COUNTING ADDITIVE DECOMPOSITIONS OF QUADRATIC RESIDUES IN FINITE FIELDS

Simon R. Blackburn, Sergei V. Konyagin, Igor E. Shparlinski

Abstract

We say that a set \mathcal{S} is additively decomposed into two sets \mathcal{A} and \mathcal{B} if $\mathcal{S}=\{a+b: a \in$ $\mathcal{A}, b \in \mathcal{B}\}$. A. Sárközy has recently conjectured that the set \mathcal{Q} of quadratic residues modulo a prime p does not have nontrivial decompositions. Although various partial results towards this conjecture have been obtained, it is still open. Here we obtain a nontrivial upper bound on the number of such decompositions.

Keywords: additive decompositions, finite fields, quadratic nonresidues character sums.

1. Introduction

Given two subsets $\mathcal{A}, \mathcal{B} \subseteq \mathbb{F}_{q}$ of the finite field \mathbb{F}_{q} of q elements, we define their sum as

$$
\mathcal{A}+\mathcal{B}=\{a+b: a \in \mathcal{A}, b \in \mathcal{B}\}
$$

A set $\mathcal{S} \subseteq \mathbb{F}_{q}$ is called additively decomposable into two sets if $\mathcal{S}=\mathcal{A}+\mathcal{B}$ for some sets \mathcal{A}, \mathcal{B} with

$$
\min \{\# \mathcal{A}, \# \mathcal{B}\} \geqslant 2
$$

Sárközy [6] has conjectured that the set \mathcal{Q} of quadratic residues modulo a prime p does not have additive decompositions and shown towards this conjecture that any additive decomposition

$$
\mathcal{Q}=\mathcal{A}+\mathcal{B}
$$

satisfies

$$
\frac{p^{1 / 2}}{3 \log p} \leqslant \min \{\# \mathcal{A}, \# \mathcal{B}\} \leqslant \max \{\# \mathcal{A}, \# \mathcal{B}\} \leqslant p^{1 / 2} \log p
$$

[^0]The method also works for an arbitrary finite field of odd characteristic. In [8] this result has been improved to

$$
\begin{equation*}
c q^{1 / 2} \leqslant \min \{\# \mathcal{A}, \# \mathcal{B}\} \leqslant \max \{\# \mathcal{A}, \# \mathcal{B}\} \leqslant C q^{1 / 2} \tag{1}
\end{equation*}
$$

for some absolute constants $C \geqslant c>0$ (and also generalised to other multiplicative subgroups of \mathbb{F}_{q}^{*}).

Shkredov [7] has recently made remarkable progress towards the conjecture of Sárközy [6] by showing that the conjecture holds with $\mathcal{A}=\mathcal{B}$. That is, $\mathcal{Q} \neq \mathcal{A}+\mathcal{A}$ for any set $\mathcal{A} \subseteq \mathbb{F}_{p}$.

Furthermore, Dartyge and Sárközy [1] have made a similar conjecture for the set \mathcal{R} of primitive roots modulo p. We also refer to $[1,2,6]$ for further references about set decompositions.

For an odd prime power q we denote by $N(q)$ the total number of pairs $(\mathcal{A}, \mathcal{B})$ of sets $\mathcal{A}, \mathcal{B} \subseteq \mathbb{F}_{q}$ that provide an additive decomposition of the set of quadratic residues of \mathbb{F}_{q}, that is, the set $\mathcal{Q}=\left\{x^{2}: x \in \mathbb{F}_{q}^{*}\right\}$. The conjecture of Sárközy [6] is equivalent to the statement that $N(q)=0$ when q is an odd prime (and is probably true for any odd prime power as well).

The bound (1) implies

$$
N(q) \leqslant \exp \left(O\left(q^{1 / 2} \log q\right)\right) .
$$

Here we obtain a more precise estimate:
Theorem 1. For any odd prime power q, we have

$$
N(q) \leqslant \exp \left(O\left(q^{1 / 2}\right)\right)
$$

Finally, we remark that the argument we use to prove Theorem 1 can be extended to prove results on additive decompositions of many other "multiplicatively" defined sets, such as cosets of multiplicative groups and sets of primitive elements of \mathbb{F}_{q}^{*}. See $[1,8]$ for analogues of (1) for such sets.

2. Bounds of multiplicative character sums

As usual, we use the expressions $A \ll B$ and $A=O(B)$ to mean $|A| \leqslant c B$ for some constant c.

We recall the following bound on a double character sum due to Karatsuba [4], see also [5, Chapter VIII, Problem 9], which can easily be derived from the Weil bound (see [3, Corollary 11.24]) and the Hölder inequality.

Lemma 2. For any integer $\nu \geqslant 1$, sets $\mathcal{U}, \mathcal{V} \subseteq \mathbb{F}_{q}$ and nontrivial multiplicative character χ of \mathbb{F}_{q}, we have

$$
\sum_{u \in \mathcal{U}} \sum_{v \in \mathcal{V}} \chi(u+v) \ll(\# \mathcal{U})^{1-1 / 2 \nu} \# \mathcal{V} q^{1 / 4 \nu}+(\# \mathcal{U})^{1-1 / 2 \nu}(\# \mathcal{V})^{1 / 2} q^{1 / 2 \nu}
$$

where the implied constant depends only on ν.

We obtain the following result as a corollary of Lemma 2:
Lemma 3. For any $\varepsilon>0$ if for two sets $\mathcal{U}, \mathcal{V} \subseteq \mathbb{F}_{q}$ with $\# \mathcal{V} \geqslant q^{\varepsilon}$ and a nontrivial multiplicative character χ of \mathbb{F}_{q}, we have $\chi(u+v)=1$ for all pairs $(u, v) \in \mathcal{U} \times \mathcal{V}$, then $\# \mathcal{U} \ll q^{1 / 2}$ where the implied constant depends only on ε.
Proof. We see from Lemma 2 that

$$
\begin{aligned}
\# \mathcal{U} \# \mathcal{V} & =\sum_{u \in \mathcal{U}} \sum_{v \in \mathcal{V}} \chi(u+v) \\
& \ll(\# \mathcal{U})^{1-1 / 2 \nu} \# \mathcal{V} q^{1 / 4 \nu}+(\# \mathcal{U})^{1-1 / 2 \nu}(\# \mathcal{V})^{1 / 2} q^{1 / 2 \nu}
\end{aligned}
$$

Taking ν sufficiently large so that the first term dominates (for example, taking $\nu=\left\lceil(2 \varepsilon)^{-1}\right\rceil$ so that $\left.\# \mathcal{V} \geqslant q^{1 / 2 \nu}\right)$ we find that

$$
\# \mathcal{U} \# \mathcal{V} \ll(\# \mathcal{U})^{1-1 / 2 \nu} \# \mathcal{V} q^{1 / 4 \nu}
$$

which implies the result.
We remark that the bounds (1) follow from Sárközy's result [6] and Lemma 3. To see this, note that the upper bound follows by taking χ to be the quadratic character in Lemma 3, and taking $\mathcal{U}=\mathcal{A}$ and $\mathcal{V}=\mathcal{B}$ (and then $\mathcal{U}=\mathcal{B}$ and $\mathcal{V}=\mathcal{A}$). The lower bound now follows since $\# \mathcal{Q} \leqslant \# \mathcal{A} \# \mathcal{B}$.

3. Proof of Theorem 1

The proof of Theorem 1 is instant from the following result, which is of independent interest.

For positive integers k and m, let $N(k, m, q)$ denote the number of pairs $(\mathcal{A}, \mathcal{B})$ of sets $\mathcal{A}, \mathcal{B} \subseteq \mathbb{F}_{q}$ with $\# \mathcal{A}=k, \mathcal{B}=m$ such that $\mathcal{Q}=\mathcal{A}+\mathcal{B}$.

To simplify formulas we extend the definition of binomial coefficients to all non-negative real numbers. More precisely, for a real $z \geqslant 0$ and an integer n we set

$$
\binom{z}{n}=\binom{\lfloor z\rfloor}{ n}
$$

Lemma 4. For any fixed $\varepsilon>0$ there is a constant $c>0$ such that for all integers k and m with $q>k>q^{\varepsilon}$ and $q>m>q^{\varepsilon}$, we have

$$
N(k, m, q) \leqslant\binom{ c q^{1 / 2}}{k}\binom{c q^{1 / 2}}{m}
$$

Proof. We fix a set $\mathcal{V} \subseteq \mathbb{F}_{q}$ of size $\# \mathcal{V}=\left\lfloor q^{\varepsilon / 2}\right\rfloor$. We estimate the number $N(\mathcal{V}, k, m, q)$ of sets $\mathcal{A}, \mathcal{B} \subseteq \mathbb{F}_{q}$ with $\# \mathcal{A}=k, \mathcal{B}=m$ such that

$$
\mathcal{Q}=\mathcal{A}+\mathcal{B} \quad \text { and } \quad \mathcal{V} \subseteq \mathcal{B}
$$

Let χ be the quadratic character. Let \mathcal{U} be the set of elements $u \in \mathbb{F}_{q}$ such that for every $v \in \mathcal{V}$ we have $\chi(u+v)=1$. We see from Lemma 3 that $\# \mathcal{U} \ll q^{1 / 2}$.

Any set \mathcal{A} which contributes to $N(\mathcal{V}, k, m, q)$ satisfies $\mathcal{A} \subseteq \mathcal{U}$. Hence there are at most

$$
\begin{equation*}
\binom{\# \mathcal{U}}{k} \leqslant\binom{ c_{1} q^{1 / 2}}{k} \tag{2}
\end{equation*}
$$

possibilities for \mathcal{A} (where $c_{1}>0$ is some constant that depends only on ε).
Suppose now that \mathcal{A} is chosen. Fixing an arbitrary set of $\left\lfloor q^{\varepsilon / 2}\right\rfloor$ elements of \mathcal{A} and using the same argument we see that that the remaining elements of \mathcal{B} always belong to some fixed set $\mathcal{W} \subseteq \mathbb{F}_{q}$ of size $\# \mathcal{W} \ll q^{1 / 2}$. Therefore, there are at most

$$
\begin{equation*}
\binom{\# \mathcal{W}}{k} \leqslant\binom{ c_{2} q^{1 / 2}}{m} \tag{3}
\end{equation*}
$$

possibilities for the remaining elements of \mathcal{B} (where $c_{2}>0$ is some constant that depends only on ε). Hence, combining (2) and (3), we obtain

$$
N(\mathcal{V}, k, m, q) \leqslant\binom{ c_{1} q^{1 / 2}}{k}\binom{c_{2} q^{1 / 2}}{m} .
$$

Summing over all choices for \mathcal{V} yields

$$
\begin{aligned}
N(k, m, q) & \leqslant\binom{ q}{q^{\varepsilon / 2}}\binom{c_{1} q^{1 / 2}}{k}\binom{c_{2} q^{1 / 2}}{m} \\
& \leqslant q^{q^{\varepsilon / 2}}\binom{c_{1} q^{1 / 2}}{k}\binom{c_{2} q^{1 / 2}}{m}
\end{aligned}
$$

which concludes the proof.
Now, using the fact that $N(k, m, q) \neq 0$ only if $q^{1 / 2} \ll k \ll q^{1 / 2}$ and $q^{1 / 2} \ll$ $m \ll q^{1 / 2}$, see (1), we easily derive Theorem 1 from Lemma 4 .

References

[1] C. Dartyge, A. Sárközy, On additive decompositions of the set of primitive roots modulo p, Monat. Math. 169 (2013), 317-328.
[2] C. Elsholtz, A survey on additive and multiplicative decompositions of sumsets and of shifted sets, Combinatorial Number Theory and Additive Group Theory, Birkhäuser, 2009, 213-231.
[3] H. Iwaniec, E. Kowalski, Analytic number theory, Amer. Math. Soc., Providence, RI, 2004.
[4] A.A. Karatsuba, The distribution of values of Dirichlet characters on additive sequences, Doklady Acad. Sci. USSR 319 (1991), 543-545 (in Russian).
[5] A.A. Karatsuba, Basic analytic number theory, Springer-Verlag, 1993.
[6] A. Sárközy, On additive decompositions of the set of quadratic residues modulo p, Acta Arith. 155 (2012), 41-51.
[7] I.D. Shkredov, Sumsets in quadratic residues, Acta Arith. 164 (2014), 221-243. [8] I.E. Shparlinski, Additive decompositions of subgroups of finite fields, SIAM J. Discr. Math. 27 (2013), 1870-1879.

Addresses: Simon R. Blackburn: Department of Mathematics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK;
Sergei V. Konyagin: Steklov Mathematical Institute, 8, Gubkin Street, Moscow, 119991, Russia;
Igor E. Shparlinski: Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052 Australia.

E-mail: s.blackburn@rhul.ac.uk, konyagin@mi.ras.ru, igor.shparlinski@unsw.edu.au Received: 11 March 2014; revised: 6 May 2014

[^0]: During the preparation of the work, the second author was supported by Russian Fund for Basic Research, Grant N. 14-01-00332, and Program Supporting Leading Scientific Schools, Grant Nsh-3082.2014.1; the third author was supported by the Australian Research Council, Grant DP140100118.

 2010 Mathematics Subject Classification: primary: 11B13; secondary: 11L40

