\delta T / 2 \pi, \delta_{1} T / 2 \pi\right),\end{cases}
\end{aligned}
$$

(b) For $X \in\{1,2\}$ and $Y \in\{2,02\}$, we have

$$
\begin{aligned}
\int_{1}^{T} \overline{\varphi_{X}\left(\frac{2 \pi n}{t}\right)} \varphi_{Y}\left(\frac{2 \pi n}{t}\right) & \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{\beta}} d t \\
& = \begin{cases}O\left(n^{1-\beta}(\log n)^{\alpha}\right), & n \in\left[1, \delta_{X} T / 2 \pi\right) \\
0, & n \in\left[\delta_{X} T / 2 \pi, \infty\right)\end{cases}
\end{aligned}
$$

(c) For $X, Y \in\{1,2,01,02\}$ and $n_{1} \neq n_{2}$, we have

$$
\begin{aligned}
& \int_{1}^{T} \overline{\varphi_{X}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{Y}\left(\frac{2 \pi n_{2}}{t}\right)\left(\frac{n_{1}}{n_{2}}\right)^{i t} \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{\beta}} d t \\
& = \begin{cases}0, & n_{1} \in\left[\delta_{X} T / 2 \pi, \infty\right), \\
0, & n_{2} \in\left[\delta_{Y} T / 2 \pi, \infty\right), \\
\frac{\left(\log \frac{T}{2 \pi}\right)^{\alpha} \overline{i T^{\beta}} \varphi_{X}\left(\frac{2 \pi n_{1}}{T}\right) \varphi_{Y}\left(\frac{2 \pi n_{2}}{T}\right) \frac{\left(n_{1} / n_{2}\right)^{i T}}{\log \left(n_{1} / n_{2}\right)}}{} \\
+O\left(\frac{\left(\log \left(\max \left\{n_{1}, n_{2}\right\}\right)\right)^{\alpha}}{\left(\max \left\{n_{1}, n_{2}\right\}\right)^{1+\beta}\left(\left(\log \left(n_{1} / n_{2}\right)\right)^{2}\right.}\right), & n_{1}, n_{2}: \text { otherwise },\end{cases}
\end{aligned}
$$

(d) If there exist $\alpha \in \mathbb{Z}_{\geqslant 0}$ and $\beta \in \mathbb{R}_{\geqslant 0}$ such that $M(t)=O\left((\log t)^{\alpha} / t^{\beta}\right)$, then for $X, Y \in\{1,2,01,02\}$ we have

$$
\begin{aligned}
& \int_{1}^{T} \overline{\varphi_{X}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{Y}\left(\frac{2 \pi n_{2}}{t}\right)\left(\frac{n_{1}}{n_{2}}\right)^{i t} M(t) d t \\
& = \begin{cases}0, & n_{1} \in\left[\delta_{X} T / 2 \pi, \infty\right), \\
0, & n_{2} \in\left[\delta_{Y} T / 2 \pi, \infty\right), \\
O\left(T^{1-\beta}(\log T)^{\alpha}\right), & n_{1}, n_{2}: \text { otherwise }, \beta \in[0,1), \\
O\left(\left|\log \left(T / \max \left\{n_{1}, n_{2}\right\}\right)\right|(\log T)^{\alpha}\right), & n_{1}, n_{2}: \text { otherwise }, \beta=1, \\
O\left(\left(\log \left(\max \left\{n_{1}, n_{2}\right\}\right)\right)^{\alpha} /\left(\max \left\{n_{1}, n_{2}\right\}\right)^{\beta-1}\right), & n_{1}, n_{2}: \text { otherwise }, \beta \in \mathbb{R}_{>1} .\end{cases}
\end{aligned}
$$

(e) For $X \in\{1,01\}, Y \in\{1,2,01,02\}$, we have

$$
\begin{aligned}
& \int_{1}^{T} \overline{\varphi_{X}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{Y}\left(\frac{2 \pi n_{2}}{t}\right)\left(n_{1} n_{2}\right)^{i t} \chi_{f}^{(\alpha)}(\sigma+i t) d t \\
& = \begin{cases}0, & n_{1} \in\left[\delta_{X} T / 2 \pi, \infty\right), \\
0, & n_{2} \in\left[\delta_{Y} T / 2 \pi, \infty\right), \\
O\left(\left|\log \left(T / \max \left\{n_{1}, n_{2}\right\}\right)\right|(\log T)^{\alpha}\right), & n_{1}, n_{2}: \text { otherwise, } \sigma=\frac{1}{2}, \\
O\left(\left(\log \left(\max \left\{n_{1}, n_{2}\right\}\right)\right)^{\alpha} /\left(\max \left\{n_{1}, n_{2}\right\}\right)^{2 \sigma-1}\right), & n_{1}, n_{2}: \text { otherwise, } \sigma \in\left(\frac{1}{2}, 1\right] .\end{cases}
\end{aligned}
$$

Proof. First we consider the case $n_{1} \in\left[\delta_{X} T / 2 \pi, \infty\right)$ or $n_{2} \in\left[\delta_{Y} T / 2 \pi, \infty\right)$. It is clear that $\varphi_{X}\left(2 \pi n_{1} / t\right)=0$ or $\varphi_{Y}\left(2 \pi n_{2} / t\right)=0$ for $t \in[1, T]$. Hence, (a)-(e) are true for the above n_{1}, n_{2}. Next we consider the case of $n_{1} \in\left[1, \delta_{X} T / 2 \pi\right)$ and $n_{2} \in\left[1, \delta_{Y} T / 2 \pi\right)$. Then it is clear that $2 \pi n_{1} / \delta_{X}, 2 \pi n_{2} / \delta_{Y} \in[1, T]$. For $t \in\left[1,2 \pi \max \left(n_{1} / \delta_{X}, n_{2} / \delta_{Y}\right)\right.$), we see that $\varphi_{X}\left(2 \pi n_{1} / t\right)=0$ (if $\left.n_{1} / \delta_{X} \geqslant n_{2} / \delta_{Y}\right)$ or $\varphi_{Y}\left(2 \pi n_{2} / t\right)=0$ (if $\left.n_{1} / \delta_{X} \leqslant n_{2} / \delta_{Y}\right)$. Hence,

$$
\begin{equation*}
\int_{1}^{T} \cdots d t=\int_{2 \pi \max \left(\frac{n_{1}}{\delta_{X}}, \frac{n_{2}}{\delta_{Y}}\right)}^{T} \cdots d t . \tag{2.7}
\end{equation*}
$$

Later, we shall approximate the right-hand side of (2.7).

First we consider the condition of (a), that is, $X, Y \in\{1,01\}$ and $n_{1}=n_{2}=: n$. When $n \in\left[\delta T / 2 \pi, \delta_{1} T / 2 \pi\right)$, we see that $2 \pi n / \delta \geqslant T$. Then the right-hand side of (2.7) is estimated as

$$
\begin{equation*}
\leqslant \int_{\frac{2 \pi n}{\delta_{1}}}^{\frac{2 \pi n}{\delta}}\left|\varphi_{X}\left(\frac{2 \pi n}{t}\right)\right|^{2} \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{\beta}} d t \ll n^{1-\beta}(\log n)^{\alpha} . \tag{2.8}
\end{equation*}
$$

When $n \in[1, \delta T / 2 \pi)$, we find that $2 \pi n / \delta \in\left[2 \pi n / \delta_{1}, T\right]$ and $\varphi_{X}(2 \pi n / t)=1$ for $t \in[2 \pi n / \delta, T]$. Hence the right-hand side of (2.7) is

$$
\begin{equation*}
=\int_{\frac{2 \pi n}{\delta_{1}}}^{\frac{2 \pi n}{\delta}}\left|\varphi_{X}\left(\frac{2 \pi n}{t}\right)\right|^{2} \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{\beta}} d t+\int_{\frac{2 \pi n}{\delta}}^{T} \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{\beta}} d t \tag{2.9}
\end{equation*}
$$

Here the first term of the right-hand side on (2.9) is estimated as

$$
\begin{equation*}
\ll n^{1-\beta}(\log n)^{\alpha} \tag{2.10}
\end{equation*}
$$

the second term of the right-hand side on (2.9) is

$$
= \begin{cases}O\left(|\log (T / n)|(\log T)^{\alpha}\right), & \beta=1 \tag{2.11}\\ T^{1-\beta}(\log T)^{\alpha}+O\left(T^{1-\beta}(\log T)^{\alpha-1}\right)+O\left(n^{1-\beta}(\log n)^{\alpha}\right), & \beta \in[0,1) \\ O\left((\log n)^{\alpha} / n^{\beta-1}\right)+O\left((\log T)^{\alpha} / T^{\beta-1}\right), & \beta \in \mathbb{R}_{>1}\end{cases}
$$

where the following formula was used:

$$
\begin{align*}
\int_{M}^{N} & \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{\beta}} d t \\
& = \begin{cases}\frac{\left(\log \frac{N}{M}\right)\left(\left(\log \frac{N}{2 \pi}\right)^{\alpha}+\left(\log \frac{N}{2 \pi}\right)^{\alpha-1}\left(\log \frac{M}{2 \pi}\right)+\cdots+\left(\log \frac{M}{2 \pi}\right)^{\alpha}\right)}{\alpha+1}, & \beta=1, \\
\sum_{r=0}^{\alpha} \frac{(-1)^{r}}{(1-\beta)^{r+1}} \frac{\alpha!}{(\alpha-r)!}\left(\frac{\left(\log \frac{N}{2 \pi}\right)^{\alpha-r}}{N^{\beta-1}}-\frac{\left(\log \frac{M}{2 \pi}\right)^{\alpha-r}}{M^{\beta-1}}\right), & \beta \neq 1 .\end{cases} \tag{2.12}
\end{align*}
$$

Therefore combining (2.7)-(2.11), we obtain (a).
Next we consider the condition (b), that is, $Y \in\{2,02\}$ and $n_{1}=n_{2}=n$. When $n \in\left[1, \delta_{X} T / 2 \pi\right) \cap\left[1, \delta_{Y} T / 2 \pi\right)$, that is, $n \in\left[1, \delta_{X} T / 2 \pi\right)$, we see that $2 \pi n / \delta \in$ $\left[2 \pi n / \delta_{X}, T\right]$ and $\varphi_{Y}(2 \pi n / t)=0$ for $t \in[2 \pi n / \delta, T]$. Then the right-hand side of (2.7) is

$$
\begin{equation*}
=\int_{\frac{2 \pi n}{\delta_{X}}}^{\frac{2 \pi n}{\delta}} \overline{\varphi_{X}\left(\frac{2 \pi n}{t}\right)} \varphi_{Y}\left(\frac{2 \pi n}{t}\right) \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{\beta}} d t \ll n^{1-\beta}(\log n)^{\alpha} \tag{2.13}
\end{equation*}
$$

From (2.7) and (2.13), (b) is obtained.

We consider the condition of (c), that is, $n_{1} \neq n_{2}, n_{1} \in\left[1, \delta_{X} T / 2 \pi\right)$ and $n_{2} \in\left[1, \delta_{Y} T / 2 \pi\right)$. By integral by parts, the right-hand side of (2.7) is

$$
\begin{align*}
= & \varphi_{X}\left(\frac{2 \pi n_{1}}{T}\right) \varphi_{Y}\left(\frac{2 \pi n_{1}}{T}\right) \frac{(\log T)^{\alpha}}{T^{\beta}} \frac{\left(n_{1} / n_{2}\right)^{i T}}{i \log \left(n_{1} / n_{2}\right)} \\
& +\left(\overline{\varphi_{X}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{Y}\left(\frac{2 \pi n_{2}}{t}\right) \frac{(\log t)^{\alpha}}{t^{\beta}}\right)_{t=T}^{\prime} \frac{\left(n_{1} / n_{2}\right)^{i T}}{\left(\log \left(n_{1} / n_{2}\right)\right)^{2}} \\
& \left.-\frac{1}{\left(\log \left(n_{1} / n_{2}\right)\right)^{2}} \int_{2 \pi \max \left(\frac{n_{1}}{\delta_{X}}, \frac{n_{2}}{\left.\delta_{Y}\right)}\right.}^{T} \overline{\varphi_{X}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{Y}\left(\frac{2 \pi n_{2}}{t}\right) \frac{(\log t)^{\alpha}}{t^{\beta}}\right)^{\prime \prime} \\
& \times\left(\frac{n_{1}}{n_{2}}\right)^{i t} d t . \tag{2.14}
\end{align*}
$$

Since $\left(\varphi_{X}(2 \pi n / t)\right)^{\prime}=O\left(n / t^{2}\right)$ and $\left(\varphi_{X}(2 \pi n / t)\right)^{\prime \prime}=O\left(n / t^{3}\right)+O\left(n^{2} / t^{4}\right)$ for $X \in$ $\{1,2,01,02\}$, it follows that

$$
\begin{aligned}
(\cdots)_{t=T}^{\prime} & \ll\left(n_{1}+n_{2}\right) \frac{(\log T)^{\alpha}}{T^{\beta+2}}+\frac{(\log T)^{\alpha-1}}{T^{\beta+1}}+\frac{(\log T)^{\alpha}}{T^{\beta+1}} \ll \frac{(\log T)^{\alpha}}{T^{\beta+1}} \\
(\cdots)^{\prime \prime} & \ll\left(n_{1}+n_{2}\right) \frac{(\log t)^{\alpha}}{t^{\beta+3}}+\left(n_{1}^{2}+n_{2}^{2}\right) \frac{(\log t)^{\alpha}}{t^{\beta+4}}+n_{1} n_{2} \frac{(\log t)^{\alpha}}{t^{\beta+4}} \ll \frac{(\log t)^{\alpha}}{t^{\beta+2}} .
\end{aligned}
$$

Hence the second term of the right-hand side of (2.14) is estimated as

$$
\begin{equation*}
\ll \frac{(\log T)^{\alpha}}{T^{\beta+1}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}} \ll \frac{\left(\log \max \left(n_{1}, n_{2}\right)\right)^{\alpha}}{\left(\max \left(n_{1}, n_{2}\right)\right)^{\beta+1}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}}, \tag{2.15}
\end{equation*}
$$

and the third term of the right-hand side of (2.14) is estimated as

$$
\begin{equation*}
\ll \frac{1}{\left(\log \left(n_{1} / n_{2}\right)\right)^{2}} \int_{2 \pi \max \left(\frac{n_{1}}{\delta_{X}}, \frac{n_{2}}{\delta_{Y}}\right)}^{T} \frac{(\log t)^{\alpha}}{t^{\beta+2}} d t \ll \frac{\left(\log \max \left(n_{1}, n_{2}\right)\right)^{\alpha}}{\left(\max \left(n_{1}, n_{2}\right)\right)^{\beta+1}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}} . \tag{2.16}
\end{equation*}
$$

Combining (2.7) and (2.14)-(2.16), we obtain (c).
Next we consider the condition of (d), that is, $n_{1} \in\left[1, \delta_{X} T / 2 \pi\right)$ and $n_{2} \in$ $\left[1, \delta_{Y} T / 2 \pi\right)$. Then (2.12) gives that the right-hand side of (2.7) is estimated as

$$
\begin{aligned}
& \ll \int_{2 \pi \max \left(\frac{n_{1}}{\delta_{X}}, \frac{n_{2}}{\delta_{Y}}\right)}^{T} \frac{(\log t)^{\alpha}}{t^{\beta}} d t \\
& \ll \begin{cases}T^{1-\beta}(\log T)^{\alpha}, & \beta \in[0,1), \\
\left|\log \left(T / \max \left(n_{1}, n_{2}\right)\right)\right|(\log T)^{\alpha}, & \beta=1, \\
\left(\log \max \left(n_{1}, n_{2}\right)^{\alpha}\right) /\left(\max \left(n_{1}, n_{2}\right)\right)^{\beta-1}, & \beta \in \mathbb{R}_{>1} .\end{cases}
\end{aligned}
$$

Thus (d) is obtained.

Finally we consider the condition of (e), that is, $X \in\{1,01\}, n_{1} \in\left[1, \delta_{X} T / 2 \pi\right)$ and $n_{2} \in\left[1, \delta_{Y} T / 2 \pi\right)$. Using (1.4) and Lemma 2.4, we have

$$
\begin{align*}
\left(n_{1} n_{2}\right)^{i t} \chi_{f}^{(\alpha)}(s)= & (-1)^{-\frac{k}{2}}(-2)^{\alpha}(2 \pi)^{2 \sigma-1} e^{i \frac{\pi}{2}(1-k) \operatorname{sgn}(t)} \\
& \times e^{-2 t \log \frac{|t|}{2 \pi e \sqrt{n_{1} n_{2}}}}|t|^{1-2 \sigma}\left(\log \frac{|t|}{2 \pi}\right)^{\alpha}+M_{1}(t) \tag{2.17}
\end{align*}
$$

where $M_{1}(t)=O\left((\log |t|)^{\alpha} /|t|^{2 \sigma}\right)$. Since we have $\delta_{X} \delta_{Y}<1$, it follows that

$$
2 \pi \max \left(n_{1} / \delta_{X}, n_{2} / \delta_{Y}\right) \geqslant 2 \pi \sqrt{\left(n_{1} n_{2}\right) /\left(\delta_{X} \delta_{Y}\right)}>2 \pi \sqrt{n_{1} n_{2}}
$$

Therefore we see that $\left|\log \left(2 \pi \sqrt{n_{1} n_{2}} / t\right)\right|>-\log \left(\sqrt{\delta_{X} \delta_{Y}}\right)>0$ and

$$
\begin{equation*}
e^{-i 2 t \log \frac{t}{2 \pi e \sqrt{n_{1} n_{2}}}}=\left(\frac{e^{-i 2 t \log \frac{t}{2 \pi e \sqrt{n_{1} n_{2}}}}}{2 i \log \frac{2 \pi \sqrt{n_{1} n_{2}}}{t}}\right)^{\prime}-\frac{e^{-i 2 t \log \frac{t}{2 \pi e \sqrt{n_{1} n_{2}}}}}{2 i t\left(\log \frac{2 \pi \sqrt{n_{1} n_{2}}}{t}\right)^{2}} \tag{2.18}
\end{equation*}
$$

for $t \in\left[2 \pi \max \left(n_{1} / \delta_{X}, n_{2} / \delta_{Y}\right), T\right]$. By (2.17) and (2.18), the right-hand side of (2.7) is estimated as

$$
\left.\begin{array}{rl}
= & (-1)^{-\frac{k}{2}}(-2)^{\alpha}(2 \pi)^{2 \sigma-1} e^{i \frac{\pi}{2}(1-k)} \\
& \times \int_{2 \pi \max \left(\frac{n_{1}}{\delta_{X}}, \frac{n_{2}}{\delta_{Y}}\right)}^{T} \frac{\varphi_{X}\left(\frac{2 \pi n}{t}\right)}{t} \varphi_{Y}\left(\frac{2 \pi n}{t}\right) \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{2 \sigma-1}}\left(\frac{e^{-i 2 t \log \frac{t}{2 \pi e \sqrt{n_{1} n_{2}}}}}{2 i \log \frac{2 \pi \sqrt{n_{1} n_{2}}}{t}}\right)^{\prime} d t \\
& +O\left(\int_{2 \pi \max \left(\frac{n_{1}}{\delta_{X}}, \frac{n_{2}}{\delta_{Y}}\right)}^{T} \varphi_{X}\left(\frac{2 \pi n}{t}\right)\right. \tag{2.19}
\end{array} \varphi_{Y}\left(\frac{2 \pi n}{t}\right) M_{2}(t) d t\right),
$$

where $M_{2}(t)=O\left((\log t)^{\alpha} / t^{2 \sigma}\right)$. From (d), the second term of the right-hand side of (2.19) is estimated as

$$
\ll \begin{cases}\left|\log \left(T / \max \left(n_{1}, n_{2}\right)\right)\right|(\log T)^{\alpha}, & \sigma=1 / 2, \tag{2.20}\\ \left(\log \max \left(n_{1}, n_{2}\right)\right)^{\alpha} /\left(\max \left(n_{1}, n_{2}\right)\right)^{2 \sigma-1}, & \sigma \in(1 / 2,1]\end{cases}
$$

Integration by parts and (2.12) give that the first term of the right-hand side of (2.19) is

$$
\begin{align*}
&= \frac{(-2)^{\alpha}(2 \pi)^{2 \sigma-1}}{(-1)^{\frac{k}{2}} e^{i \frac{\pi}{2}(k-1)}}\left(\overline{\varphi_{X}\left(\frac{2 \pi n}{T}\right)} \varphi_{Y}\left(\frac{2 \pi n}{T}\right) \frac{\left(\log \frac{T}{2 \pi}\right)^{\alpha}}{T^{2 \sigma-1}} \frac{e^{-i 2 t \log \frac{T}{2 \pi e \sqrt{n_{1} n_{2}}}}}{2 i \log \frac{2 \pi \sqrt{n_{1} n_{2}}}{T}}\right. \\
&\left.-\int_{2 \pi \max \left(\frac{n_{1}}{\delta_{X}}, \frac{n_{2}}{\delta_{Y}}\right)}^{T}\left(\overline{\varphi_{X}\left(\frac{2 \pi n}{t}\right)} \varphi_{Y}\left(\frac{2 \pi n}{t}\right) \frac{\left(\log \frac{t}{2 \pi}\right)^{\alpha}}{t^{2 \sigma-1}}\right)^{\prime} \frac{e^{-i 2 t \log \frac{t}{2 \pi e \sqrt{n_{1} n_{2}}}}}{2 i \log \frac{2 \pi \sqrt{n_{1} n_{2}}}{t}} d t\right) \\
& \ll \frac{(\log T)^{\alpha}}{T^{2 \sigma-1}}+\int_{2 \pi \max \left(\frac{n_{1}}{\delta_{X}}, \frac{n_{2}}{\delta_{Y}}\right)}^{T} \frac{(\log t)^{\alpha}}{t^{2 \sigma}} d t \\
& \ll \begin{cases}\left|\log \left(T / \max \left(n_{1}, n_{2}\right)\right)\right|(\log T)^{\alpha}, & \sigma=1 / 2, \\
\left(\log \max \left(n_{1}, n_{2}\right)\right)^{\alpha} /\left(\max \left(n_{1}, n_{2}\right)\right)^{2 \sigma-1}, & \sigma \in(1 / 2,1],\end{cases} \tag{2.21}
\end{align*}
$$

where the following estimate was used:

$$
(\cdots)^{\prime} \ll\left(n_{1}+n_{2}\right) \frac{(\log t)^{\alpha}}{t^{2 \sigma+1}}+\frac{(\log t)^{\alpha}}{t^{2 \sigma}}+\frac{(\log t)^{\alpha-1}}{t^{2 \sigma}} \ll \frac{(\log t)^{\alpha}}{t^{2 \sigma}} .
$$

Combining (2.7) and (2.19)-(2.21), we get (e).
After using Lemma 2.5, we shall estimate the following sums:
Lemma 2.6. For $x \in \mathbb{R}_{\geqslant 2}, r_{1}, r_{2} \in \mathbb{Z}_{\geqslant 0}$ and complex valued arithmetic functions α, β such that $\alpha(n) \ll\left|\lambda_{f}(n)\right|, \beta(n) \ll\left|\lambda_{f}(n)\right|$, we have
(a) $\sum_{n_{1} \leqslant n_{2} \leqslant x} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{\sigma}}$

$$
\ll \begin{cases}x^{2(1-\sigma)}(\log x)^{r_{1}+r_{2}}, & \sigma \in[1 / 2,1), \\ (\log x)^{r_{1}+r_{2}+2}, & \sigma=1,\end{cases}
$$

(b) $\sum_{n_{1} \leqslant n_{2} \leqslant x} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{\sigma}}\left|\log \frac{x}{n_{2}}\right| \ll \frac{(\log x)^{r_{1}+r_{2}}}{x^{2(\sigma-1)}}$

$$
\text { for } \sigma \in[1 / 2,1) \text {, }
$$

(c) $\sum_{n_{1}<n_{2} \leqslant x} \frac{\left|\alpha\left(n_{1}\right) \beta\left(n_{2}\right)\right|\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{\sigma} n_{2}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}}$

$$
\ll \begin{cases}x^{2(1-\sigma)}(\log x)^{r_{1}+r_{2}}, & \sigma \in[1 / 2,1), \\ (\log x)^{r_{1}+r_{2}+2}, & \sigma=1,\end{cases}
$$

(d) $\sum_{\substack{n_{1}, n_{2} \leqslant x, n_{1} \neq n_{2}}} \frac{\overline{\alpha\left(n_{1}\right)} \beta\left(n_{2}\right)\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{\sigma} \log \left(n_{1} / n_{2}\right)}$

$$
\ll \begin{cases}x^{2(1-\sigma)}(\log x)^{r_{1}+r_{2}}, & \sigma \in[1 / 2,1), \\ (\log x)^{r_{1}+r_{2}+2}, & \sigma=1 .\end{cases}
$$

Proof. Using the fact $\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}} \ll(\log x)^{r_{1}+r_{2}}$ for $n_{1}, n_{2} \leqslant x$ and the estimates of $R_{\sigma}(x)$ and $S_{\sigma}(x)$ in [3, p.348, Lemma 6], we obtain (a) and (b). By the same discussion for $T_{\sigma}(x)$ and $U_{\sigma}(x)$ with $\alpha_{n_{1}}=\alpha\left(n_{1}\right)\left(\log n_{1}\right)^{r_{1}}$, $\beta_{n_{2}}=\beta\left(n_{2}\right)\left(\log n_{2}\right)^{r_{2}}, a_{n_{1}}=\lambda_{f}\left(n_{1}\right)\left(\log n_{2}\right)^{r_{1}}, b_{n_{2}}=\lambda_{f}\left(n_{2}\right)\left(\log n_{2}\right)^{r_{2}}$ in [3, p.348, Lemma 6], (c) and (d) are obtained.

3. Proof of Theorem 1.1

First we shall show the following formula:
Proposition 3.1. For $s=\sigma+$ it such that $\sigma \in[0,1]$ and $|t| \gg 1, \varphi \in \mathcal{R}, x \in \mathbb{R}_{>0}$, and fixed $l \in \mathbb{Z}_{\geqslant(l+1) / 2}$, we have

$$
L_{f}^{(m)}(s)=G_{m}(s, x ; \varphi)+\chi_{f}(s) \sum_{r=0}^{m}(-1)^{r}\binom{m}{r} G_{r}\left(1-s, \frac{1}{x} ; \varphi_{0}\right),
$$

where $G_{r}(s, x ; \varphi)(r \in\{0, \ldots, m\})$ are given by

$$
\begin{aligned}
G_{r}(s, x ; \varphi)= & \frac{1}{2 \pi i} \int_{\left(\frac{3}{2}-\sigma\right)} \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(1-s-w) L_{f}^{(r)}(s+w) \frac{K_{\varphi}(w)}{w} \\
& \times \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} d w .
\end{aligned}
$$

Proof. First we shall show that the integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-\frac{1}{2}-\sigma \pm i v}^{\frac{3}{2}-\sigma \pm i v} L_{f}^{(m)}(s+w) \frac{K_{\varphi}(w)}{w} \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} d w \tag{3.1}
\end{equation*}
$$

vanishes as $|v| \rightarrow \infty$ for $l \in \mathbb{Z}_{\geqslant(k+1) / 2}$. Write $w=u+i v$ and choose $|v| \gg|t|+1$, then $|s+w| \gg|t+v| \gg 1$. Using (1.4), (1.6) and Lemma 2.4 we have

$$
L_{f}^{(m)}(s) \ll \sum_{r=0}^{m}|t|^{1-2 \sigma}(\log |t|)^{m-r}\left|L_{f}^{(r)}(1-s)\right| \ll|t|^{1-2 \sigma}(\log |t|)^{m} \quad(|t| \rightarrow \infty)
$$

for Re $s<0$. Hence the Phragmén-Lindelöf theorem gives

$$
\begin{align*}
L_{f}^{(m)}(s+w) & \ll|t+v|^{\frac{3}{2}-(\sigma+u)}(\log |t+v|)^{m} \\
& \ll|v|^{\frac{3}{2}-(\sigma+u)}(\log |v|)^{m} \quad(|v| \rightarrow \infty) \tag{3.2}
\end{align*}
$$

uniformly for $\sigma+u \in[-1 / 2,3 / 2]$. Using (2.2) and (2.3) we see that

$$
\begin{align*}
& \frac{K_{\varphi}(w)}{w} \times \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} \\
& \quad \ll \frac{\left\|\varphi^{(l+1)}\right\| 1}{|v|^{l+1}} \times \frac{(1+|t+v|)^{\sigma+u-\frac{1}{2}+\frac{k-1}{2}}}{|t|^{\sigma-\frac{1}{2}+\frac{k-1}{2}}} \ll|v|^{\sigma+u-\frac{3}{2}+\frac{k-1}{2}-l \quad(|v| \rightarrow \infty)} \tag{3.3}
\end{align*}
$$

uniformly for $\sigma+u \in[-1 / 2,3 / 2]$. From (3.2) and (3.3), the integral (3.1) is $\ll|v|^{\frac{k-1}{2}-l}(\log |v|)^{m}$, that is, (3.1) tends to 0 as $|v| \rightarrow \infty$ when $l \in \mathbb{Z}_{\geqslant(k+1) / 2}$.

Using the above fact, $K_{\varphi}(0)=1$ and applying Cauchy's residue theorem, we have

$$
\begin{align*}
L_{f}^{(m)}(s)= & \frac{1}{2 \pi i}\left(\int_{\left(\frac{3}{2}-\sigma\right)}-\int_{\left(-\frac{1}{2}-\sigma\right)}\right) L_{f}^{(m)}(s+w) \frac{K_{\varphi}(w)}{w} \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)} \\
& \times\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} d w . \tag{3.4}
\end{align*}
$$

for $l \in \mathbb{Z}_{\geqslant(k+1) / 2}$. Clearly, the first term of the right-hand side of (3.4) is

$$
\begin{equation*}
=G_{m}(s, x ; \varphi) \tag{3.5}
\end{equation*}
$$

We consider the second term of the right-hand side of (3.4). Now we can calculate

$$
\begin{align*}
L_{f}^{(m)} & (s+w) \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)} \\
= & \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)} \chi_{f}(s+w) \sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(s+w) L_{f}^{(r)}(1-s-w) \\
= & \chi_{f}(s)(2 \pi)^{2 w} \frac{\Gamma\left(1-s+w+\frac{k-1}{2}\right)}{\Gamma\left(1-s+\frac{k-1}{2}\right)} \sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(s+w) \tag{3.6}\\
& \times L_{f}^{(r)}(1-s-w)
\end{align*}
$$

where we used (1.3) and (1.6) which give that

$$
\frac{\chi_{f}(s+w)}{\chi_{f}(s)}=(2 \pi)^{2 w} \frac{\Gamma(s+w)}{\Gamma\left(s+w+\frac{k-1}{2}\right)} \frac{\Gamma\left(1-s-w+\frac{k-1}{2}\right)}{\Gamma\left(1-s+\frac{k-1}{2}\right)} .
$$

Using (2.1), (3.6) and transforming $w \mapsto-w$, we see that the second term of the right-hand side of (3.4) is

$$
\begin{align*}
= & -\frac{\chi_{f}(s)}{2 \pi i} \int_{-\left(\frac{1}{2}+\sigma\right)} \frac{K_{\varphi}(-w)}{-w} \frac{\Gamma\left(1-s+w+\frac{k-1}{2}\right)}{\Gamma\left(1-s+\frac{k-1}{2}\right)}\left(2 \pi x e^{-i \frac{\pi}{2} \operatorname{sgn}(t)}\right)^{-w} \\
& \times \sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(s-w) L_{f}^{(r)}(1-s+w)(-d w) \\
= & \chi_{f}(s) \sum_{r=0}^{m}(-1)^{r}\binom{m}{r} G_{r}\left(1-s, \frac{1}{x} ; \varphi_{0}\right) . \tag{3.7}
\end{align*}
$$

By (3.4)-(3.7) Proposition 3.1 is showed.
Next, the approximate formula of $G_{r}(s, x ; \varphi)$ is written as follows:
Proposition 3.2. For $s=\sigma+$ it such that $\sigma \in[0,1]$ and $|t| \gg 1, \varphi \in \mathcal{R}$, $x, y \in \mathbb{R}_{>0}$ satisfying $x /(2 \pi y)=1 /|t|$, fixed $r \in\{0, \cdots, m\}$ and $l \in \mathbb{Z}_{\geqslant(k+1) / 2}$, we have

$$
\begin{aligned}
G_{r}(s, x ; \varphi)= & \sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s}} \sum_{j=0}^{l} \varphi^{(j)}\left(\frac{n}{y}\right)\left(-\frac{n}{y}\right)^{j} \gamma_{j}^{(m-r)}\left(s, \frac{1}{|t|}\right) \\
& +O\left(y^{1-\sigma}(\log y)^{r}(\log |t|)^{m-r}|t|^{-\frac{l}{2}}\left\|\varphi^{(l+1)}\right\|_{1}\right) .
\end{aligned}
$$

Proof. First using (2.2) and dividing the series $L_{f}^{(r)}(s+w)$ into two path at ρy, we can write

$$
\begin{equation*}
G_{r}(s, x ; \varphi)=I_{1}+I_{2} \tag{3.8}
\end{equation*}
$$

where I_{1} and I_{2} are given by

$$
\begin{aligned}
I_{1}= & \frac{1}{2 \pi i} \int_{\left(\frac{3}{2}-\sigma\right)} \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} \frac{(-1)^{l}}{w(w+1) \cdots(w+l)} \\
& \times \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(1-s-w)\left(\int_{0}^{\infty} \varphi^{(l+1)}(\rho) \rho^{w+l} \sum_{n \leqslant \rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} d \rho\right) d w \\
I_{2}= & \frac{1}{2 \pi i} \int_{\left(\frac{3}{2}-\sigma\right)} \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} \frac{(-1)^{l}}{w(w+1) \cdots(w+l)} \\
& \times \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(1-s-w)\left(\int_{0}^{\infty} \varphi^{(l+1)}(\rho) \rho^{w+l} \sum_{n>\rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} d \rho\right) d w
\end{aligned}
$$

Let $L_{ \pm 1}, L_{ \pm 2}, C_{1}, C_{2}$ be paths of integration defined by

$$
\begin{aligned}
L_{ \pm 1} & =\{-1 / 2-\sigma \pm i v \mid v \in(\sqrt{|t|}, \infty)\} \\
L_{ \pm 2} & =\{3 / 2-\sigma \pm i v \mid v \in(\sqrt{|t|}, \infty)\} \\
C_{1} & =\left\{-1 / 2-\sigma+\sqrt{|t|} e^{-i \pi \theta} \mid \theta \in(1 / 2,3 / 2)\right\} \\
C_{2} & =\left\{3 / 2-\sigma+\sqrt{|t|} e^{i \pi \theta} \mid \theta \in(-1 / 2,1 / 2)\right\}
\end{aligned}
$$

Then by the residue theorem, we have

$$
\begin{equation*}
I_{1}=I_{1}^{\prime}+\operatorname{Res} \mathcal{F}, \quad I_{2}=I_{2}^{\prime} \tag{3.9}
\end{equation*}
$$

where $I_{1}^{\prime}, I_{2}^{\prime}$, Res \mathcal{F} are given by

$$
\begin{aligned}
I_{1}^{\prime}= & \frac{1}{2 \pi i} \int_{L_{-1}+C_{1}+L_{+1}} \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} \\
& \times \frac{(-1)^{l}}{w(w+1) \cdots(w+l)} \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(1-s-w) \\
& \times\left(\int_{0}^{\infty} \varphi^{(l+1)}(\rho) \rho^{w+l} \sum_{n \leqslant \rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} d \rho\right) d w, \\
I_{2}^{\prime}= & \frac{1}{2 \pi i} \int_{L_{-2}+C_{2}+L_{+2}} \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} \\
& \times \frac{(-1)^{l}}{w(w+1) \cdots(w+l)} \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(1-s-w) \\
& \times\left(\int_{0}^{\infty} \varphi^{(l+1)}(\rho) \rho^{w+l} \sum_{n>\rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} d \rho\right) d w,
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Res} \mathcal{F}= & \sum_{w=0,-1, \ldots,-l} \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} \frac{(-1)^{l}}{w(w+1) \cdots(w+l)} \\
& \times \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(1-s-w)\left(\int_{0}^{\infty} \varphi^{(l+1)}(\rho) \rho^{w+l} \sum_{n \leqslant \rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} d \rho\right)
\end{aligned}
$$

By the same way to [3, p.337, Lemma 4 (ii)], Res \mathcal{F} is written by

$$
\begin{equation*}
\operatorname{Res} \mathcal{F}=\sum_{n \leqslant 2 y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s}} \sum_{j=0}^{l} \varphi^{(j)}\left(\frac{n}{y}\right)\left(-\frac{n}{y}\right)^{j} \gamma_{j}^{(m-r)}\left(s, \frac{1}{|t|}\right) \tag{3.10}
\end{equation*}
$$

under the condition $x /(2 \pi y)=1 /|t|$.
Next to estimate I_{1}^{\prime} and I_{2}^{\prime}, we consider these integral. Clearly (2.3) gives

$$
\begin{align*}
& \frac{\Gamma\left(s+w+\frac{k-1}{2}\right)}{\Gamma\left(s+\frac{k-1}{2}\right)}\left(\frac{x}{2 \pi} e^{-i \frac{\pi}{2} \operatorname{sgn} t}\right)^{w} \\
& \quad \ll \begin{cases}|t|^{\frac{1}{2}-\sigma-\frac{k-1}{2}}(1+|t+v|)^{\sigma+u-\frac{1}{2}+\frac{k-1}{2}}(x / 2 \pi)^{u}, & w \in L_{ \pm 1, \pm 2} \\
|t|^{u}(x / 2 \pi)^{u}, & w \in \mathcal{F}\end{cases} \tag{3.11}
\end{align*}
$$

as $|t| \rightarrow \infty$. Using Cauchy's inequality and (1.9), we have

$$
\begin{aligned}
\sum_{n \leqslant \rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} & \ll \sqrt{\sum_{n \leqslant \rho y}\left|\lambda_{f}(n)\right|^{2}} \sqrt{\sum_{n \leqslant \rho y} \frac{(\log n)^{2 r}}{n^{2}(\sigma+u)}} \\
& \ll(\rho y)^{1-(\sigma+u)}(\log \rho y)^{r}, \quad w \in L_{ \pm 1} \cup C_{1} \\
\sum_{n>\rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} & \ll \int_{\rho y}^{\infty}\left(\frac{(\log \mu)^{r}}{\mu^{\sigma+u}}\right)^{\prime} \sum_{n \leqslant \mu}\left|\lambda_{f}(n)\right| d \mu \\
& \ll(\rho y)^{1-(\sigma+u)}(\log \rho y)^{r}, \quad w \in L_{ \pm 2} \cup C_{2}
\end{aligned}
$$

Hence we obtain

$$
\begin{array}{r}
\int_{0}^{\infty} \varphi^{(l+1)}(\rho) \rho^{w+l} \sum_{n \leqslant \rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} d \rho \ll y^{1-(\sigma+u)}(\log y)^{r}\left\|\varphi^{(l+1)}\right\|_{1} \\
w \in L_{ \pm 1} \cup C_{1} \\
\int_{0}^{\infty} \varphi^{(l+1)}(\rho) \rho^{w+l} \sum_{n>\rho y} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{s+w}} d \rho \ll y^{1-(\sigma+u)}(\log y)^{r}\left\|\varphi^{(l+1)}\right\|_{1} \\
w \in L_{ \pm 2} \cup C_{2} \tag{3.13}
\end{array}
$$

Therefore Lemma 2.4 gives

$$
\frac{(-1)^{l}}{w \cdots(w+l)} \frac{\chi_{f}^{(m-r)}}{\chi_{f}}(1-s-w) \ll \begin{cases}|v|^{-(l+1)}(\log |v|)^{m-r}, & w \in L_{ \pm 1, \pm 2} \tag{3.14}\\ |t|^{-\frac{l+1}{2}}(\log |t|)^{m-r}, & w \in \mathcal{F}\end{cases}
$$

Remark 3.3. Note that

$$
\begin{aligned}
& \gamma_{j}^{(r)}(s, 1 /|t|) \\
& \quad= \begin{cases}O\left(\frac{(\log |t|)^{r}}{|t|^{j / 2}}\right), & j \in \mathbb{Z}_{\geqslant 0}, \\
\frac{\chi_{f}^{(r)}}{\chi_{f}}(1-s)=\left(-2 \log \frac{|t|}{2 \pi}\right)^{r}+O\left(\frac{(\log |t|)^{r-1}}{|t|}\right), & j=0, \\
\frac{\chi_{f}^{(r)}}{\chi_{f}}(1-s)-\frac{\chi_{f}^{(r)}}{\chi_{f}}(-s) \frac{i t}{s+\frac{k-1}{2}}=O\left(\frac{(\log |t|)^{r}}{|t|}\right), & j=1,\end{cases}
\end{aligned}
$$

by using (3.14), the residue theorem and Lemma 2.4.
Finally combining (3.11)-(3.14) and using the same way to [3, p.343-344], we find that $I_{1}^{\prime}, I_{2}^{\prime}$ are estimated as

$$
\begin{align*}
I_{1}^{\prime} \ll & y^{1-\sigma}(\log y)^{r}\left\|\varphi^{(l+1)}\right\|_{1} \\
& \times \int_{L_{ \pm 1}}|t|^{\frac{1}{2}-(\sigma+u)-\frac{k-1}{2}}(1+|t+v|)^{\sigma+u-\frac{1}{2}+\frac{k-1}{2}} \frac{(\log |v|)^{m-r}}{|v|^{l+1}} d v \\
& +y^{1-\sigma}(\log y)^{r}(\log |t|)^{m-r}\left\|\varphi^{(l+1)}\right\|_{1}|t|^{-\frac{l+1}{2}} \int_{C_{1}}|t|^{u}\left(\frac{x}{2 \pi y}\right)^{u}|d w| \\
\ll & y^{1-\sigma}(\log y)^{r}(\log |t|)^{m-r}|t|^{-\frac{l}{2}}\left\|\varphi^{(l+1)}\right\|_{1}, \tag{3.15}\\
I_{2}^{\prime} \ll & y^{1-\sigma}(\log y)^{r}(\log |t|)^{m-r}|t|^{-\frac{l}{2}}\left\|\varphi^{(l+1)}\right\|_{1}, \tag{3.16}
\end{align*}
$$

under the condition $x /(2 \pi y)=1 /|t|$. From (3.8)-(3.10), (3.15) and (3.16), the proof of Proposition 3.2 is completed.

We use (1.4) and combine the result Propositions 3.1 and 3.2 . Let y_{1}, y_{2} be the positive numbers satisfying $x /\left(2 \pi y_{2}\right)=1 /|t|,(1 / x) /\left(2 \pi y_{2}\right)=1 /|t|$ respectively. Using Remark 3.3, the main term of (1.7) is obtained. Then under the condition $(2 \pi)^{2} y_{1} y_{2}=|t|^{2}$, the proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.2

To get the approximate functional equation for $L_{f}^{(m)}(s)$ without characteristic functions, we introduce new functions ξ, ψ_{α} and $\psi_{0 \alpha}$. Let ξ be the function defined by $\xi(\rho)=1$ when $\rho \in[0,1]$ and $\xi(\rho)=0$ when $\rho \in[1, \infty)$. For $\alpha \in \mathbb{R}_{\geqslant 0}$ and $\varphi \in \mathcal{R}$, let ψ_{α} be the function defined by

$$
\psi_{\alpha}(\rho)= \begin{cases}1, & \rho \in\left[0,1-1 /\left(2|t|^{\alpha}\right)\right] \\ \varphi\left(1+(\rho-1)|t|^{\alpha}\right), & \rho \in\left[1-1 /\left(2|t|^{\alpha}\right), 1+1 /|t|^{\alpha}\right] \\ 0, & \rho \in\left[1+1 /|t|^{\alpha}, \infty\right)\end{cases}
$$

and $\psi_{0 \alpha}$ is defined by $\psi_{0 \alpha}(\rho)=1-\psi_{\alpha}(1 / \rho)$.

Remark 4.1. From [3, (12)-(15)], we see that $\psi_{\alpha}, \psi_{0 \alpha} \in \mathcal{R}, \xi \notin \mathcal{R}$,

$$
\left(\psi_{\alpha}-\xi\right)(\rho)=0, \quad\left(\psi_{0 \alpha}-\xi\right)(\rho)=0, \quad \psi_{\alpha}^{(j)}(\rho)=0, \quad \psi_{0 \alpha}^{(j)}(\rho)=0
$$

for $j \in \mathbb{Z}_{\geqslant 1}$ and $\rho \in\left[0,1-1 /\left(2|t|^{\alpha}\right)\right] \cup\left[1+1 /|t|^{\alpha}, \infty\right)$, and

$$
\psi_{\alpha}^{(j)}(\rho) \ll|t|^{\alpha j}, \quad \psi_{0 \alpha}^{(j)}(\rho) \ll|t|^{\alpha j}, \quad\left\|\psi_{\alpha}^{(j)}\right\|_{1} \ll|t|^{\alpha(j-1)}, \quad\left\|\psi_{0 \alpha}^{(j)}\right\|_{1} \ll|t|^{\alpha(j-1)}
$$

for $j \in \mathbb{Z}_{\geqslant 0}$ and $\rho \in[0, \infty)$.
Let $M_{\varphi}(s)$ be the first sum on the right-hand side of (1.7). Setting $y_{1}=y_{2}=$ $|t| /(2 \pi)$ and replacing $\varphi \mapsto \psi_{\alpha}$ in Theorem 1.1, we can write

$$
\begin{equation*}
L_{f}^{(m)}(s)=M_{\xi}(s)+O\left(M_{\psi_{\alpha}-\xi}(s)+R_{\psi_{\alpha}}(s)\right) . \tag{4.1}
\end{equation*}
$$

Then we have

$$
\begin{align*}
M_{\xi}(s)= & \sum_{n \leqslant \frac{|t|}{2 \pi}} \frac{\lambda_{f}(n)(-\log n)^{m}}{n^{s}} \\
& +\sum_{r=0}^{m}(-1)^{m-r}\binom{m}{r} \chi_{f}^{(m-r)}(s) \sum_{n \leqslant \frac{|t|}{2 \pi}} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{1-s}} \tag{4.2}
\end{align*}
$$

and

$$
\begin{align*}
M_{\psi_{\alpha}-\xi}(s) & +R_{\psi_{\alpha}}(s) \\
\ll & \sum_{\frac{|t|}{2 \pi} \frac{1}{1+\frac{1}{|t|^{\alpha}}} \leqslant n \leqslant \frac{|t|}{2 \pi}\left(1+\frac{1}{|t|^{\alpha}}\right)} \frac{\left|\lambda_{f}(n)\right|(\log n)^{m}}{n^{\sigma}}\left|S_{\psi_{\alpha}}^{(0)}(s)\right| \\
& +\sum_{r=0}^{m} \sum_{\frac{|t|}{2 \pi} \frac{1}{1+\frac{1}{|t|^{\alpha}} \leqslant n \leqslant \frac{|t|}{2 \pi}\left(1+\frac{1}{|t|^{\alpha}}\right)}} \frac{\left|\lambda_{f}(n)\right|(\log n)^{r}}{n^{\sigma}}\left|S_{\psi_{0 \alpha}}^{(m-r)}(1-s)\right| \\
& +|t|^{1-\sigma+\left(\alpha-\frac{1}{2}\right) l}(\log |t|)^{m} . \tag{4.3}
\end{align*}
$$

where $S_{\psi_{\alpha}}^{(r)}(s)$ is given by

$$
\begin{aligned}
S_{\psi_{\alpha}}^{(r)}(s)= & \left(\psi_{\alpha}-\xi\right)\left(\frac{2 \pi n}{|t|}\right) \frac{\chi_{f}^{(r)}}{\chi_{f}}(1-s) \\
& +\sum_{j=1}^{l} \psi_{\alpha}^{(j)}\left(\frac{2 \pi n}{|t|}\right)\left(-\frac{2 \pi n}{|t|}\right)^{j} \gamma_{j}^{(r)}\left(s, \frac{1}{|t|}\right),
\end{aligned}
$$

and we used Remarks 3.3, 4.1, (1.4) and the fact $1-1 /\left(2|t|^{\alpha}\right) \geqslant 1 /\left(1+1 /|t|^{\alpha}\right)$ for $\alpha \in \mathbb{R}_{\geqslant 0}$. Using Remarks 3.3 and 4.1, in the case of $n \in\left[|t| /\left(2 \pi\left(1+|t|^{-\alpha}\right)\right)\right.$,
$\left.\left(1+|t|^{-\alpha}\right)|t| /(2 \pi)\right]$ the sum $S_{\psi_{\alpha}}^{(r)}(s)$ is estimated as follows under the condition $\alpha \leqslant 1 / 2$:

$$
\begin{equation*}
S_{\psi_{\alpha}}^{(r)}(s) \ll(\log |t|)^{r}+\sum_{j=1}^{l}|t|^{\left(\alpha-\frac{1}{2}\right) j}(\log |t|)^{r} \ll(\log |t|)^{r} \ll|t|^{\varepsilon} . \tag{4.4}
\end{equation*}
$$

Deligne's estimate $\left|\lambda_{f}(n)\right| \leqslant d(n) \ll n^{\varepsilon}$ (see [2]) gives

$$
\begin{equation*}
\sum_{\frac{|t|}{2 \pi} \frac{1}{1+\frac{1}{|t|^{\alpha}}} \leqslant n \leqslant \frac{|t|}{2 \pi}\left(1+\frac{1}{|t|^{\alpha}}\right)} \frac{\left|\lambda_{f}(n)\right|(\log n)^{r}}{n^{\sigma}} \ll|t|^{1-\sigma-\alpha+\varepsilon} . \tag{4.5}
\end{equation*}
$$

Therefore combining (4.3)-(4.5), we obtain the following estimate:

$$
\begin{equation*}
M_{\psi_{\alpha}-\xi}(s)+R_{\psi_{\alpha}}(s)=O\left(|t|^{1-\sigma-\alpha+\varepsilon}\right)+O\left(|t|^{1-\sigma+\left(\alpha-\frac{1}{2}\right) l+\varepsilon}\right)=O\left(|t|^{\frac{1}{2}-\sigma+\varepsilon}\right) \tag{4.6}
\end{equation*}
$$

where we put $\alpha=1 / 2-\varepsilon$ and take $l \geqslant 1 /(2 \varepsilon)$. Combining (4.1), (4.2) and (4.6), we obtain the assertion of Theorem 1.2.

5. Proof of Theorem 1.3

Putting $y_{1}=y_{2}=|t| /(2 \pi)$ in Theorem 1.1 and writing $\varphi=\varphi_{1}+\varphi_{2}, \varphi_{0}=\varphi_{01}+\varphi_{02}$ where $\varphi_{1}, \varphi_{2}, \varphi_{01}, \varphi_{02}$ are defined by (2.6), we obtain the following formula:

$$
\begin{equation*}
\int_{0}^{T}\left|L_{f}^{(m)}(s)\right|^{2} d t=\int_{1}^{T}\left|\sum_{r=1}^{5} S_{r}(s)\right|^{2} d t+O(1)=\sum_{1 \leqslant \mu, \nu \leqslant 5} I_{\mu, \nu}+O(1) \tag{5.1}
\end{equation*}
$$

where $S_{r}(s)$ are given by

$$
\begin{aligned}
& S_{1}(s)=\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{m}}{n^{s}} \varphi_{1}\left(\frac{2 \pi n}{t}\right) \\
& S_{2}(s)=\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{m}}{n^{1-s}} \varphi_{2}\left(\frac{2 \pi n}{t}\right) \\
& S_{3}(s)=\sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \chi_{f}^{(m-r)}(s) \sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{1-s}} \varphi_{01}\left(\frac{2 \pi n}{t}\right), \\
& S_{4}(s)=\sum_{r=0}^{m}(-1)^{r}\binom{m}{r} \chi_{f}^{(m-r)}(s) \sum_{n=1}^{\infty} \frac{\lambda_{f}(n)(-\log n)^{r}}{n^{1-s}} \varphi_{02}\left(\frac{2 \pi n}{t}\right), \\
& S_{5}(s)=R_{\varphi}(s)
\end{aligned}
$$

and $I_{\mu, \nu}(\mu, \nu \in\{1, \ldots, 5\})$ are given by

$$
I_{\mu, \nu}=\int_{1}^{T} S_{\mu}(s) \overline{S_{\nu}(s)} d t
$$

First we consider the integral $I_{\mu, \nu}$ in the case of $\mu=\nu$. In the case of $(\mu, \nu)=$ (1,1), applying (a), (c) of Lemma 2.5, we get

$$
\begin{align*}
I_{1,1}= & \sum_{n_{1}, n_{2}=1}^{\infty} \frac{\overline{\lambda_{f}\left(n_{1}\right)} \lambda_{f}\left(n_{2}\right)\left(\log n_{1} \log n_{2}\right)^{m}}{\left(n_{1} n_{2}\right)^{\sigma}} \\
& \times \int_{1}^{T} \overline{\varphi_{1}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{1}\left(\frac{2 \pi n_{2}}{t}\right)\left(\frac{n_{1}}{n_{2}}\right)^{i t} d t \\
= & T \sum_{n \leqslant \frac{\delta_{1}}{2 \pi} T} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{2 m}}{n^{2 \sigma}}+O\left(\sum_{n \leqslant \frac{\delta_{1}}{2 \pi} T} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{2 m}}{n^{2 \sigma-1}}\right) \\
& +\frac{1}{i} \sum_{\substack{n_{1}, n_{2}<\frac{\delta_{1}}{2 \pi} T \\
n_{1} \neq n_{2}}} \frac{\overline{\lambda_{f}\left(n_{1}\right) \varphi_{1}\left(2 \pi n_{1} / T\right) n_{1}^{-i T} \lambda_{f}\left(n_{2}\right) \varphi_{1}\left(2 \pi n_{2} / T\right) n_{2}^{-i T}}}{\left(n_{1} n_{2}\right)^{\sigma}} \\
& \times \frac{\log \left(n_{1} / n_{2}\right)}{\left(\log n_{1} \log n_{2}\right)^{m}}+O\left(\sum_{n_{1}<n_{2} \leqslant \frac{\delta_{1}}{2 \pi} T} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1} \log n_{2}\right)^{m}}{\left(n_{1} n_{2}\right)^{\sigma} n_{2}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}}\right) \\
= & U_{1}+O\left(U_{2}\right)+U_{3}+O\left(U_{4}\right) . \tag{5.2}
\end{align*}
$$

Here we shall calculate the right-hand side of (5.2). Using partial summation and (1.9), we obtain the approximate formula for U_{1} as

$$
U_{1}= \begin{cases}\frac{C_{f}}{2 m^{\infty}+1} T(\log T)^{2 m+1}+O(T), & \sigma=1 / 2 \tag{5.3}\\ T \sum_{n=1}^{\infty} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{2 m}}{n^{2 \sigma}}+O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in(1 / 2,1]\end{cases}
$$

The result (1.9), the estimates (d), (c) of Lemma 2.6 imply that

$$
U_{j}= \begin{cases}O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in[1 / 2,1), \tag{5.4}\\ O\left((\log T)^{2 m+2}\right), & \sigma=1\end{cases}
$$

for $j=2,3,4$ respectively. From (5.2)-(5.4), the error term and the main term of $I_{1,1}$ correspond to those of the right-hand side of (1.10) when $\sigma \in(1 / 2,1]$. However, the main term of the right-hand side of (1.10) is not obtained completely when $\sigma=1 / 2$. In the case of $(\mu, \nu)=(2,2)$, applying (b), (c) of Lemma 2.5 and (a), (c), (d) of Lemma 2.6, we obtain

$$
\begin{align*}
I_{2,2}= & \frac{1}{i} \sum_{\substack{n_{1}, n_{2}<\frac{T}{\pi} \\
n_{1} \neq n_{2}}} \frac{\overline{\lambda_{f}\left(n_{1}\right) \varphi_{2}\left(2 \pi n_{1} / T\right) n_{1}^{-i T}} \lambda_{f}\left(n_{2}\right) \varphi_{2}\left(2 \pi n_{2} / T\right) n_{2}^{-i T}}{\left(n_{1} n_{2}\right)^{\sigma}} \\
& \times \frac{\left(\log n_{1} \log n_{2}\right)^{m}}{\log \left(n_{1} / n_{2}\right)}+O\left(\sum_{n_{1}<n_{2} \leqslant \frac{T}{\pi}} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1} \log n_{2}\right)^{m}}{\left(n_{1} n_{2}\right)^{\sigma} n_{2}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}}\right) \\
& +O\left(\sum_{n \leqslant \frac{T}{\pi}} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{2 m}}{n^{2 \sigma-1}}\right) \\
= & \begin{cases}O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in[1 / 2,1), \\
O\left((\log T)^{2 m+1}\right), & \sigma=1\end{cases} \tag{5.5}
\end{align*}
$$

Next we consider the case $(\mu, \nu)=(3,3)$. Using (2.17) and the condition $r_{1}+r_{2}=r$, we obtain the following formula:

$$
\left.\overline{\left(\chi_{f}^{\left(m-r_{1}\right)}\right.} \chi_{f}^{\left(m-r_{2}\right)}\right)(s)=(2 \pi)^{4 \sigma-2}(-2)^{2 m-r} \frac{\left(\log \frac{t}{2 \pi}\right)^{2 m-r}}{t^{\sigma \sigma-2}}+M(t) .
$$

where $M(t)$ is given by $M(t)=O\left((\log t)^{2 m-r} / t^{4 \sigma-1}\right)$. Then $I_{3,3}$ is written as

$$
\begin{align*}
I_{3,3}= & \sum_{r=0}^{2 m} \sum_{r_{1}+r_{2}=r}(-1)^{r}\binom{m}{r_{1}}\binom{m}{r_{2}} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{\overline{\lambda_{f}\left(n_{1}\right)} \lambda_{f}\left(n_{2}\right)\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{1-\sigma}} \\
& \left.\times \int_{1}^{T} \overline{\varphi_{01}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{01}\left(\frac{2 \pi n_{2}}{t}\right)\left(\frac{n_{1}}{n_{2}}\right)^{i t} \overline{\left(\chi_{f}^{\left(m-r_{1}\right)}\right.} \chi_{f}^{\left(m-r_{2}\right)}\right)(s) d t \\
= & I_{3,3}^{+}+I_{3,3}^{-} \tag{5.6}
\end{align*}
$$

where $I_{3,3}^{+}, I_{3,3}^{-}$are defined by

$$
\begin{aligned}
I_{3,3}^{+}:= & (2 \pi)^{4 \sigma-2} \sum_{r=0}^{2 m}(-2)^{2 m-r} \sum_{r_{1}+r_{2}=r}\binom{m}{r_{1}}\binom{m}{r_{2}} \\
& \times \sum_{n_{1}, n_{2}=1}^{\infty} \frac{\overline{\lambda_{f}\left(n_{1}\right)} \lambda_{f}\left(n_{2}\right)\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{1-\sigma}} \\
& \times \int_{1}^{T} \overline{\varphi_{01}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{01}\left(\frac{2 \pi n_{2}}{t}\right)\left(\frac{n_{1}}{n_{2}}\right)^{i t} \frac{\left(\log \frac{t}{2 \pi}\right)^{2 m-r}}{t^{4 \sigma-2}} d t \\
I_{3,3}^{-}:= & \sum_{r=0}^{2 m} \sum_{r_{1}+r_{2}=r}\binom{m}{r_{1}}\binom{m}{r_{2}} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{\overline{\lambda_{f}\left(n_{1}\right)} \lambda_{f}\left(n_{2}\right)}{\left(n_{1} n_{2}\right)^{1-\sigma}} \\
& \times\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}} \int_{1}^{T} \frac{\varphi_{01}\left(\frac{2 \pi n_{1}}{t}\right)}{t} \varphi_{01}\left(\frac{2 \pi n_{2}}{t}\right)\left(\frac{n_{1}}{n_{2}}\right)^{i t} M(t) d t .
\end{aligned}
$$

respectively. Here we shall approximate $I_{3,3}^{+}$and $I_{3,3}^{-}$. In order to estimate $I_{3,3}^{-}$, we
use the fact that $\left(n_{1} n_{2}\right)^{1-\sigma} n_{2}^{4 \sigma-2}=\left(n_{1} n_{2}\right)^{\sigma}\left(n_{2} / n_{1}\right)^{2 \sigma-1} \gg\left(n_{1} n_{2}\right)^{\sigma}$ for $\sigma \in \mathbb{R}_{\geqslant 1 / 2}$ and $n_{1} \leqslant n_{2}$. Then using (d) of Lemma 2.5 and (a), (b) of Lemma 2.6, we see that

$$
\begin{align*}
& I_{3,3}^{-} \ll \sum_{r=0}^{2 m} \sum_{r_{1}+r_{2}=r} \sum_{n_{1} \leqslant n_{2} \leqslant \frac{\delta_{1}}{2 \pi} T} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{1-\sigma}} \\
& \times\left\{\begin{array}{ll}
\left|\log \left(T / n_{2}\right)\right|(\log T)^{2 m-r}, & \sigma=1 / 2, \\
\left(\log n_{2}\right)^{2 m-r} / n_{2}^{4 \sigma-2}, & \sigma \in(1 / 2,1]
\end{array}< \begin{cases}T^{2(1-\sigma)}(\log T)^{2 m}, & \sigma \in[1 / 2,1), \\
(\log T)^{2 m+2}, & \sigma=1 .\end{cases} \right. \tag{5.7}
\end{align*}
$$

The formula (a), (c) of Lemma 2.5 imply that

$$
\begin{align*}
& I_{3,3}^{+}= \begin{cases}\frac{(2 \pi)^{4 \sigma-2}}{3-4 \sigma} T^{3-4 \sigma} \sum_{r=0}^{2 m}\left(2 \log \frac{T}{2 \pi}\right)^{2 m-r} \times \\
\times \sum_{r_{1}+r_{2}=r}\binom{m}{r_{1}}\binom{m}{r_{2}} \sum_{n \leqslant \frac{\delta_{1}}{2 \pi} T} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{r}}{n^{2(1-\sigma)}}, & \sigma \in[1 / 2,4 / 3), \\
0, & \sigma \in[3 / 4,1],\end{cases} \\
& +O\left(\sum_{r=0}^{2 m} \sum_{n \leqslant \frac{\delta_{1}}{2 \pi} T} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{r}}{n^{2(1-\sigma)}} \times\left\{\begin{array}{r}
T^{3-4 \sigma}(\log T)^{2 m-r}, \\
\sigma \in[1 / 2,3 / 4), \\
|\log (T / n)|(\log T)^{2 m-r}, \\
\sigma=3 / 4, \\
(\log T)^{2 m-r} / n^{4 \sigma-3}, \\
\sigma \in(3 / 4,1] .
\end{array}\right)\right. \\
& +O\left(\sum_{r=0}^{2 m} \sum_{\frac{\delta}{2 \pi} T<n \leqslant \frac{\delta_{1}}{2 \pi} T} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{r}}{n^{2(1-\sigma)}} \frac{(\log T)^{2 m-r}}{n^{4 \sigma-3}}\right) \\
& +\frac{(2 \pi)^{4-2 \sigma}}{i} \sum_{r=0}^{2 m}\left(2 \log \frac{T}{2 \pi}\right)^{2 m-r} \sum_{r_{1}+r_{2}=r}\binom{m}{r_{1}}\binom{m}{r_{2}} \\
& \times \sum_{n_{1}, n_{2} \leqslant \frac{\delta_{1}}{2 \pi} T,} \frac{\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{\sigma} \log \left(n_{1} / n_{2}\right)} \\
& n_{1} \neq n_{2} \\
& \times \frac{\overline{\lambda_{f}\left(n_{1}\right) \varphi_{01}\left(2 \pi n_{1} / T\right)\left(n_{1} / T\right)^{2 \sigma-1}}}{\overline{n_{1}^{i T}}} \frac{\lambda_{f}\left(n_{2}\right) \varphi_{01}\left(2 \pi n_{2} / T\right)\left(n_{2} / T\right)^{2 \sigma-1}}{n_{2}^{i T}} \\
& +O\left(\sum_{r=0}^{2 m} \sum_{r_{1}+r_{2}=r} \sum_{n_{1}<n_{2} \leqslant \frac{\delta_{1} T}{2 \pi}} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{1-\sigma}} \times\right. \\
& \left.\times \frac{\left(\log n_{2}\right)^{2 m-r}}{n_{2}^{4 \sigma-1}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}}\right) \\
& =: V_{1}+O\left(V_{2}\right)+O\left(V_{3}\right)+V_{4}+O\left(V_{5}\right) \text {, } \tag{5.8}
\end{align*}
$$

A similar discussion to U_{3} gives that V_{1} is approximated as

$$
V_{1}= \begin{cases}\left(A_{f, m}-C_{f} /(2 m+1)\right) T(\log T)^{2 m+1}+O\left(T(\log T)^{2 m}\right), & \sigma=1 / 2 \tag{5.9}\\ O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in(1 / 2,1]\end{cases}
$$

To estimate V_{4} and V_{5}, we use the fact that

$$
\left(n_{1} n_{2}\right)^{1-\sigma} n_{2}^{4 \sigma-1}=\left(n_{1} n_{2}\right)^{\sigma} \quad n_{2}\left(n_{2} / n_{1}\right)^{2 \sigma-1} \gg\left(n_{1} n_{2}\right)^{\sigma} n_{2}
$$

for $\sigma \in \mathbb{R}_{\geqslant 1 / 2}$ and $n_{1} \leqslant n_{2}$. Then the estimates (d), (c) of Lemma 2.6 give that

$$
V_{j}= \begin{cases}O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in[1 / 2,1), \tag{5.10}\\ O\left((\log T)^{2 m+2}\right), & \sigma=1\end{cases}
$$

for $j=4,5$ respectively. By the fact that

$$
n^{2(1-\sigma)} \gg n^{2(1-\sigma)} n^{4 \sigma-3}=n^{2 \sigma-1}
$$

for $\sigma \in \mathbb{R}_{\leqslant 3 / 4}$, the estimate (b) of Lemma 2.6 when $\sigma=3 / 4$ and the formula (1.9), the sum V_{2} and V_{3} are estimated as

$$
V_{j}= \begin{cases}O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in[1 / 2,1), \tag{5.11}\\ O\left((\log T)^{2 m+1}\right), & \sigma=1\end{cases}
$$

for $j=2,3$. Therefore, from (5.6)-(5.11) the approximate formula for $I_{3,3}$ is obtained. In the case of $(\mu, \nu)=(4,4)$, by a similar discussion to the case of $(\mu, \nu)=(3,3)$ the integral $I_{4,4}$ is approximated as

$$
\begin{align*}
I_{4,4}= & O\left(\sum_{r=0}^{2 m} \sum_{r_{1}+r_{2}=r} \sum_{n \leqslant \frac{T}{\pi}} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{2 m}}{n^{2 \sigma-1}}\right) \\
& +\frac{(2 \pi)^{4-2 \sigma}}{i} \sum_{r=0}^{2 m}\left(2 \log \frac{T}{2 \pi}\right)^{2 m-r} \sum_{r_{1}+r_{2}=r}\binom{m}{r_{1}}\binom{m}{r_{2}} \\
& \times \sum_{\substack{n_{1}, n_{2} \leqslant \frac{T}{\pi} \\
n_{1} \neq n_{2}}} \frac{\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{\sigma} \log \left(n_{1} / n_{2}\right)} \\
& \times \frac{\lambda_{f}\left(n_{1}\right) \varphi_{02}\left(2 \pi n_{1} / T\right)\left(n_{1} / T\right)^{2 \sigma-1}}{n_{1}^{i T}} \frac{\lambda_{f}\left(n_{2}\right) \varphi_{02}\left(2 \pi n_{2} / T\right)\left(n_{2} / T\right)^{2 \sigma-1}}{n_{2}^{i T}} \\
& +O\left(\sum_{r=0}^{2 m} \sum_{r_{1}+r_{2}=r} \sum_{n_{1}<n_{2} \leqslant \frac{T}{\pi}} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{1} n_{2}\right)^{1-\sigma}}\right. \\
& \left.\times \frac{\left(\log n_{2}\right)^{2 m-r}}{n_{2}^{4 \sigma-1}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}}\right) \quad \\
& +O\left(\sum_{r=0}^{2 m} \sum_{r_{1}+r_{2}=r} \sum_{n_{1} \leqslant n_{2} \leqslant \frac{T}{\pi}} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|^{2}\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{\left(n_{2}\right)^{1-\sigma}}\right. \\
& \times\left\{\begin{array}{ll}
|\log (T / n)|(\log T)^{2 m-r}, & \sigma=1 / 2, \\
\left(\log n_{2}\right)^{2 m-r} / n_{2}^{4 \sigma-2}, & \sigma \in(1 / 2,1]
\end{array}\right) \\
= & \begin{array}{ll}
O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in[1 / 2,1), \\
O\left((\log T)^{2 m+2}\right), & \sigma=1,
\end{array} \tag{5.12}
\end{align*}
$$

where (b)-(d) of Lemma 2.5, the formla (1.9) and (b)-(d) of Lemma 2.6 were used. Finally we consider the case $(\mu, \nu)=(5,5)$. Remarks 3.3, 4.1 and the formula (1.4) imply that

$$
\begin{align*}
R_{\varphi}(s) & \ll \sum_{\frac{t}{4 \pi} \leqslant n \leqslant \frac{t}{\pi}} \frac{\left|\lambda_{f}(n)\right|(\log n)^{m}}{n^{\sigma}}\left(\frac{1}{|t|}+\sum_{j=2}^{l} \frac{1}{|t|^{\frac{j}{2}}}\right)+\left|\chi_{f}(s)\right| \sum_{r=0}^{m} \sum_{\frac{t}{4 \pi} \leqslant n \leqslant \frac{t}{\pi}} 1 \\
& \times \frac{\left|\lambda_{f}(n)\right|(\log n)^{r}}{n^{1-\sigma}}\left(\frac{(\log |t|)^{m-r}}{|t|}+\sum_{j=2}^{l} \frac{(\log |t|)^{m-r}}{|t|^{\frac{j}{2}}}\right)+\frac{(\log |t|)^{m}}{|t|^{\sigma-1+\frac{l}{2}}} \\
& \ll \frac{(\log t)^{m}}{t^{\sigma}} . \tag{5.13}
\end{align*}
$$

Hence we get

$$
I_{5,5} \ll \int_{1}^{T} \frac{(\log t)^{2 m}}{t^{2 \sigma}} d t \ll \begin{cases}(\log T)^{2 m+1}, & \sigma=1 / 2, \tag{5.14}\\ 1, & \sigma \in(1 / 2,1] .\end{cases}
$$

Lastly we consider $I_{\mu, \nu}$ in the case of $\mu \neq \nu$. Since $I_{1,1}$ contains the main term of the mean value formula for $L_{f}^{(m)}(s)$, and Cauchy's inequality implies that $\left|I_{\mu, \nu}\right| \leqslant I_{\mu, \mu} I_{\nu, \nu}$ for $\mu, \nu \in\{1, \ldots, 5\}$, it follows that it is enough to consider $I_{\mu, \nu}$ in the case of $(\mu, \nu)=(1,2),(1,3),(1,4),(1,5)$. First in the case of $(\mu, \nu)=(1,2)$, using (b), (c) of Lemma 2.5, (c), (d) of Lemma 2.6 and the estimate (5.3), we obtain

$$
\begin{align*}
I_{1,2}= & \sum_{n_{1}, n_{2}=1}^{\infty} \frac{\overline{\lambda_{f}\left(n_{1}\right)} \lambda_{f}\left(n_{2}\right)\left(\log n_{1}\right)^{m}\left(\log n_{2}\right)^{m}}{\left(n_{1} n_{2}\right)^{\sigma}} \\
& \times \int_{1}^{T} \frac{\varphi_{1}\left(\frac{2 \pi n_{1}}{t}\right)}{} \varphi_{2}\left(\frac{2 \pi n_{2}}{t}\right)\left(\frac{n_{1}}{n_{2}}\right)^{i t} d t \\
= & \frac{1}{i} \sum_{\substack{n_{1}, n_{2}<\frac{T}{\pi}, n_{1} \neq n_{2}}} \frac{\frac{\lambda_{f}\left(n_{1}\right) \varphi_{1}\left(2 \pi n_{1} / T\right) n_{1}^{-i T}}{\lambda_{f}\left(n_{2}\right) \varphi_{2}\left(2 \pi n_{2} / T\right) n_{2}^{-i T}}}{\left(n_{1} n_{2}\right)^{\sigma}} \\
& \times \frac{\left(\log n_{1} \log n_{2}\right)^{m}}{\log \left(n_{1} / n_{2}\right)}+O\left(\sum_{n_{1}<n_{2} \leqslant \frac{T}{\pi}} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1} \log n_{2}\right)^{m}}{\left(n_{1} n_{2}\right)^{\sigma} n_{2}\left(\log \left(n_{1} / n_{2}\right)\right)^{2}}\right) \\
& +O\left(\sum_{n<\frac{T}{\pi}} \frac{\left|\lambda_{f}(n)\right|^{2}(\log n)^{2 m}}{n^{2 \sigma-1}}\right) \\
= & \begin{cases}O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in[1 / 2,1), \\
O\left((\log T)^{2 m+2}\right), & \sigma=1 .\end{cases} \tag{5.15}
\end{align*}
$$

Next we consider the case $(\mu, \nu)=(1,3)$. From (e) of Lemma 2.5 and (a), (b) of Lemma 2.6, the integral $I_{1,3}$ is estimated as

$$
\begin{align*}
I_{1,3}= & \sum_{r=0}^{m}(-1)^{m}\binom{m}{r} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{\overline{\lambda_{f}\left(n_{1}\right)} \lambda_{f}\left(n_{2}\right)\left(\log n_{1}\right)^{m}\left(\log n_{2}\right)^{m}}{n_{1}^{\sigma} n_{2}^{1-\sigma}} \\
& \times \int_{1}^{T} \overline{\varphi_{1}\left(\frac{2 \pi n_{1}}{t}\right)} \varphi_{01}\left(\frac{2 \pi n_{2}}{t}\right)\left(n_{1} n_{2}\right)^{i t} \chi_{f}^{(m-r)}(s) d t \\
= & O\left(\sum_{r=0}^{2 m} \sum_{r_{1}+r_{2}=r} \sum_{n_{1} \leqslant n_{2} \leqslant \frac{\delta_{1}}{2 \pi} T} \frac{\left|\lambda_{f}\left(n_{1}\right) \lambda_{f}\left(n_{2}\right)\right|\left(\log n_{1}\right)^{r_{1}}\left(\log n_{2}\right)^{r_{2}}}{n_{1}^{\sigma} n_{2}^{1-\sigma}}\right. \\
& \times\left\{\begin{array}{ll}
\left|\log \left(T / n_{2}\right)\right|(\log T)^{2 m-r}, & \sigma=1 / 2, \\
\left(\log n_{2}\right)^{2 m-r} / n_{2}^{2 \sigma-1}, & \sigma \in(1 / 2,1]
\end{array}\right) \\
= & \begin{cases}O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in[1 / 2,1), \\
O\left((\log T)^{2 m+2}\right), & \sigma=1 .\end{cases} \tag{5.16}
\end{align*}
$$

In the case of $(\mu, \nu)=(1,4)$, a similar discussion to the case of $(\mu, \nu)=(1,3)$ gives
that

$$
I_{1,4}= \begin{cases}O\left(T^{2(1-\sigma)}(\log T)^{2 m}\right), & \sigma \in[1 / 2,1) \tag{5.17}\\ O\left((\log T)^{2 m+2}\right), & \sigma=1\end{cases}
$$

Finally we consider the case $(\mu, \nu)=(1,5)$. The formula (1.9) and Cauchy's inequality imply that $\sum_{n \leqslant x}\left|\lambda_{f}(n)\right|=O(x)$. Then using the estimate (5.13) and partial summation we get

$$
\begin{align*}
I_{1,5} & \ll \int_{1}^{T} \frac{(\log t)^{m}}{t^{\sigma}} \sum_{n \leqslant \frac{\delta_{1}}{2 \pi} t} \frac{\left|\lambda_{f}(n)\right|(\log n)^{m}}{n^{\sigma}} d t \\
& \ll \int_{1}^{T} \frac{(\log t)^{m}}{t^{\sigma}}\left\{\begin{array}{ll}
t^{1-\sigma}(\log t)^{m}, & \sigma \in[1 / 2,1), \\
(\log t)^{m+1}, & \sigma=1
\end{array} d t\right. \\
& \ll \begin{cases}T^{2(1-\sigma)}(\log T)^{2 m}, & \sigma \in[1 / 2,1), \\
(\log T)^{2 m+2}, & \sigma=1 .\end{cases} \tag{5.18}
\end{align*}
$$

Therefore combining (5.1)-(5.18), we complete the proof of Theorem 1.3.

References

[1] M. Aoki, M. Minamide, A zero density estimate for the derivatives of the Riemann zeta function, Journal for Algebra and Number Theory Academia 2 (2012), 361-375.
[2] P. Deligne, La conjecture de Weil. I, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273-307.
[3] A. Good, Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind, Comment. Math. Helv. 50 (1975), 327-361.
[4] A.A. Karatsuba, S.M. Voronin, The Riemann Zeta-Function, Walter de Gruyter de Gruyter Explosions in Mathematics 5, 1992.
[5] R.A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar functions. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Phil. Soc. 35 (1939), 357-373.
[6] A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1935), 514-521.
[7] Y. Yashiro, Distribution of zeros and zero-density estimate for the derivatives of L-functions attached to cusp forms, preprint, arXiv:1402.3800.

Address: Yoshikatsu Yashiro: Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan.
E-mail: m09050b@math.nagoya-u.ac.jp
Received: 4 July 2014; revised: 21 November 2014

