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COUNTING ADDITIVE DECOMPOSITIONS OF QUADRATIC
RESIDUES IN FINITE FIELDS

Simon R. Blackburn, Sergei V. Konyagin, Igor E. Shparlinski

Abstract: We say that a set S is additively decomposed into two setsA and B if S = {a+b : a ∈
A, b ∈ B}. A. Sárközy has recently conjectured that the set Q of quadratic residues modulo
a prime p does not have nontrivial decompositions. Although various partial results towards this
conjecture have been obtained, it is still open. Here we obtain a nontrivial upper bound on the
number of such decompositions.
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1. Introduction

Given two subsets A,B ⊆ Fq of the finite field Fq of q elements, we define their
sum as

A+ B = {a+ b : a ∈ A, b ∈ B}.

A set S ⊆ Fq is called additively decomposable into two sets if S = A+B for some
sets A,B with

min{#A,#B} > 2.

Sárközy [6] has conjectured that the setQ of quadratic residues modulo a prime
p does not have additive decompositions and shown towards this conjecture that
any additive decomposition

Q = A+ B

satisfies
p1/2

3 log p
6 min{#A,#B} 6 max{#A,#B} 6 p1/2 log p.
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The method also works for an arbitrary finite field of odd characteristic. In [8]
this result has been improved to

cq1/2 6 min{#A,#B} 6 max{#A,#B} 6 Cq1/2, (1)

for some absolute constants C > c > 0 (and also generalised to other multiplicative
subgroups of F∗q).

Shkredov [7] has recently made remarkable progress towards the conjecture of
Sárközy [6] by showing that the conjecture holds with A = B. That is, Q 6= A+A
for any set A ⊆ Fp.

Furthermore, Dartyge and Sárközy [1] have made a similar conjecture for the
set R of primitive roots modulo p. We also refer to [1, 2, 6] for further references
about set decompositions.

For an odd prime power q we denote by N(q) the total number of pairs (A,B)
of sets A,B ⊆ Fq that provide an additive decomposition of the set of quadratic
residues of Fq, that is, the set Q = {x2 : x ∈ F∗q}. The conjecture of Sárközy [6]
is equivalent to the statement that N(q) = 0 when q is an odd prime (and is
probably true for any odd prime power as well).

The bound (1) implies

N(q) 6 exp
(
O(q1/2 log q)

)
.

Here we obtain a more precise estimate:

Theorem 1. For any odd prime power q, we have

N(q) 6 exp
(
O(q1/2)

)
.

Finally, we remark that the argument we use to prove Theorem 1 can be ex-
tended to prove results on additive decompositions of many other “multiplicatively”
defined sets, such as cosets of multiplicative groups and sets of primitive elements
of F∗q . See [1, 8] for analogues of (1) for such sets.

2. Bounds of multiplicative character sums

As usual, we use the expressions A � B and A = O(B) to mean |A| 6 cB for
some constant c.

We recall the following bound on a double character sum due to Karatsuba [4],
see also [5, Chapter VIII, Problem 9], which can easily be derived from the Weil
bound (see [3, Corollary 11.24]) and the Hölder inequality.

Lemma 2. For any integer ν > 1, sets U ,V ⊆ Fq and nontrivial multiplicative
character χ of Fq, we have∑

u∈U

∑
v∈V

χ(u+ v)� (#U)1−1/2ν#Vq1/4ν + (#U)1−1/2ν(#V)1/2q1/2ν ,

where the implied constant depends only on ν.
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We obtain the following result as a corollary of Lemma 2:

Lemma 3. For any ε > 0 if for two sets U ,V ⊆ Fq with #V > qε and a nontrivial
multiplicative character χ of Fq, we have χ(u+ v) = 1 for all pairs (u, v) ∈ U ×V,
then #U � q1/2 where the implied constant depends only on ε.

Proof. We see from Lemma 2 that

#U#V =
∑
u∈U

∑
v∈V

χ(u+ v)

� (#U)1−1/2ν#Vq1/4ν + (#U)1−1/2ν(#V)1/2q1/2ν .

Taking ν sufficiently large so that the first term dominates (for example, taking
ν =

⌈
(2ε)−1

⌉
so that #V > q1/2ν) we find that

#U#V � (#U)1−1/2ν#Vq1/4ν ,

which implies the result. �

We remark that the bounds (1) follow from Sárközy’s result [6] and Lemma 3.
To see this, note that the upper bound follows by taking χ to be the quadratic
character in Lemma 3, and taking U = A and V = B (and then U = B and V = A).
The lower bound now follows since #Q 6 #A#B.

3. Proof of Theorem 1

The proof of Theorem 1 is instant from the following result, which is of independent
interest.

For positive integers k and m, let N(k,m, q) denote the number of pairs (A,B)
of sets A,B ⊆ Fq with #A = k, B = m such that Q = A+ B.

To simplify formulas we extend the definition of binomial coefficients to all
non-negative real numbers. More precisely, for a real z > 0 and an integer n we
set (

z

n

)
=

(
bzc
n

)
.

Lemma 4. For any fixed ε > 0 there is a constant c > 0 such that for all integers
k and m with q > k > qε and q > m > qε, we have

N(k,m, q) 6

(
cq1/2

k

)(
cq1/2

m

)
.

Proof. We fix a set V ⊆ Fq of size #V =
⌊
qε/2

⌋
. We estimate the number

N(V, k,m, q) of sets A,B ⊆ Fq with #A = k, B = m such that

Q = A+ B and V ⊆ B.

Let χ be the quadratic character. Let U be the set of elements u ∈ Fq such
that for every v ∈ V we have χ(u+v) = 1. We see from Lemma 3 that #U � q1/2.
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Any set A which contributes to N(V, k,m, q) satisfies A ⊆ U . Hence there are
at most (

#U
k

)
6

(
c1q

1/2

k

)
(2)

possibilities for A (where c1 > 0 is some constant that depends only on ε).
Suppose now that A is chosen. Fixing an arbitrary set of

⌊
qε/2

⌋
elements of A

and using the same argument we see that that the remaining elements of B always
belong to some fixed set W ⊆ Fq of size #W � q1/2. Therefore, there are at most(

#W
k

)
6

(
c2q

1/2

m

)
(3)

possibilities for the remaining elements of B (where c2 > 0 is some constant that
depends only on ε). Hence, combining (2) and (3), we obtain

N(V, k,m, q) 6
(
c1q

1/2

k

)(
c2q

1/2

m

)
.

Summing over all choices for V yields

N(k,m, q) 6

(
q

qε/2

)(
c1q

1/2

k

)(
c2q

1/2

m

)
6 qq

ε/2

(
c1q

1/2

k

)(
c2q

1/2

m

)
,

which concludes the proof. �

Now, using the fact that N(k,m, q) 6= 0 only if q1/2 � k � q1/2 and q1/2 �
m� q1/2, see (1), we easily derive Theorem 1 from Lemma 4.
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