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expectedly passed away on November 20, 2012. His friends and
colleagues thought that his work should be offered to the mathe-
matical community in order to stimulate further research in this
field where Sargos was one of the leaders. We have made minor,
technical changes where it seemed clear and left void those sections
that Sargos had foreseen but did not have time to write up. Where
necessary, we inserted footnotes to explain the version retained.
We hope that this last paper of Patrick Sargos will be helpful to all
mathematicians working in the field. We express here our warm
thanks to Joseph A. Vandehey, whose numerous remarks and sug-
gestions have been incorporated and will doubtlessly improve the
legibility, and to Ekkehard Krätzel, who gave us his highly valu-
able overall opinion on the work. We also express our gratitude to
all who have helped in the process of making this paper available,
in particular Cécile Dartyge, Joël Rivat and Olivier Robert.

Aleksandar Ivić and Gérald Tenenbaum

Abstract: We make a systematic study of van der Corput’s B-process for multiple exponential
sums. We study directly the important case where the determinant of the Hessian Hf (x) of the
phase f may be abnormally small. This requires a work on multidimensional stationary phase
integrals uniform in δ, the lower bound for

∣∣detHf (x)
∣∣. In passing, we obtain an independent

result on the asymptotic behaviour of the stationary phase integral when the critical point of the
phase is also a singular point of the boundary of the domain of integration. The whole paper is
self-contained.

Keywords: van der Corput’s B-process, multidimensional stationary phase integrals, oscillatory
integrals, change of variables.

1. Introduction

The one dimensional van der Corput’s B-process goes back to the 1920’s. It is
the analogue, for exponential sums, of the stationary phase method for oscillatory
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integrals, cf [10]. With the usual notation e(ξ) = e2iπξ, it may be roughly stated
as follows:∑
M<m62M

e
(
Tf
(m
M

))
= e±iπ/4

M

T 1/2

∑
α6n/N6β

∣∣∣f ′′ (ω(
n

N
)
)∣∣∣−1/2

e
(
Tf∗

( n
N

))
+ Error. (1.1)

Here, the phase f : [1, 2] → R is a four times differentiable function with non-
vanishing second derivative; ω : [α, β] → [1, 2] is the inverse map of f ′; the new
phase function f∗ is defined by f∗(y) = f (ω(y))−yω(y), for y ∈ [α, β]. Moreover,
M and T are large positive real numbers, such that M < T , from which we form
N = T/M , while m and n are integers. Finally, the error term is negligible when α
and β are not too close from an integer; otherwise, it may be as large as M/T 1/2;
a complete and interesting study of this term may be found in [14].

The first exponential sum in (1.1) is trivially bounded by M , while the second
one is O(T 1/2). If we suppose that T 1/2 is smaller than M , we deduce at once
a non trivial bound: ∑

M<m62M

e
(
Tf
(m
M

))
� T 1/2 (1.2)

called “Van der Corput’s inequality”. Note that this bound requires only the second
derivative of f , cf [2].

The analogue of this transformation for two-dimensional exponential sums is
not straightforward. It has been initiated by Titchmarsh in 1942; after further
improvements, the more precise result to date has been obtained by Krätzel (cf.
Theorem 2.24 of [5]; see also the historical notes at the end of chapter 2 in [5]).
His statement requires very delicate hypotheses which give rise to a complicated
error term. The proof is based on a repeated application of the one-dimensional
case.

The same method yields a p-dimensional version of van der Corput’s transfor-
mation, the only correct statement to date (cf [5], Theorem 2.28). However, the
error part contains a term whose saving is not better than in the two-dimensional
case.

Note that the results of Srinivasan (cf. [11] and [12]) in 1963 and 1965, con-
cerning the multidimensional B-process, are probably false because they do not
consider enough the role of the boundary of the p-dimensional domain of summa-
tion; at least, we may assert that the proof is incorrect.

We describe now our version of van der Corput’s multidimensional transfor-
mation. We consider two cases. We shall call the first one as the “case without
boundary”, because it concerns exponential sums of the form∑

m∈Zp
χ
(m1

M1
, . . . ,

mp

Mp

)
e

(
Tf

(
m1

M1
, . . . ,

mp

Mp

))
. (1.3)

Here, the phase f : Ω→ R is a Ck function defined on a connected bounded open
set Ω of Rp and the weight function χ : Rp → C is regular with compact support
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in Ω. We suppose that all the derivatives ∂αf and ∂βχ, up to some order k are
uniformly bounded. The fundamental hypothesis is:

|detHf (x)| > δ > 0 for all x ∈ Ω, (1.4)

where Hf (x) is the Hessian of f at x. The number δ may be small when one
applies first the two-dimensional A -process, so we want all our derived bounds
to be uniform in δ. This will require much more work. Apart from this last
point, our result has been implicitly obtained in the proof of Theorem 2.6 of [1],
using Hörmander’s estimations for stationary phase integrals with nondegenerate
critical point (cf. Lemma 4.2 in section 4 below), while the corresponding “van
der Corput’s inequality” is already implicitly contained in the proof of Theorem 2
of [9] and in previous papers cited there.

Next, we consider the “case with boundary” which concerns exponential sums
of the form:

S =
∑

m/M∈D
m∈Zp

χ
(m1

M1
, . . . ,

mp

Mp

)
e

(
Tf

(
m1

M1
, . . . ,

mp

Mp

))
. (1.5)

The notations are exactly as in the previous case, except that we have to sum on
a compact set D ⊂ Ω. This may cause great difficulties unless D is very special.
We get round this complication with an expedient. So we obtain our sum as
a product of two p-dimensional exponential sums

S =

∫
[0,1]p

S1(ϑ)S2(ϑ)dϑ, (1.6)

the first one containing the problem related to the boundary of D and is indepen-
dent of the phase function f , while the second is the one expected after a B-process
without boundary. Thus, our B-process is quite different from Theorem 2.28 of [5].
Even in the one-dimensional case, we do not recover the classical formula (1.1);
our error term may be reduced as much as required providing that the number k
of derivatives of f is large enough, but our main term is slightly different.

When we have good bounds for µ(D) =
∫

[0,1]p
|S1(ϑ)| dϑ, in the case p > 3, our

Theorem 5.3 becomes an improvement, maybe strong, on corresponding Krätzel’s
theorem.

2. Notations and preliminaries

2.1. Notations

In the whole paper, Ω will denote a connected open set of Rp, p > 1 being a fixed
integer.

The expressions u = O(v) and u � v, with u ∈ C and v > 0, both mean
that there exists a constant C , such that one has |u| 6 Cv; here, C may depend
on other constants which will be recalled at each occurrence whenever a doubt is
possible. We shall say that C is an absolute constant if it does not depend on any
parameter.
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We shall exclusively consider the euclidean norm in Rp, that is ‖x‖ =(∑p
j=1 x

2
j

)1/2

, and we shall use the inner product 〈x,h〉 =
∑p
i=1 xihi.

We shall use the notation Ωc to define the complementary set of Ω in Rp. For
any x ∈ Rp, the distance of x to Ωc will be written as

d(x,Ωc) = inf
y∈Rp,
y/∈Ω

‖x− y‖ . (2.1)

We shall denote byMp(R) the set of symmetric p×p non singular real matrices.
For any A ∈Mp(R), its operator norm will be defined as

||| A |||= sup
‖x‖61

‖Ax‖ . (2.2)

Let Ck(Ω,R) be the set of functions f : Ω → R whose partial derivatives up to
the order k, namely ∂αf(x) = ∂α1

1 . . . ∂
αp
p f(x1, . . . , xp) with α ∈ Np and |α| =

α1 + . . .+ αp 6 k, exist and are continuous on Ω.1 Let Ck(Ω,R) be the subset of
Ck(Ω,R) of those functions whose partial derivatives up to the order k are the
restriction to Ω of continuous functions on Ω, the closure of Ω.

As usual, f ′(x) will be considered either as a point of Rp or as a linear appli-
cation, so that we may write f ′(x)h = 〈f ′(x),h〉. In the former case, we have the
relation

f ′ ∈ Ck−1(Ω,Rp).

As for the second derivative of f , the matrix associated to the bilinear form
f ′′(x) is the Hessian of f at x:

Hf (x) =


∂2

1f(x) ∂2∂1f(x) · · · ∂p∂1f(x)
∂1∂2f(x) ∂2

2f(x) · · · ∂p∂2f(x)
...

...
. . .

...
∂1∂pf(x) ∂2∂pf(x) · · · ∂2

pf(x)

 . (2.3)

In the sequel, f will be the phase function of our exponential sum; because of the
fundamental hypothesis (1.4), we may assert that

Hf (x) ∈Mp(R), for x ∈ Ω. (2.4)

Any A ∈ Mp(R) has exactly p real nonzero eigenvalues λ1, . . . , λp when they
are counted with multiplicity. We set

σ(A) = # {i = 1, . . . , p | λi > 0} −# {j = 1, . . . , p | λj < 0} . (2.5)

1We draw the reader’s attention to the fact that Sargos conforms with the standard French
notation according to which N comprises all non-negative integers.
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2.2. Lemmas on matrices

We recall some results from general algebra.

Lemma 2.1. Let A ∈Mp(R), whose eigenvalues with multiplicity are λ1, . . . , λp.
Then there exists an orthogonal p × p matrix P such that we have P−1AP = ∆,
where ∆ is the diagonal matrix

∆ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp

 . (2.6)

Lemma 2.2. Let A = (aij)16i,j6p ∈ Mp(R). For any (i, j) we denote by Aij the
cofactor of aij. We then have

A−1 = (bij)16i,j6p, with bij =
Aji

detA
. (2.7)

If we suppose furthermore that |aij | 6 C for any (i, j), then we have the bounds

|Aij | 6
(
C
√
p− 1

)p−1

(2.8)

and
||| A−1 |||6 p

(
C
√
p− 1

)p−1

|detA|−1
. (2.9)

Proof. Note that (2.8) follows from Hadamard’s inequality. Moreover, we have

∥∥A−1x
∥∥ 6

 p∑
i=1

 p∑
j=1

|bijxj |

2


1/2

6 C0
√
p

p∑
j=1

|xj |

6 C0p ‖x‖ , with C0 = max
i,j
|bij | ,

by Cauchy’s inequality, and this is (2.9). �

2.3. An extension lemma for continuous functions

The following result from general analysis will simplify our exposition at several
occasions.

Lemma 2.3. Let F : V → E be a mapping from a subset V of a normed space E0

into a complete normed space E. Assume that F is uniformly continuous on V .
Then there exists an extension F̃ of F to a continuous mapping of V into E.

This is Theorem 2.6 of chapter VII of [7]. We shall use it when V is a convex
open subset of Rp, and F is a C1 function whose partial derivatives are bounded
in V .
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2.4. A two-dimensional change of variables

Let c be a positive real number, and ϕ1 and ϕ2 be two functions in Ck
(
]0, c[2,R

)
for some integer k > 2. We suppose that we have, for ν = 1, 2,

lim
r→0+,s→0+

ϕν(r, s) = 0 and |∂αϕν(r, s)| 6 Z |α|,

for 1 6 |α| 6 k, (r, s) ∈]0, c[2 (2.10)

for some Z > 0.
We want to show that, assuming that c is small enough, the relation{

x = r (1 + ϕ1(r, s))

y = s(1 + ϕ2(r, s))

defines a two-dimensional change of variables. We state this in a precise form.

Lemma 2.4. If we assume c 6 1/(6Z), then the mapping F defined by

F (r, s) =

(
x(r, s)

y(r, s)

)
=

(
r(1 + ϕ1(r, s))

s(1 + ϕ2(r, s))

)
for (r, s) ∈ V (2.11)

is a Ck-diffeomorphism from V =]0, c[2 onto W = F (V ) ⊂ R2, whose inverse map
F−1 may be written as

F−1(x, y) =

(
r(x, y)

s(x, y)

)
=

(
x(1 + w1(x, y))

y(1 + w2(x, y))

)
for (x, y) ∈W, (2.12)

where, for ν = 1, 2, the function wν is in Ck−1(W,R) and satisfies

lim
x→0+,y→0+

wν(x, y) = 0 and ∂αwν(x, y)� Z |α|

for (x, y) ∈W and 1 6 |α| 6 k − 1, (2.13)

the implied constant depending only on k. Moreover, we have the inclusion

]0, c/2[2⊂W ⊂]0,+∞[2. (2.14)

Proof. a) We first prove the injectivity of F when c is small enough. For this, we
suppose that we have

F (r + h, s+ k) = F (r, s)

for some (r, s) and (r + h, s + k) in V , with (h, k) 6= (0, 0). The two-dimensional
mean value theorem applied to x and y yields the equality{

0 = x(r + h, s+ k)− x(r, s) = 〈x′(r + ϑ1h, s+ ϑ1k), (h, k)〉
0 = y(r + h, s+ k)− y(r, s) = 〈y′(r + ϑ2h, s+ ϑ2k), (h, k)〉
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which holds for some (ϑ1, ϑ2) ∈]0, 1[2. This means that the linear system(
∂x
∂r (r1, s1) ∂x

∂s (r1, s1)

∂y
∂r (r2, s2) ∂y

∂s (r2, s2)

)(
h
k

)
= (0, 0)

with (rν , sν) = (r+ ϑνh, s+ ϑνk) for ν = 1, 2, admits a non trivial solution (h, k),
and thus its determinant is zero.

We are going to prove that this is impossible. For simplification, we write
u, ∂u∂r , etc., instead of u(r, s), ∂u∂r (r, s), etc. We note the inequalities

|h| , |k| 6 c; 0 6 r, s 6 c; |ϕν | 6 2cZ 6 1/3, for ν = 1, 2, (2.15)

the latter being a consequence of the mean value theorem, and of the limit

lim
r→0+,s→0+

ϕν(r, s) = 0.

The assumption c 6 (6Z)−1 ensures that

∂x

∂r
= 1 + ϕ1 + r

∂ϕ1

∂r
> 1/2, and

∂y

∂s
= 1 + ϕ2 + s

∂ϕ2

∂s
> 1/2,

on the one hand, and∣∣∣∣∂x∂s
∣∣∣∣ =

∣∣∣∣r ∂ϕ1

∂s

∣∣∣∣ 6 1/6 and
∣∣∣∣∂y∂r

∣∣∣∣ =

∣∣∣∣s∂ϕ2

∂r

∣∣∣∣ 6 1/6,

on the other hand. This shows that the absolute value of the determinant of the
2×2 above matrix is > 1/4−1/36 = 2/9 > 0. We thus have proved the injectivity
of F .

b) We know now that F is bijective from V onto W . The Jacobian matrix of
F is

JF (r, s) =

(
∂x
∂r (r, s) ∂x

∂s (r, s)
∂y
∂r (r, s) ∂y

∂s (r, s)

)
.

Its determinant is ∆ = ∆(r, s) = 1 + u = 1 + u(r, s), with

u = ϕ1 + ϕ2 + r∂1ϕ1 + s∂2ϕ2 + (ϕ1 + r∂1ϕ1) (ϕ2 + s∂2ϕ2)− rs∂2ϕ1∂1ϕ2, (2.16)

and we have, using the same proof as above, ∆ > 2/9.

Now, we write the matrix equality JF−1 = (JF )
−1 to get(

∂r
∂x

∂r
∂y

∂s
∂x

∂s
∂y

)
=

1

∆

(
∂y
∂s −∂x∂s
−∂y∂r

∂x
∂r

)
,

from which we deduce
∂r
∂x (x, y) = 1

∆(r(x,y),s(x,y))
∂y
∂s (r(x, y), s(x, y))

∂r
∂y (x, y) = −1

∆(r(x,y),s(x,y))
∂x
∂s (r(x, y), s(x, y))

∂s
∂x (x, y) = −1

∆(r(x,y),s(x,y))
∂y
∂r (r(x, y), s(x, y))

∂s
∂y (x, y) = 1

∆(r(x,y),s(x,y))
∂x
∂r (r(x, y), s(x, y))

. (2.17)
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We see that the partial derivatives of order one of r(x, y) and s(x, y) may be
expressed in terms of r, s, ϕ1, ϕ2 and of the partial derivatives of order one of ϕ1

and ϕ2, and are O(1). We thus have proved that F−1 is in C1(W,R2).
Deriving (2.17), we show successively that F−1 is in Cl

(
W,R2

)
, for l =

2, 3, . . . , k. and we get the bound

∂αr(x, y)� Z |α|−1 and ∂αs(x, y)� Z |α|−1,

for 1 6 |α| 6 k and (x, y) ∈W. (2.18)

c) We are now going to prove (2.12) and (2.13), and it is sufficient to do this for
r only, the case of s being identical. As |ϕν(r, s)| 6 1/3 according to (2.14), and
because of the definition of x(r, s) and y(r, s), given in (2.11), we have obviously
the inclusion (2.14); the same arguments show that we have the limits

lim
x→0+,y→0+

r(x, y) = lim
x→0+,y→0+

s(x, y) = 0.

By the mean value theorem in Lagrange’s form, we have

r(x, y) = x

∫ 1

0

∂r

∂x
(tx, ty)dt+ y

∫ 1

0

∂r

∂y
(tx, ty)dt. (2.19)

Using (2.16) and (2.17), we see that∫ 1

0

∂r

∂x
(tx, ty)dt = 1 + v(x, y)

and ∫ 1

0

∂r

∂y
(tx, ty)dt = xw(x, y),

where v and w are Ck−1 functions on W such that

∂|α|v(x, y)� Z |α| and ∂|α|w(x, y)� Z |α|+1,

for 1 6 |α| 6 k − 1 and (x, y) ∈W .
We set

w1(x, y) = v(x, y) + yw(x, y),

so that w1 satisfies the second part of (2.13). But for the first part of (2.13),
this is only a problem of limit, and not of differential calculus, which is an easy
consequence of (2.11), (2.12) and the first part of (2.10). The lemma is entirely
proved. �

2.5. A special one-dimensional oscillatory integral

Let χ : [0,+∞[→ C be a Cp+1 function which satisfies∣∣∣χ(j)(x)
∣∣∣ 6 Zj , for 0 6 j 6 2 and x > 0, (2.20)
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and
χ(x) = 0 for x > c (2.21)

where Z and c are real parameters satisfying

0 < c 6 1 6 Z. (2.22)

We want to determine the asymptotic behavior, with error terms effective in c
and Z, of the oscillatory integral

Jp(τ) =

∫ ∞
0

χ(x)xp−1e(τx2)dx (2.23)

for large values of the real parameter τ , while p is a fixed positive integer.

Lemma 2.5. With the above notations, we suppose that

τ > c−2 + c2Z4. (2.24)

Then we have

Jp(τ) =
Γ(p/2)

2(2π)p/2
χ(0)epiπ/4τ−p/2 +O

(
c−1 + cZ2

τ (p+1)/2

)
, (2.25)

where the above implied constant depends at most on p, and where Γ denotes
Euler’s Gamma function.

Proof. a) Along the proof of this lemma, the main step is an integration by parts
which occurs a lot of times. More precisely, let q > 1 be an integer. We have

χ(x)xqe(τx2) =
χ(x)xq−1

4iπτ

d

dx

(
e(τx2)

)
,

so that we deduce, for q > 2,∫ ∞
0

χ(x)xqe(τx2)dx =
−1

4iπτ

∫ ∞
0

(
(q − 1)χ(x)xq−2 + χ′(x)xq−1

)
e(τx2)dx,

(2.26)
and ∫ ∞

0

χ(x)xqe(τx2)dx = −χ(0)

4iπτ
− 1

4iπτ

∫ ∞
0

χ′(x)e(τx2)dx, (2.26’)

for q = 1.
b) Now, we deal with the case p = 1. We write

J1(τ) =

∫ c

0

χ(x)e(τx2)dx

= χ(0)

∫ c

0

e(τx2)dx+

∫ c

0

(χ(x)− χ(0)) e(τx2)dx. (2.27)
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For the first integral, we have∫ c

0

e(τx2)dx =

∫ ∞
0

e(τx2)dx−
∫ ∞
c

e(τx2)dx

=
eiπ/4

23/2τ1/2
+O

( 1

cτ

)
. (2.28)

For the last integral in (2.27), we first note that χ(x) − χ(0) =
∫ 1

0
χ′(tx)xdt.

We thus have∫ c

0

(χ(x)− χ(0)) e(τx2)dx =

∫ 1

0

(∫ c

0

χ′(tx)xe(τx2)dx

)
dt. (2.29)

For bounding the inner integral, we integrate by parts:∫ c

0

χ′(tx)xe(τx2)dx =
χ′(tc)e(tc2)− χ′(0)

4iπτ
− t

4iπτ

∫ c

0

χ′′(tx)e(τx2)dx

� Z

τ
+
cZ2

τ
.

Now, we insert (2.28) and this last bound in (2.27) to get (2.25) in the case p = 1.
c) We now deal with the case p = 2. An integration by parts yields

J2(τ) =

∫ ∞
0

χ(x)xe(τx2)dx = −χ(0)

4iπτ
− 1

4iπτ

∫ ∞
0

χ′(x)e(τx2)dx

=
χ(0)e2iπ/4

4πτ
+O

(
Z

τ3/2

)
,

the last bound being due to (2.25) in the case p = 1, completed with (2.24); we
note that the second derivative of χ is indeed needed. We have proved (2.25) for
p = 2.

d) We conclude the general case by a recurrence relation, deduced from an
integration by parts. More precisely, we have, for p > 3

Jp(τ) =
−(p− 2)

4iπτ

∫ ∞
0

χ(x)xp−3e(τx2)dx− 1

4iπτ

∫ ∞
0

χ′(x)xp−2e(τx2)dx.

From this recurrence formula, and the cases p = 1 or p = 2, we deduce the
expected result. �

Remark. Separating the real and the imaginary part of χ, and taking then the
complex conjugate of (2.25), we get∫ ∞

0

χ(x)xp−1e(−τx2)dx =
Γ(p/2)

2(2π)p/2
χ(0)e−piπ/4τ−p/2 +O

(
c−1 + cZ2

τ (p+1)/2

)
. (2.30)
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2.6. A special two-dimensional oscillatory integral

Let k, m, n, p be positive integers, with

m+ n = p, k = p+ 4. (2.31)

Let c and Z be real parameters satisfying (2.22) and let χ ∈ Ck
(
[0,+∞[2,C

)
,

which satisfies{
|∂αχ(x, y)| 6 Z |α|, for 0 6 |α| 6 k and (x, y) ∈]0,+∞[2.

χ(x, y) = 0, if x > c or if y > c.
(2.32)

We want to determine the asymptotic behavior, with explicit error terms, of the
two-dimensional oscillatory integral

Jm,n(τ) =

∫ ∞
0

∫ ∞
0

χ(x, y)xm−1yn−1e
(
τ
(
x2 − y2

))
dxdy. (2.33)

where τ is a real parameter such that

τ > µ(c−2 + c2Z4), (2.34)

for some constant µ > 0. At last, we set σ = m− n.

Lemma 2.6. With the above notation, there exists a constant µ > 0 which depends
only on k, such that, under the assumption (2.37), we have

Jm,n(τ) =
Γ(m/2)Γ(n/2)

4(2π)p/2
χ(0, 0)eiσπ/4τ−p/2 +O

(
c−1 + Z

τ (p+1)/2

)
, (2.35)

where the implied constant depends at most on k.

Proof. a) We fix a C∞ function % : [0,+∞[→ R which satisfies
%(x) = 1 if 0 6 x 6 c

0 6 %(x) 6 1 if c 6 x 6 2c

%(x) = 0 if x > 2c

(2.36)

and so that ∣∣∣%(j)(x)
∣∣∣ 6 Lc−j , for x > 0 and 1 6 j 6 k, (2.37)

for some constant L > 0, depending only on k.
Applying Taylor’s formula up to the first order to χ, we get

χ(x, y) = %(x)%(y)χ(0, 0) + xχ1(x, y) + yχ2(x, y) (2.38)

with

χj(x, y) = %(x)%(y)

∫ 1

0

∂jχ(tx, ty)dt, j = 1, 2. (2.39)
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Inserting this in (2.36), we get Jm,n(τ) as the sum of three terms. The first
one is

χ(0, 0)

(∫ ∞
0

%(x)xm−1e(τx2)dx

)(∫ ∞
0

%(y)yn−1e(−τy2)dy

)
and, according to Lemma 2.5, this is equal to

Γ(m/2)Γ(n/2)

4(2π)p/2
χ(0, 0)eσiπ/4τ−p/2 +O

(
c−1

τ (p+1)/2

)
, (2.40)

providing that τ � c−2, for suitable implied constants depending at most on k.
The two other terms are

I1 =

∫ ∞
0

∫ ∞
0

χ1(x, y)xmyn−1e
(
τ
(
x2 − y2

))
dxdy (2.41)

and

I2 =

∫ ∞
0

∫ ∞
0

χ2(x, y)xm−1yne
(
τ
(
x2 − y2

))
dxdy. (2.42)

We have thus obtained the formula:

Jm,n(τ) =
Γ(m/2)Γ(n/2)

4(2π)p/2
χ(0, 0)eσiπ/4τ−p/2 + I1 + I2 +O

(
c−1

τ (p+1)/2

)
. (2.43)

It remains now to give upper bounds for I1 and I2. Because of the symmetry
between the two terms, it suffices, for instance, to prove that we have

I1 �
Z

τ (p+1)/2
. (2.44)

b) We are going to write I1 as a one-dimensional oscillatory integral, using
Lemma 2.4. Indeed, we have

I1 =

∫ ∞
0

yn−1e(−τy2)

(∫ ∞
0

χ1(x, y)xme(τx2)dx

)
dy

= Zτ−(m+1)/2

∫ ∞
0

Fτ (y)yn−1e(−τy2)dy, (2.45)

where we have set

Fτ (y) =
τ (m+1)/2

Z

∫ ∞
0

χ1(x, y)xme(τx2)dx. (2.46)

As we have

F (j)
τ (y) =

τ (m+1)/2

Z

∫ ∞
0

∂j2χ1(x, y)xme(τx2)dx
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we apply Lemma 2.5 to get

F (j)
τ (y)� c−j + Zj , for 0 6 j 6 k −m− 3 and y > 0, (2.47)

the implied constant depending at most on k.
We note that the proof of Lemma 2.5 does not require that the weight func-

tion χ be independent of τ , provided that the upper bounds for its derivatives
are uniform. So that we may apply (2.30) to the integral (2.45) with the weight
function Fτ , and this yields∫ ∞

0

Fτ (y)yn−1e(−τy2)dy =
Γ(n/2)

2(2π)n/2
Fτ (0)e−niπ/4τ−n/2 +O

(
c−1 + cZ2

τ (n+1)/2

)
,

(2.48)
provided that τ � (c−2 + c2Z4), for suitable implied constants that depend only
on k. This equality yields the bound∫ ∞

0

Fτ (y)yn−1e(−τy2)dy � τ−n/2 +
c−1 + cZ2

τ (n+1)/2
. (2.49)

We insert this in (2.45) to get

I1 �
Z

τ (p+1)/2
+
Z(c−1 + cZ2)

τp/2+1
� Z

τ (p+1)/2
,

according to (2.34). We have proved (2.44) and the lemma follows. �

3. The function f∗

3.1. Elementary properties

Let Ω be a connected open set of Rp, and let f ∈ Ck(Ω,R), with k > 2. We
suppose that Hf (x) is a regular matrix for each x ∈ Ω. In fact, we suppose that,
for some constant δ ∈]0, 1], we have

|detHf (x)| > δ > 0, x ∈ Ω, (3.1)

as announced in the introduction. Thus U : = f ′(Ω) is a connected open set of
Rp. We make the hypothesis that

f ′ : Ω→ U is injective. (3.2)

Let ω : U → Ω denote the inverse map of f ′; we set

f∗(y) = f(ω(y))− 〈y, ω(y)〉 , y ∈ U. (3.3)

We thus have the diagram

Ω ⊂ Rp �f ′

ω U ⊂ Rp
↓f ↓f∗
R R

.

Now, we sum up the more elementary properties of f∗.
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Proposition 3.1.
a) f∗ : U → R is a Ck function and we have

(f∗)
′
(y) = −ω(y) and Hf∗(y) = Hf (ω(y))−1 (3.4)

for all y ∈ U .
b) (f∗)

∗
(x) = f(−x) (x ∈ Ω).

c) We suppose that the following bound holds

|∂αf(x)| 6 C, for 2 6 |α| 6 k and x ∈ Ω. (3.5)

We then have

|∂αf∗(y)| � δ3−2|α|, for 2 6 |α| 6 k and y ∈ U. (3.6)

The constant implied in the � depends at most on C, k and p.

Proof. The proofs of a) and b) may be deduced from the definitions of f∗ and ω.
If |α| = 2, then (3.6) is a consequence of (2.9) and (3.4). If, for instance, we
differentiate f∗ three times, then, according to (3.4), we have to differentiate the
coefficients of Hf (ω(y))−1; it suffices thus to apply (2.7). Higher order derivatives
are obtained similarly. �

3.2. Calculation of (f + ηu)
∗ when η is small

Let f ∈ Ck(Ω,R), satisfying (3.1), (3.2), (3.3) and (3.5), and we suppose further-
more that k > 4. Let u ∈ Ck(Ω,R) satisfying

|∂αu(x)| 6 C, for 1 6 |α| 6 k and x ∈ Ω. (3.7)

Let now η > 0 be a small real number. We set

fη(x) = f(x) + ηu(x), Uη = f ′η(Ω) and V = U ∩ Uη. (3.8)

We assume that

f ′η is injective, V 6= ∅, and
∣∣detHfη (x)

∣∣ > δ, for x ∈ Ω (3.9)

so that we may define f∗η .

Proposition 3.2. With the above hypotheses, there exists a constant C1 > 1,
which depends at most on p, k and C, so that, if η 6 δ/C1, the two following
equalities hold for y ∈ V :

f∗η (y) = f∗(y) + ηu(ω(y)) + η2ϕ2(y) (3.10)

and

f∗η (y) = f∗(y) + ηu(ω(y))

− η2

2

〈
(Hf (ω(y))

−1
u′(ω(y)), u′(ω(y))

〉
+ η3ϕ3(y). (3.11)
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Here, for j = 2 or 3, ϕj is in Ck−j(V,R) and satisfies

|∂αϕj(y)| � δ3−2j−2|α|, for 0 6 |α| 6 k − j, and y ∈ V. (3.12)

The constant implied in the above � symbol depends at most on p, k and C.

Proof. a) First of all, we recall the forms in which we shall use Taylor’s formula.
Let W be a convex open set of Rp and let Φ ∈ Cr(W,Rq) , with r > 2 and q > 1.
Let a and a + h be two points in W . We then have

Φ(a + h) = Φ(a) +

p∑
i=1

hi

∫ 1

0

∂iΦ(a + th)dt (3.13)

and

Φ(a + h) = Φ(a) + Φ′(a)h +

p∑
i,j=1

hihj

∫ 1

0

(1− t)∂i∂jΦ(a + th)dt. (3.14)

Here, we have set Φ′(a)h =
∑p
i=1 hi∂iΦ(a) ∈ Rq, so that the equalities (3.13) and

(3.14) hold in Rq.
b) Let ωη denote the reciprocal of f ′η and let v(y) = ωη(y) − ω(y), so that

v ∈ Ck−1(V,Rp). Our next goal is to give bounds for v and for its derivatives. For
this, we write

y = f ′(ω(y)) = f ′η(ω(y))− ηu′(ω(y))

and thus
ωη(y) = ωη

(
f ′η(ω(y))− ηu′(ω(y))

)
(3.15)

Now, we apply (3.13):

v(y) = −η
p∑
i=1

∂iu(ω(y))

∫ 1

0

∂iωη(f ′η(ω(y))− ηtu′(ω(y)))dt. (3.16)

From this, we get

‖∂αv(y)‖ � ηδ−1−2|α|, for 0 6 |α| 6 k − 2, (3.17)

where the implied constant depends at most on C, k and p. Note that (3.17) for
α = 0 is deduced from the bound

‖∂iωη(ξ)‖ � δ−1, for ξ ∈ V

which follows from (3.4) and (2.7), and similarly for the other values of α in
deriving (3.16).

c) We now aim at proving (3.10). We write

f∗η (y) = fη(ωη(y))− 〈y, ωη(y)〉
= f(ω(y) + v(y)) + ηu(ω(y) + v(y))− 〈y, ω(y) + v(y)〉
= f∗(y) + ηu(ω(y)) + η2ϕ2(y),
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where we have set

ϕ2(y) = η−2

p∑
i,j=1

vi(y)vj(y)

∫ 1

0

(1− t)∂i∂jf(ω(y) + tv(y))dt

+ η−1

p∑
i=1

vi(y)

∫ 1

0

∂iu(ω(y) + tv(y))dt, (3.18)

with the notation
v(y) = (v1(y), . . . , vp(y)) ∈ Rp.

From (3.17), it is easy to check that the function ϕ2 defined in (3.18) satisfies
(3.12). The point (3.10) is now proved.

d) Our new goal is to prove the following equality

v(y) = −ηu′(ω(y))/Hf (ω(y) + η2ψ(y), (3.19)

with ψ ∈ Ck−2(V,Rp) and

‖∂αψ(y)‖ � δ−3−|α|, for y ∈ V and 0 6 |α| 6 k − 2, (3.20)

the constant implied above depending at most on C, k and p.
Our starting point is the obvious equality

0 = y − y = f ′η(ωη(y))− f ′(ω(y))

which may be written as

f ′(ω(y) + v(y))− f ′(ω(y)) + ηu′(ω(y) + v(y)) = 0. (3.21)

We apply (3.14) to the term f ′(ω(y) + v(y)) and (3.13) to the term u′(ω(y) +
v(y)), so that (3.21) becomes

Hf (ω(y))v(y) = −ηu′(ω(y))− η2ψ1(y), (3.22)

with

ψ1(y) = η−2

p∑
i,j=1

vi(y)vj(y)

∫ 1

0

(1− t)∂i∂jf ′(ω(y) + tv(y))dt

+ η−1

p∑
i=1

vi(y)

∫ 1

0

∂iu
′(ω(y) + tv(y))dt.

We apply (3.17) to the above formula to assert that we have ψ1 ∈ Ck−2(V,Rp)
and

‖∂αψ1(y)‖ � δ−2−2|α|, for y ∈ V and 0 6 |α| 6 k − 2. (3.23)
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We set
ψ(y) = − (Hf (ω(y))

−1
ψ1(y)

and we deduce (3.19) from (3.22) and (3.23).
e) It remains to prove (3.11). As in part c), we write

f∗η (y) = f(ω(y) + v(y)) + ηu(ω(y) + v(y))− 〈y, ω(y) + v(y)〉 . (3.24)

To the term f(ω(y)+v(y)), we apply Taylor’s formula up to the third order, while
the second order (cf. (3.14)) will be sufficient for the term u(ω(y) + v(y)). This
yields

f∗η (y) = f∗(y) + 1
2 〈Hf (ω(y))v(y), v(y)〉

+ ηu(ω(y)) + η 〈u′(ω(y)), v(y)〉+ η3ϕ3(y), (3.25)

with

ϕ3(y) = η−3

p∑
i,j,l=1

vi(y)vj(y)vl(y)

∫ 1

0

(1− t)2

2
∂i∂j∂lf(ω(y) + tv(y))dt

+ η−2

p∑
i,j=1

vi(y)vj(y)

∫ 1

0

(1− t)∂i∂ju(ω(y) + tv(y))dt. (3.26)

Applying (3.17), we see that ϕ ∈ Ck−3(V,Rp) and satisfies

‖∂αϕ(y)‖ � δ−3−2|α|, for y ∈ V and 0 6 |α| 6 k − 3.

Inserting this, as well as (3.19), in (3.25), we get (3.11). The proof of Proposi-
tion 3.2 is complete. �

3.3. Semi-monomial functions

This section is left void.

4. Oscillatory integrals

In this section, we consider p-dimensional oscillatory integrals of the form∫
χ(x)e (τ (f(x)− 〈x, ξ〉)) dx,

where τ is a large positive number and p is a fixed positive integer. The case
without critical point reduces to a bound. If there exists a critical point, the
injectivity of f ′ ensures that it is unique. As previously, the hypothesis

|detHf (x)| > δ > 0

is assumed for all x in the open set Ω where f is defined, so that only nondegenerate
critical points will be considered. As we have assumed that Ω is connected, the
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integer σ(Hf (x)), defined in (2.5), is constant when x stays in Ω. That is why we
may set

σ = σ(Hf (x)), x ∈ Ω. (4.1)

In our application to exponential sums, we shall use the asymptotics of such
oscillatory integrals for an arbitrary large number of values of ξ at the same time.
Moreover, the support of χ is given by our initial problem and cannot be reduced.
These considerations exclude the classical approaches more or less based on Morse’s
lemma, as may be found e.g. in Proposition 6 in page 344 of [13], where all
parameters, except τ , are fixed, and where χ must have a “sufficiently small”
support.

Only Hörmander’s approach, as in Theorem 7.7.5 of [3], which is more difficult,
is sufficiently uniform to be applied here. For the convenience of the reader, or for
a possible subsequent use, we have recalled it, restricted to the form we need, in
Lemma 4.2 below.

The main complication in our paper comes from the fact that we want to
include the additional possibility for δ to be abnormally small; this is dictated,
among other applications, by the case where the phase function may be written
as f(x) = f0(x + h) − f0(x) after a multidimensional A-process (cf [2]). The
uniformity with respect to δ is not covered by Hörmander’s result; an adaptation is
possible, but difficult. Moreover, Hörmander’s approach aims to give the complete
asymptotic expansion of the oscillatory integral, while the main term plus an
explicit error term is sufficient for our problem.

We have thus chosen to give a direct and new approach for the asymptotics of
the stationary phase integral, in Theorem 4.1 below, based on spherical coordinates
and a kind of Morse’s lemma in two variables only. As a disadvantage, our error
term is now O(τ−(p+1)/2) instead of the natural O

(
τ−p/2−1

)
, as in Hörmander’s

Lemma 8; this is however sufficient for our needs. As an advantage, our proof
may be adapted to an oscillatory integral whose critical point of the phase is also
a strongly singular point of a particular type of the boundary of the domain of
integration. This is the aim of Theorem 2 below,2 which is independent of the
goal of this paper.

4.1. Oscillatory integral without critical point

Let f ∈ Ck (Ω,R), with k = l + 1 > 2, satisfying

|∂αf(x)| 6 C for 2 6 |α| 6 k and x ∈ Ω. (4.2)

Let χ ∈ Cl0(Ω,C). We set

K = support of χ, |K| = euclidean volume of K, and L = f ′(K).
(4.3)

and, for any ξ ∈ Rp
d(ξ, L) = inf

y∈L
‖y − ξ‖ .

2See Appendix.
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Let us give now an immediate consequence of Theorem 7.7.1 of [3].

Lemma 4.1. With the above notations, the bound∫
χ(x)e (τ (f(x)− 〈x, ξ〉)) dx� |K| τ−l

∑
|α|6l

sup
x
|∂αχ(x)| d(ξ, L)|α|−2l (4.4)

holds for any τ > 1 and any ξ ∈ Rp, ξ /∈ L. The above implied constant depends
only on C, p and k.

Proof. If we set g(x) = f(x) − 〈x, ξ〉, then formula (7.7.1)′ of [3] applied to
g implies (4.4); for this, we have just to note the inequality ‖g′(x)‖ > d(ξ, L).
However, in our simpler case, the idea of the proof may be recalled in a few lines;
for the convenience of the reader, we are going to prove (4.4) for l = 1, the general
situation being obtained by repeating the process. We write

χ(x)e (τ (f(x)− 〈x, ξ〉)) = χ(x)e (τg(x)) =

p∑
j=1

χ(x)∂jg(x)

2πiτ ‖g′(x)‖2
d

dxj
(e(τg(x)) .

Integrating by parts thus yields∫
χ(x)e (τ (f(x)− 〈x, ξ〉)) dx =

−1

2πiτ

p∑
j=1

∫ (
d

dxj

(
χ(x)∂jg(x)

‖g′(x)‖2

))
e(τg(x))dx.

Now, expanding the derivative and giving rough bounds for each term give the
desired result. �

4.2. Stationary phase integral without uniformity in δ

Let f ∈ Ck (Ω,R) be as in section 3.1, satisfying (3.1), (3.2) and (3.5). We define ω,
U , f∗ as in (3.3).

We are now ready to state a simplified version of Theorem 7.7.5 of [3].

Lemma 4.2. We suppose that k = 3l + 1 for some positive integer l. Let χ ∈
C2l

0 (Ω,C) which satisfies∣∣∂βχ(x)
∣∣ 6 C1, for 0 6 |β| 6 2l and x ∈ Ω. (4.5)

Let ξ ∈ U such that

C2 := sup
x∈Ω
‖x− ω(ξ)‖ / ‖f ′(x)− ξ‖ < +∞.

Then, for any real τ > 1, we have∫
χ(x)e (τ (f(x)− 〈x, ξ〉)) dx =

eiπσ/4χ(ω(ξ))e (τf∗(ξ))

|detHf (ω(ξ))|1/2 τp/2
+O

(
τ−p/2−1 + τ−l

)
.

(4.6)
The constant implied in the O symbol above remains bounded when C, C1,C2, p,
k, and the euclidean volume of the support of χ are uniformly bounded.
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Remark. With our hypotheses, we have a bound on C2 in terms of C and p,
provided that we restrict slightly the open set Ω. Indeed, it follows at once from
Lemma A1 of [1], which is a uniform version of the inverse function theorem, that
we have the precise lower bound:

Lemma 4.3. Let f ∈ C3(Ω,R) a function which satisfies the properties:
|∂αf(x)| 6 C, for x ∈ Ω and 2 6 |α| 6 3,

|detHf (x)| > δ, for x ∈ Ω,

f ′ : Ω→ Rp is injective.

We set
κ =

δ

2p2p!Cp
.

Then, for ‖h‖ < κ and B(x, κ) ⊂ Ω, we have

‖f ′(x + h)− f ′(x)‖ > δ

4p!Cp−1
‖h‖ . (4.7)

4.3. Stationary phase integral with uniformity in δ

Let f ∈ Ck (Ω,R) be as in section 3.1, satisfying (3.1), (3.2) and (4.2). We define
ω, U , f∗ as in (3.3), and we keep the notations (4.1) and (4.3). Let χ ∈ Ck(Ω,C)
which satisfies ∣∣∂βχ(x)

∣∣ 6 C1, for 0 6 |β| 6 k and x ∈ Ω. (4.8)

Let ξ ∈ U , and let us set

κ = d(ω(ξ),Ωc). (4.9)

Theorem 4.1. With the above notations and hypotheses, we assume that k > p+5.
We then have∫

χ(x)e (τ (f(x)− 〈x, ξ〉)) dx =
eiπσ/4χ(ω(ξ))e (τf∗(ξ))

|detHf (ω(ξ))|1/2 τp/2

+O

(
C1
δ−1/2κ−1 + δ−2

τ (p+1)/2

)
+O

(
C1 |K|

(
κ−4(k−1) + δ−6(k−1)

)
τk−1

)
, (4.10)

the implied constants depending at most on C and k.

Proof. We split the proof into several steps.
All implied constants below depend at most on C, p and k.
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a) Preliminaries. Up to a translation, we may suppose that ω(ξ) = 0; this does
not change the problem, except that we have now to assume that f(0) = f∗(ξ).
Let A denote the matrix Hf (0) ∈ Mp(R) and let λ1, . . . , λm,−µ1, . . . ,−µn be
its eigenvalues with multiplicities. Here, we have λj > 0 and µj > 0 for all j,
m+ n = p and σ = σ(A) = m− n.

As in Lemma 2.1, we fix an orthogonal matrix P such that

P−1AP =



λ1 · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

0 · · · λm 0 · · · 0
0 · · · 0 −µ1 · · · 0
... · · ·

...
...

. . .
...

0 · · · 0 0 · · · −µn


. (4.11)

Next, being given a small enough positive real number ε, to be determined
later, we construct a function % ∈ C∞0 (Rp,R) such that

%(x) = 1 for ‖x‖ 6 ε,
%(x) = 0 for ‖x‖ > 2ε;

|∂α%(x)| � ε−|α|, for ε 6 ‖x‖ 6 2ε and |α| 6 k, (4.12)

the above implied constant depending at most on k. We then set

χ1(x) = χ(x)%(x) and χ2(x) = χ(x)(1− %(x))

and

Iν =

∫
χν(x)e (τ (f(x)− 〈x, ξ〉)) dx =

∫
χν(x)e (τg(x)) dx, ν = 1, 2 (4.13)

with g(x) = f(x)− 〈x, ξ〉, so that our integral is equal to I1 + I2. We shall study
separately I1 and I2.

b) A first condition on ε. We want to determine a condition on ε for which
a suitable bound for I2 will become possible. In order to apply Lemma 4.1, we need
an effective version of the inverse function theorem. This is the aim of Lemma A.1
of [1]. More precisely, we set

ε0 = min

{
κ,

δ

2p2p!Cp

}
. (4.14)

For ε 6 ε0, say ε = ϑε0 for some 0 < ϑ 6 1, then Lemma A.1 of [1] asserts that
the following inclusion holds:

f ′(B(0, ε)) ⊃ B(ξ,
ϑδε

4p!Cp−1
),

where we have set, as usual, B(a, ε) = {x ∈ Rp | ‖x− a‖ < ε} . In other words,
let K2 denote the support of χ2 and let L2 = f ′(K2). By the injectivity of f ′, any
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y ∈ B(ξ, ϑδε
4p!Cp−1 ), being the image of an x ∈ Ω with x /∈ K2, cannot be in L2. We

then have
ε 6 ε0 =⇒ d(ξ, L2) > C2ε

2,

for some positive C2 which depends only on C and p. An application of Lemma 4.1
yields

I2 � C1 |K|
ε−4(k−1)

τk−1
, (4.15)

providing that ε 6 ε0.
c) The case m = 0 or n = 0. We are now interested in the asymptotic be-

havior of I1; the simpler case m = 0 or n = 0 must be studied separately. We
suppose, for instance, that n = 0, and thus m = p. We recall the definition
I1 =

∫
χ1(x)e(τg(x))dx.

By Taylor’s formula, we have

g(x) = g(0) + 1
2 〈Ax,x〉+ ψ(x) = f∗(ξ) + 1

2 〈Ax,x〉

+

p∑
i,j,q=1

xixjxq

∫ 1

0

(1− t)2

2
∂i∂j∂qf(tx)dt, (4.16)

providing that the segment [0,x] is contained in Ω, and this will be the case for
‖x‖ < κ.

We want to apply the change of variables x = Py. We note that the orthogo-
nality of A and formula (4.11) yield

〈Ax,x〉 = 〈APy, Py〉 =
〈
P−1APy,y

〉
=

p∑
j=1

λjy
2
j , (4.17)

so that we get

I1 = e(τf∗(ξ))

∫
χ1 (Py) e

(
τ

2

m∑
i=1

λiy
2
i + τψ(Py)

)
dy. (4.18)

Now, we set
u1 =

√
λ1y1, . . . , up =

√
λpyp. (4.19)

This new change of variables in (4.19) yields

I1 =
e(τf∗(ξ))

|detHf (ω(ξ))|1/2

∫
χ0(u)e

(τ
2
‖u‖2 + τψ0(u)

)
du, (4.20)

where the meaning of the notations χ0 and ψ0 introduced above is obvious. In
order to apply spherical coordinates, we set

Sp−1 = {u ∈ Rp | ‖u‖ = 1} and dSp−1 = the surface measure on Sp−1
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thus (4.20) becomes

I1 =
e(τf∗(ξ))

|detHf (ω(ξ))|1/2

∫
Sp−1

(∫ ∞
0

χ0(ru)rp−1e
(
τr2/2 + τψ0(ru)

)
dr

)
dSp−1(u).

(4.21)
For u fixed in Sp−1 let Φ(u) denote the inner integral in the above formula,

that is
Φ(u) =

∫ ∞
0

χ0(ru)rp−1e(τr2/2 + τψ0(ru))dr. (4.22)

In order to apply Lemma 2.5, we want to justify the change of variables

x = r
√

1 + 2ψ0(ru)r−2, (4.23)

with the aim of transforming the integral (4.22) into

Φ(u) =

∫ ∞
0

χu(x)xp−1e(τx2/2)dx. (4.24)

The smaller eigenvalue of A satisfies

λ := min {λ1, . . . , λp} � δ, (4.25)

for some suitable positive implied constant that depends at most on C and p.
Indeed, we have λ1 . . . λp = detA > δ, while each eigenvalue has an upper bound
in terms of C and p.

Now, we recall the definition of ψ0(ru). We set

ũ =

(
u1√
λ1

, . . . ,
up√
λp

)
, (4.26)

and we introduce the vectorial notation

Py = (P1(y) , . . . , Pp(y)) ∈ Rp,

so that we may write

ψ0(ru) = r3

p∑
i,j,q=1

Pi(ũ)Pj(ũ)Pq(ũ)

∫ 1

0

(1− t)
2

∂i∂j∂qf(trP (ũ))dt, (4.27)

according to (4.17) and to the fact that we have set successively

x = Py, y = rũ, with ‖u‖ = 1, and ψ(x) = ψ(rP (ũ)) = ψ0(ru). (4.28)

In particular, we have the bounds, for u ∈ Sp−1, and 0 6 r < κ

r−2ψ0(ru)� rλ−3/2, (4.29)
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and

dj

drj
(
r−2ψ0(ru)

)
� λ−1−j/2, for 1 6 j 6 k − 3 and r � λ−1/2. (4.30)

The change of variables (4.23) will be justified if we ensure that
∣∣2r−2ψ0(ru)

∣∣ 6
1/2, that is, if r � λ3/2, or r � δ3/2, according to (4.25), for a sufficiently small
implied constant. Recalling that χ0(ru) = χ(rP (ũ))%(rP (ũ)), we see that

r ‖P (ũ)‖ > 2ε =⇒ χ0(ru) = 0.

But

‖P (ũ)‖ = ‖ũ‖ =

(
p∑
i=1

u2
i

λi

)1/2

� ‖u‖ = 1,

so that there exists a constant η > 0, small enough, depending at most on C and k,
such that

r 6 ηδ3/2 =⇒
∣∣2r−2ψ0(ru)

∣∣ 6 1/2 and r > ε/η =⇒ χ0(ru) = 0. (4.31)

We fix η as above and we set

ε = min
(
η2δ3/2, ε0

)
. (4.32)

For this choice of ε, then (4.15) holds and we have both

Φ(u) =

∫ ε/η

0

χ0(ru)rp−1e
(

1
2τr

2
(
1 + 2r−2ψ0(ru)

))
dr, (4.33)

and ∣∣2r−2ψ0(ru)
∣∣ 6 1/2 for 0 < r 6 ε/η,

so that the change of variables (4.23) is now justified for r ∈ [0, ε/η]. We thus set

x = r
√

1 + 2r−2ψ(ru)⇐⇒ r = x(1 + ϕ(x)), (4.34)

and that defines a function ϕ : [0, c] → R, for some c of the same size as ε, such
that

ϕ(0) = 0, |ϕ(x)| 6 1/2 and ϕ(j)(x)� δ−3j/2, for 1 6 j 6 k − 3,
(4.35)

according to (4.30). Now, the function χu : [0,+∞[→ R, defined in (4.24), may
be written as

χu(x) = χ0(x(1 + ϕ(x))u)(1 + ϕ(x))p−1(1 + ϕ(x) + xϕ′(x)) (4.36)

for x ∈ [0, c], and χu(x) = 0 for x > c.
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We may now apply Lemma 2.5 to the integral

Φ(u) =

∫ ∞
0

χu(x)xp−1e(τx2/2)dx,

for some c� min(κ, δ3/2) and some Z � δ−3/2 and we get the estimation

Φ(u) =
Γ(p/2)

2πp/2
χ(0)epiπ/4τ−p/2 +O

(
C1
κ−1 + δ−3/2

τ (p+1)/2

)
. (4.37)

We insert this in (4.21); recalling that the (p− 1)−dimensional area of Sp−1 is
equal to 2πp/2Γ(p/2)−1, we obtain

I1 =
χ(0)epiπ/4e(τf∗(ξ))

|detHf (ω(ξ))|1/2
τ−p/2 +O

(
C1
δ−1/2κ−1 + δ−2

τ (p+1)/2

)
. (4.38)

Combining this with (4.15), the choice of ε being as in (4.32), we obtain exactly
(4.10) in the case n = 0.

d) The case m > 1 and n > 1. We are now studying the asymptotic behavior
of I1 in the case where both m and n are nonzero. The above method may be
used again with some modifications, the main ones being contained in Lemma 2.4
and Lemma 2.6. We give now the details.

The first modification occurs in (4.17), where we have to set

〈Ax,x〉 = 〈APy, Py〉 =
〈
P−1APy,y

〉
=

m∑
i=1

λiy
2
i −

n∑
i=1

µm+iy
2
m+i. (4.39)

From this, we deduce

I1 = e(τf∗(ξ))

∫
χ1 (Py) e

(
τ

2

(
m∑
i=1

λiy
2
i −

n∑
i=1

µn+iy
2
n+i

)
+ τψ(Py)

)
dy.

(4.40)
Introducing the second change of variables

u1 =
√
λ1y1, . . . , um =

√
λmym and v1 =

√
µ1ym+1, . . . , vn =

√
µnym+n,

(4.41)
we get

I1 =
e(τf∗(ξ))

|detHf (ω(ξ))|1/2

∫
Rm

∫
Rn
χ0(u,v)e

(τ
2

(
‖u‖2m − ‖v‖

2
n

)
+ τψ0(u,v)

)
dudv,

(4.42)
where ‖u‖m and ‖v‖n denote the euclidean norm of u in Rm and of v in Rn, and
where χ0(u,v) and χ0(u,v) have an obvious meaning.

We are now ready to apply the third change of variables, using spherical coor-
dinates both for u and v:

I1 =
e(τf∗(ξ))

|detHf (ω(ξ))|1/2

∫
Sm−1

∫
Sn−1

Φ(u,v)dSm−1(u)dSn−1(v), (4.43)
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with

Φ(u,v) =

∫ +∞

0

∫ +∞

0

rm−1sn−1χ0(ru, sv)e

(
τ

(
r2

2
− s2

2
+ ψ0(ru, sv)

))
drds.

(4.44)
From now on, we work only with this last double integral, and thus, we may

fix u ∈ Sm−1 and v ∈ Sn−1. Our first goal is to give an appropriate form for
ψ0(ru, sv). We set

ũ =

(
u1√
λ1

, . . . ,
um√
λm

)
and ṽ =

(
v1√
µ1
, . . . ,

vn√
µn

)
. (4.45)

According to (4.16), and with the notation (4.45), we have

ψ0(ru, sv) =

p∑
i,j,q=1

Pi(rũ, sṽ)Pj(rũ, sṽ)Pq(rũ, sṽ)

×
∫ 1

0

(1− t)
2

∂i∂j∂qf(tP (rũ, sṽ))dt.

(4.46)

We write each of the linear forms Pi, Pj and Pq as a sum of p terms containing
r or s so that we have

Pi(rũ, sṽ)Pj(rũ, sṽ)Pq(rũ, sṽ) = a1r
3 + a2r

2s+ a3rs
2 + a4s

3,

where the aν , for ν = 1, . . . , 4, are coefficients depending only on P , ũ and ṽ;
according to the following analogue of (4.26)

min {λ1, . . . , λm, µ1, . . . , µn} � δ. (4.47)

we see that their size is O(δ−3/2). Among the terms above, we group together
those containing r2 on the one side and those containing s2 on the other side.
Finally, we obtain the following form:

ψ0(ru, sv) = r2ϕ1(r, s) + s2ϕ2(r, s), with ϕν(0, 0) = 0 for ν = 1, 2. (4.48)

Moreover, using again (4.47), we deduce

∂αϕν(r, s)� δ−1−|α|/2 for r + s� δ−1/2 and 1 6 |α| 6 k − 3, (4.49)

which can be used in the weaker form

|∂αϕν(r, s)| 6
(
C2δ

−3/2
)|α|

for (r, s) ∈ [0, δ−1/2/C2]2 and 1 6 |α| 6 k − 3,

(4.50)
where C2 is a suitable constant that depends at most on C and k. We fix C2 and
we set Z = C2δ

−3/2.
We are now going to determine a possible choice for ε. We have the identity

χ0(ru, sv) = χ0(P (rũ, sṽ)) = 0 for ‖P (rũ, sṽ)‖ > 2ε.
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The orthogonality of P and (4.45) show that

‖P (rũ, sṽ)‖ = ‖(rũ, sṽ)‖ � max(r, s).

We have thus proved the existence of a constant C3, that depends at most on C
and k, such that

max(r, s) > C3ε =⇒ χ0(ru, sv) = 0. (4.51)

In order to justify the change of variables{
x = r

√
1 + 2ϕ1(r, s)

y = s
√

1− 2ϕ2(r, s)
⇐⇒

{
r = x (1 + w1(x, y))

s = y (1 + w2(x, y))
(4.52)

as in Lemma 2.4, we choose ε � Z−1, for a sufficiently small implied positive
constant. Our final choice for ε will be

ε = min

(
ε0,

δ3/2

C4

)
, (4.53)

for a sufficiently large constant C4, and where ε0 has been defined in (4.14). We
have thus

Φ(u,v) =

∫ c

0

∫ c

0

rm−1sn−1χ0(ru, sv)e

(
τ

(
r2

2
− s2

2
+ ψ0(ru, sv)

))
drds,

(4.54)
for some c� min

(
κ, δ3/2

)
and c� Z−1. Applying Lemma 2.4, we get

Φ(u,v) =

∫ +∞

0

∫ +∞

0

xm−1yn−1χu,v(x, y)e

(
τ
x2

2
− τ y

2

2

)
dxdy, (4.55)

with

χu,v(0, 0) = χ(0) = χ(ω(ξ)), χu,v(x, y) = 0 for max(x, y) > c, (4.56)

and
∂αχu,v(x, y)� C1δ

−3|α|/2, for 0 6 |α| 6 k − 3. (4.57)

For proving this last assertion, we note the formula

χu,v(x, y) = χ1 (P (r(x, y)ũ, s(x, y)ṽ))

× (1 + w1(x, y))
m−1

(1 + w2(x, y))
n−1 × J(x, y)

(4.58)

where J(x, y) denotes the Jacobian of the change of variables, and is equal to

(1 + x∂1w1(x, y) + w1(x, y)) (1 + y∂2w2(x, y) + w2(x, y))−xy∂2w1(x, y)∂1w2(x, y),

and where the functions w1(x, y) and w2(x, y) are defined in (4.52). Thus, (4.57)
may be deduced from (2.13) and (2.18), with Z = C2δ

−3/2.
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We want to apply Lemma 2.6. This requires that wν ∈ Ck−1
(
[0,+∞[2

)
,

for ν = 1, 2, while, with the notations of Lemma 2.4, we know only that wν ∈
Ck−1 (W ) by Lemma 2.4. However, if we take C4 large enough in (4.53), the
support of χu,v will be contained in [0, c/2]2 ⊂ W for our choice of c, so that
Lemma 2.3 may be applied to wν on this domain. We note also that, if hypothesis
(2.34) is not satisfied, then (4.10) is obvious, the second error term being greater
than the trivial bound of the integral. These remarks make it possible to apply
Lemma 2.6.

Thus, we have

Φ(u,v) =
Γ(m/2)Γ(n/2)

4(2π)p/2
χ(ω(ξ))eiσπ/4τ−p/2 +O

(
κ−1 + δ3/2

τ (p+1)/2

)
,

providing that τ � κ−2+δ−3, with a sufficiently large implied constant, as required
in (2.34). We report this last equality in (4.43) to obtain the value of I1, and
according to (4.15), we get finally (4.10). The theorem is proved. �

5. The multidimensional B-process

5.1. Hypotheses and notations

For the convenience of the reader, we recall here all the notations and hypotheses
used in the statement of the following two theorems.

Let Ω be a connected open set of Rp and let f ∈ Ck(Ω,R) be the phase function,
where k > p+ 5 is a fixed integer. Let also χ ∈ Ck0 (Ω,C) be the amplitude of the
exponential sum. Let furthermore D be any compact of Rp.

Let T,M1, . . . ,Mp be p + 1 large real numbers (at least greater than 1, say).
We consider the two exponential sums

S =
∑

m∈Zp
χ

(
m1

M1
, . . . ,

mp

Mp

)
e

(
Tf

(
m1

M1
, . . . ,

mp

Mp

))
(5.1)

and
SD =

∑
m/M∈D
m∈Zp

χ

(
m1

M1
, . . . ,

mp

Mp

)
e

(
Tf

(
m1

M1
, . . . ,

mp

Mp

))
. (5.2)

Here and in the sequel we assume that χ vanishes outside the open set Ω. We
shall call S the exponential sum without boundary, and the SD exponential sum
with boundary.

The first basic hypothesis is

|detHf (x)| > δ, for x ∈ Ω, (5.3)

for some δ (0 < δ 6 1) which may be small. This implies that the signature of
Hf (x) is constant over Ω, and equal to (p+, p−), say, and we set

σ = p+ − p−.
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We suppose that we have

|∂αf(x)| 6 C, for 2 6 |α| 6 k and x ∈ Ω

|∂αχ(x)| 6 C, for 0 6 |α| 6 k and x ∈ Ω, (5.4)

for some fixed constant C > 2, and that Ω is contained in a bounded hypercube,
say

Ω ⊂ a + [0, 2C]p,

for some a ∈ Rp. We define K as being the support of χ and we suppose that

d(K,Ωc) > 1/(3C). (5.5)

Now, we recall the definition of f∗, already studied in detail in §2. Our second
basic hypothesis is

f ′ : Ω→ Rp is injective. (5.6)

We then set U = f ′(Ω) and we define ω : U → Ω as the inverse map of f ′. We
may now introduce the new phase function f∗ : U → R as

f∗(y) = f(ω(y))− 〈y, ω(y)〉 (5.7)

whose properties are gathered in §3.
We set Ni = T/Mi, for i = 1, . . . , p, and we shall use the simplified notation

m

M
=

(
m1

M1
, . . . ,

mp

Mp

)
, n/N =

(
n1

N1
, . . . ,

np
Np

)
,

n + ϑ

N
=

(
n1 + ϑ1

N1
, . . . ,

np + ϑp
Np

)
∈ Rp. (5.8)

5.2. The B-process without boundary

We introduce the quantity

R0 =
M1 · · ·Mp

T p

∑
n/N∈f ′(Ω)

1 (5.9)

which occurs in the main error term and satisfies the inequality

R0 �
M1 · · ·Mp

T p

p∏
i=1

(1 + T/Mi) . (5.10)

In main applications, when T is large enough (say T > 2Mi for i = 1, . . . , p),
this term is O(1); but in other cases, R0 may be small (possibly zero) or large.
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Theorem 5.2. 3 All the notations and hypotheses are those of section 5.1. We
then have

S =
M1 · · ·Mp

T p/2
eiπσ/4

∑
n∈Zp

χ
(
ω
(
n
N

))∣∣detHf

(
ω
(
n
N

))∣∣1/2 e
(
Tf∗

( n

N

))
+O

(
R0T

(p−1)/2δ−2
)

+O

(
R0T

p

(Tδ6)
k−1

)

+O

((
p∏
i=1

(T +Mi)

)(
Tδ2

)−(k−1)

)
, (5.11)

the implied constants depending at most on C and k.

Remarks.
1. The standard situation is obtained when T/Mi is large and T/M2

i is small,
for each i = 1, . . . , p, and when δ is not small. We suppose, in this remark,
that these conditions hold. If we bound trivially the new exponential sum in
(5.11), the main term is O(T p/2), the error terms in (5.11) being smaller.
Before applying the B-process, a trivial bound of S as defined in (5.1) gives

S = O(M1 · · ·Mp). We thus have obtained a saving of
(

p∏
i=1

T/M2
i

)1/2

,

that is, we save on each variable exactly the same quantity as with the one-
dimensional van der Corput’s inequality (cf. Theorem 2.2. of [2]). In other
words, in the standard case, we have

S � T p/2 = M1 · · ·Mp

(
p∏
i=1

T/M2
i

)1/2

.

This is the natural extension of the one-dimensional van der Corput’s in-
equality when there is no boundary problem.

2. We still suppose that we are in the standard situation; the transformation

(5.11), after a saving of
(

p∏
i=1

T/M2
i

)1/2

, yields a new multiple exponential

sum. A further saving may be expected. But the new phase function Tf∗ is
as large as the previous one, while the new variable n is much shorter. It is
well known that only a weak new saving is expected, so that the error terms
in (5.11) need not to be sharp, at least for the present time.
If necessary, one may improve our error term, using Hörmander’s Lemma 8
instead of our Theorem 4.1. This should yield

S =
M1 · · ·Mp

T p/2
eiπσ/4

∑
n∈Zp

χ (ω (n/N))

|detHf (ω (n/N))|1/2
e
(
Tf∗

( n

N

))
+O(T p/2−1).

(5.12)
A precise formulation should require some more work that will not be done
here.

3Since a statement seems to be missing, we increased the counter by 1 in order to fit with
Sargos’ numbering.
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Proof of Theorem 5.2. We recall first that the Poisson summation formula∑
m∈Zp

%(m) =
∑
n∈Zp

%̂(n),

with %̂(y) =
∫
Rp %(x)e(−〈x,y〉)dx holds for any % ∈ Cp+1

0 (Rp,C). Taking

%(m) = χ
(m
M

)
e
(
Tf
(m
M

))
,

the sum S, defined in (5.1), becomes

S =
∑
n∈Zp

∫
Rp
χ
( x

M

)
e
(
Tf
( x

M

)
− 〈x,n〉

)
dx

= M1 · · ·Mp

∑
n∈Zp

∫
Rp
χ (y) e

(
T
(
f (y)−

〈
y,

n

N

〉))
dy,

with the change of variables y = x
M ,

= M1 · · ·Mp

∑
n∈Zp

J(n), say.

Now, we may apply the results of §3 to the last integral. By Lemma 4.1, we
have

J(n) =
eiπσ/4χ (ω (n/N)) e (Tf∗ (n/N))

|detHf (ω (n/N))|1/2 T p/2
+R1(n), (5.13)

with

R1(n)� T−(k−1)d
( n

N
, L
)−(k−1)

(
1 + d

( n

N
, L
)−(k−1)

)
, (5.14)

provided that n/N /∈ L = f ′(K). Indeed, recalling that K is the support of χ,
as ω (n/N) /∈ K, we have χ (ω (n/N)) = 0. Thus (5.13) may be reduced to
J(n) = R1(n), and this is a simple consequence of Lemma 4.1.

By Theorem 4.1, we have

J(n) =
eiπσ/4χ (ω (n/N)) e (Tf∗ (n/N))

|detHf (ω (n/N))|1/2 T p/2
+R2(n), (5.15)

with
R2(n)� δ−2T−(p+1)/2 + (δ6T )−(k−1), (5.16)

provided that

d
(
ω
( n

N

)
,Ωc
)
� 1.
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We split the set of n ∈ Zp, according to the fact that d
(
ω
(
n
N

)
,Ωc
)
is 6 (2C)−1

or > (2C)−1 . This yields

S = M1 · · ·Mpe
iπσ/4

∑
n∈Zp

χ (ω (n/N)) e (Tf∗ (n/N))

|detHf (ω (n/N))|1/2 T p/2
+

+M1 · · ·Mp

 ∑
d(ω(n/N),Ωc)6(2C)−1

R1(n) +
∑

d(ω(n/N),Ωc)>(2C)−1

R2(n)

 .

(5.17)

Let κ > 0 be small enough. Suppose that, for some y ∈ f ′(Ω), we have d(y, L) 6 κ.
Then we may write y = b + h, with b ∈ L and ‖h‖ 6 κ, and thus d(ω(y),K) 6
‖ω(b + h)− ω(b)‖. By the inverse function theorem, we know that ω′(y) =

(Hf (ω(y)))
−1 and thus we have ∂jω(y)� δ−1 and this implies that d(ω(y),K)�

κδ−1. Finally, we have proved that there exists a constant Cp > 0, which depends
only on C and p such that

y ∈ f ′(Ω) and d(y, L) 6 δ/Cp =⇒ d (ω(y),K) 6 (3C)−1

=⇒ d (ω(y),Ωc) > (6C)−1.

Conversely, if n/N ∈ f ′(Ω) and if d (ω (n/N) ,Ωc) 6 (2C)−1, then d (n/N, L)

� δ and thus R1(n)�
(
Tδ2

)−(k−1). In the error term of (5.17), those n contribute∑
0<d(ω(n/N),Ωc)6(2C)−1

R1(n)�

(
p∏
i=1

(1 +Ni)

)(
Tδ2

)−(k−1) . (5.18)

Now, we give a bound of the contribution of those n such that
d (ω (n/N) ,Ωc) = 0, that is for n/N /∈ f ′(Ω). For any fixed γ > 0, we have∑
γ<d(n/N,L)62γ

R1(n)� (1 + γ)p

(
p∏
i=1

(1 +Ni)

)(
(Tγ)

−(k−1)
+
(
Tγ2

)−(k−1)
)
.

(5.19)
We take successively the values

γ = 2lδ/Cp, for l = 0, 1, 2, . . .

and we sum the corresponding terms (5.19). Combined with (5.18), this yields∑
d(ω(n/N),Ωc)6(2C)−1

R1(n)�

(
p∏
i=1

(1 +Ni)

)(
Tδ2

)−(k−1)
. (5.20)

To complete the bound of the error term in (5.17), we have the obvious∑
d(ω(n/N),Ωc)>(2C)−1

R2(n)� R0

(
δ−2T−(p+1)/2 + (δ6T )−(k−1)

)
. (5.21)

We insert (5.20) and (5.21) in (5.17) and we obtain (5.11). The proof is com-
plete. �
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5.3. The case with boundary: preliminaries

We are going to give further hypotheses concerning the compact D. Let

D̃ =

p∏
i=1

[ai, bi], with
1

C
6 ai < bi 6 C for i = 1, . . . , p, (5.22)

and we suppose that

K ⊂
p∏
i=1

[
ai −

1

3C
, bi +

1

3C

]
⊂ Ω ⊂

[
1

3C
, 2C

]p
. (5.23)

Now, we write systematically, for x ∈ Rp

x′ = (x1, . . . , xp−1) and x = (x
′
, xp).

The more interesting case is when D has the shape :{
D = {(x′, xp) | x′ ∈ D′ and ap 6 xp 6 ϕ(x′)}
with ϕ : Ω′ → [ap, bp], a regular function.

(5.24)

Here, we have set{
D′ =

∏p−1
i=1 [ai, bi] ⊂ Rp−1,

Ω′ =
{
x′ ∈ Rp−1 | (x′, xp) ∈ Ω for at least one xp ∈ R

}
.

(5.24′)

Taking a finite union of such domains, and reversing the coordinates for some of
them, we cover all known applications.

Our study of the B-transformation with boundary is as follows. Firstly, we
treat the case where D is an hyper-rectangle, for which our method is quite rel-
evant. For this, we boil down to the case without boundary by Lemma 5.2.3. of
[4], which involves the orthogonality of complex exponential functions. Secondly,
we boil down the general case (5.24) to the previous one by means of lemma 5.2.4.
of [4], which involves Mellin’s transformation (or Perron’s formula). Our result is
suddenly less efficient: our error term is considerably larger and the main term
is much more complicated. This is however sufficient to improve on Krätzel’s
theorems, both on the error term and on the simplification of the hypotheses.

We recall them briefly.
Krätzel’s theorems: In his systematic study of the multidimensional B-

process in [5], Krätzel treats directly the important case where detHf (x) may
be abnormally small, in Theorem 2.24 of [5], for p = 2, and Theorem 2.28 of
[5] for p > 3. In both theorems, the more difficult problem of exponential sums
with boundary is considered, the compact domain D satisfying (5.24). As for
the hypotheses, only partial derivatives up to the third order are involved, but,
for p = 2 on the one hand, and especially for p > 3 on the other hand, a lot
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of complicated conditions are needed for technical reasons, among which is the
injectivity of f ′. Furthermore, the partial determinants

∆j(x) =

∣∣∣∣∣∣∣
∂2

1f(x) . . . ∂1∂jf(x)
...

. . .
...

∂j∂1f(x) · · · ∂2
j f(x)

∣∣∣∣∣∣∣ , with j = 1, 2, . . . , p,

which are related to the proof that iterates the one-dimensional case, require a
lower bound, say

|∆j(x)| > δj > 0, for j = 1, 2, . . . , p and x ∈ Ω.

Here, δp corresponds to our δ.
These results may be stated as

SD = main term + E.

In the standard situation, and with our notations, theorems 2.24 and 2.28 of [5]
cannot do better than

E �M1 · · ·Mp−1L,

where we have set
L = log(M1 + . . .+Mp + T ), (5.25)

and, under some natural conditions, this bound is reached in formula (2.79) of [5],
in the case p = 2, and in formula (2.88) of [K] in the case p > 3.

Note that in the applications, this error term is widely sharp enough for p = 2.
But when p increases, it becomes more and more awkward.

For comparison, our Theorem 5.3 gives

E �M1 · · ·Mp−1
M

1/2
p

T 1/2
L+ secondary error terms,

and this is better, for, in the applications, T is greater than Mp (but smaller than
M2
p ).

5.4. The B-process with boundary: the case of an hyper-rectangle

Proposition 5.2.4 Let the hypotheses and notations of section 5.1 hold. For
ϑ ∈ [0, 1]p, we set

ZD(ϑ) =
∑

m/M∈D
m∈Zp

e(〈ϑ,m〉)

and let
µ(D) =

∫
[0,1]p

|ZD(ϑ)| dϑ.

4Here again we increase the counter to fit with Sargos’ numbering.
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We then have

SD =
M1 · · ·Mp

T p/2
eiπσ/4

×
∫

[0,1]p

(∑
n∈Zp

χ (ω ((n + ϑ)/N))∣∣detHf

(
ω
(
n+ϑ
N

))∣∣1/2 e
(
Tf∗

(
n + ϑ

N

)))
ZD(ϑ)dϑ

+O

((
p∏
i=1

(T +Mi)

)
µ(D)T−(p+1)/2δ−2

)

+O

((
p∏
i=1

(T +Mi)

)
µ(D)

(
Tδ6

)−(k−1)

)
, (5.26)

the implied constants depending at most on k and C.

In particular, if D is an hyper-rectangle, say D =
p∏
i=1

[ai, bi] with maxi |bi −

ai| � 1, then we have

µ(D)� Lp.

Remarks.

3. The final goal of the study of the exponential sum SD is always to give
a bound, the B-process being an intermediary step. So, Proposition 5.2 will
be used mainly in the form of the following bound:

SD �
M1 · · ·Mp

T p/2
µ(D)

× max
ϑ∈[0,1]p

∣∣∣∣∣∑
n∈Zp

χ (ω ((n + ϑ)/N))

|detHf (ω ((n + ϑ)/N))|1/2
e

(
Tf∗

(
n + ϑ

N

))∣∣∣∣∣
+

(
p∏
i=1

(T +Mi)

)
µ(D)T−(p+1)/2δ−2

+

(
p∏
i=1

(T +Mi)

)
µ(D)

(
Tδ6

)−(k−1)
. (5.27)

If we have to bound a sum of exponential sums that depend on a parameter h

H∑
h=1

SD(h) =

H∑
h=1

∑
m∈D∩Zp

χh

(
m1

M1
, . . . ,

mp

Mp

)
e

(
Tfh

(
m1

M1
, . . . ,

mp

Mp

))
,

the compact D and the open Ω being independent of h, all the hypotheses
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being uniform in h, then we have

H∑
h=1

SD(h)� M1 · · ·Mp

T p/2
µ(D)

× max
ϑ∈[0,1]p

∣∣∣∣∣
H∑
h=1

∑
n∈Zp

χh (ωh ((n + ϑ)/N))

|detHfh (ωh ((n + ϑ)/N))|1/2
e

(
Tf∗h

(
n + ϑ

N

))∣∣∣∣∣
+H

(
p∏
i=1

(T +Mi)

)
µ(D)T−(p+1)/2δ−2

+H

(
p∏
i=1

(T +Mi)

)
µ(D)

(
Tδ6

)−(k−1)
. (5.28)

Such a situation occurs in lattice point problems (cf. [5] or [4]), where the
summation over h is split in intervals of the form H + 1, . . . , 2H, while the
phase function is now fh(x) = h

H f(x). But in practice, it is difficult to use
the parameter h as a true variable.

4. The formulas (5.27) and (5.28) show that Proposition 5.2 is indissociable of

a bound for µ(D). In the case where D =
p∏
i=1

[ai, bi] with bi − ai � 1 (as Ω

is bounded, this condition is not restrictive), we have the obvious bound

µ(D)� Lp, (5.29)

where L is defined in (5.25). Unfortunately, when D is defined as in (5.24),
we did not succeed in finding a satisfactory bound for µ(D).

Proof of Proposition 5.2. First of all, we state an obvious lemma which is an
immediate consequence of the orthogonality property of the complex exponential
functions.

Lemma 5.1. Let a and b : Zp −→ C be two mappings, a having a bounded support.
For any compact set D of Rp, we have

∑
m/M∈D
m∈Zp

a(m)b(m) =

∫
[0,1]p

( ∑
m∈Zp

a(m)e(−〈ϑ,m〉)

)( ∑
n∈D∩Zp

b(n)e(〈ϑ,n〉)

)
dϑ.

(5.30)

Now, we take

a(m) = χ
(m
M

)
e
(
Tf
(m
M

))
and b(n) = 1,

so that (5.30) becomes

SD =

∫
[0,1]p

S(ϑ)ZD(ϑ)dϑ, (5.31)
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with
S(ϑ) =

∑
m∈Zp

χ
(m
M

)
e
(
Tfϑ

(m
M

))
and

fϑ(x) = f(x)−
〈
ϑ

N
,x

〉
.

We apply Theorem 5.2 to the sum without boundary S(ϑ). For this, we have
to use (5.10) to give a bound uniform in ϑ for R. Furthermore, we note that

f∗ϑ

( n

N

)
= f∗

(
n + ϑ

N

)
.

Finally, we have obtained exactly (5.26). �

5.5. The B-process with a regular boundary

All the hypotheses are those of section 5.1. Moreover, we assume that the compact
D satisfies the regularity condition (5.24). We introduce the notation, for any ε > 0

<(ϕ, ε) = #

{
m′ ∈ D′0 ∩ Zp | d

(
Mpϕ

(
m1

M1
, . . . ,

mp−1

Mp−1

)
,mp

)
6 ε

}
,

D′0 =

p−1∏
i=1

[Miai,Mibi] ,

(5.32)

which denotes the number of lattice points within a distance ε to the hypersurface{
x ∈ Rp | x′ ∈ D′0 and xp = Mpϕ

(
x1

M1
, . . . ,

xp−1

Mp−1

)}
.

The problem of estimating or of giving upper bounds for <(ϕ, ε) is well known
and is the aim of Kratzel’s book [5] (see also [4] for the best known results in the
case p = 2). The expected bound, at least if ε is not too small, and if detHϕ(x′)
does not vanish, is

<(ϕ, ε)� εM1 · · ·Mp−1, (5.33)

Now we introduce the new phase function. For any real t, we set

u(x) =
ϕ(x′)

xp
, ft(x) = f(x) +

t

2πT
log u(x), and χ1(x) = χ(x)u(x).5

(5.34)
This defines a function ft : Ω→ R. If t is not too large, we are in the situation

of section 3.2. In particular, we have the following property.

5It seems necessary to assume henceforth the harmless condition that ϕ is Ck on Ω′.
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Lemma 5.2. There exists a real number η0 > 0 that depends only on k and C,
such that, for

|t| 6 X0, with X0 = η0δT,

the function ft is in Ck(Ω,R) and satisfies

|detHft(x)| > δ/2 and |∂αft(x)| 6 2C, for |α| 6 k and x ∈ Ω,

and such that f ′t is injective in an open connected set Ω0 containing K+B (0,1/6C).

Proof. Everything in this lemma is obvious, except the injectivity of f ′t that we
are going to prove. In order to simplify, we set η = t/(2πT ), so that ft(x) =
f(x) + ηu(x). We have to show that f ′t is injective in Ω0, provided that ηδ−1 is
small enough. Suppose that we have

f ′t(x + h) = f ′t(x), for some x and x + h ∈ Ω0,

that is
f ′(x + h)− f ′(x) = O(η ‖h‖),

where we have written O instead of O because the equality holds in Rp. But, for
ηδ−1 small enough, Lemma 4.3 shows that this is not possible for h 6= 0, and the
lemma is proved. �

At last, we define
ωt : f ′t(Ω0)→ Ω0

as being the inverse map of the restriction of f ′t to Ω0.

We are now ready to state the main result of this paper.

Theorem 5.3. We assume that the above notations and hypotheses hold. Then,
for any positive real numbers ε and X 6 X0, we have

SD =
M1 · · ·Mpe

iπσ/4

2πT p/2

∫ X

−X

∫
[0,1]p

S̃(t, ϑ)ZD̃(ϑ)dϑ
dt

1 + it

+O

((
p∏
i=1

(T +Mi)

)(
T−(p+1)/2δ−2 + (Tδ6)−(k−1)

)
Lp+1

)

+O (<(ϕ, ε)L) +O

(
M1 · · ·Mp

εX

)
+O

(
M1 · · ·Mp

X
L
)
,

(5.35)

where we have set

S̃(t, ϑ) =
∑
n∈Zp

χ1 (ωt ((n + ϑ)/N))

|detHft (ωt ((n + ϑ)/N))|1/2
e

(
Tf∗t

(
n+ ϑ

N

))
. (5.36)
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Remarks.

5. For the convenience of the reader, and for a quick reading of this result, we
recall some facts concerning the notation. First, SD is the exponential sum
defined in (5.2), while D is the compact whose regular boundary satisfies
(5.24), as in Krätzel’s theorems. As for ZD̃(ϑ), we have defined ZD(ϑ) in the
course of Proposition 5.2 and D̃ is defined in (5.22); but the only fact to keep
in mind is that we have the bound∫

[0,1]p

∣∣ZD̃(ϑ)
∣∣ dϑ� Lp.

In practice, this amounts to increase the main term by a factor Lp.
A trivial bound of the multiple exponential sum S̃(t, ϑ) yields

main term �M1 · · ·Mp

(
p∏
i=1

(
T

M2
i

)1/2

Lp+1

)
,

which is, up to the factor Lp+1, the bound expected for the van der Corput’s
inequality.
The first error term is the same as above, but divided by T 1/2 and poses
no problem. The following error term, involving (Tδ6)−(k−1), is negligible in
practice, because k may be taken as large as required, while δ will never be
too small.
At last, the error terms O (<(ϕ, ε)L) +O (M1 · · ·Mp/εX) are the main ones.
An optimization on ε has to be done. If we have the expected bound (5.33),
then we may take X ∼ δT and ε = (Mp/δTL)

1/2 and these error terms
become

O

(
M1 · · ·Mp

(δTMp)1/2
L1/2

)
, (5.37)

so that the best possible saving is a factor L/(δTMp)
1/2.

6. The natural multidimensional van der Corput’s transformation should be
written as

SD = M1 · · ·Mpe
iπσ/4

∑
n/N∈f ′(D)

χ (ω (n/N)) e (Tf∗ (n/N))

|detHf (ω (n/N))|1/2 T p/2
+ E. (5.38)

So are Krätzel’s results. Our main term is, of course, more intricate. But
our new exponential sum S̃(t, ϑ) is without boundary, and the new phase
function f∗t is similar to f∗, according to proposition 3.2. So the complexity
of our main term has some compensations, not only in the error term.

Proof of Theorem 5.3. We begin with a classical lemma, namely the truncated
Perron’s formula.
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Lemma 5.3. Let a, c and X be three positive numbers, a 6= 1. We have

1

2iπ

∫ c+iX

c−iX
as
ds

s
=

{
0 if a < 1

1 if a > 1
+O

(
ac

X |log a|

)
+O

(
ac

X

)
, (5.39)

the implied constants being absolute.

We come now to the proof of Theorem 5.3. We set

%(m) = %(m′,mp) = χ
(m
M

)
e
(
Tf
(m
M

))
and

m′

M′
=

(
m1

M1
, . . . ,

mp−1

Mp−1

)
for m ∈ Zp.

For any positive real numbers ε and X 6 X0, recalling that D̃ is defined in
(5.22), we have

1

2iπ

∫ 1+iX

1−iX

 ∑
m/M∈D̃

%(m′,mp)

(
Mpϕ (m′/M′)

mp

)s ds

s

=
∑

m/M∈D̃
|mp−Mpϕ(m′/M′)|6ε

%(m′,mp)
1

2iπ

∫ 1+iX

1−iX

(
Mpϕ (m′/M′)

mp

)s
ds

s

+
∑

m/M∈D̃
|mp−Mpϕ(m′/M′)|>ε

%(m′,mp)
1

2iπ

∫ 1+iX

1−iX

(
Mpϕ (m′/M′)

mp

)s
ds

s
.

(5.40)

As the bound %(m)� 1 holds for each m ∈ Zp, and as we have

1

2iπ

∫ 1+iX

1−iX

Mpϕ
(

m′

M′

)
mp

s

ds

s
� L,

the first term in the right member above is

� <(ϕ, ε)L.

For the last term in (5.40), we apply the truncated Perron’s formula, and we
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get

∑
m/M∈D̃

|mp−Mpϕ(m′/M′)|>ε

%(m′,mp)
1

2iπ

∫ 1+iX

1−iX

(
Mpϕ (m′/M′)

mp

)s
ds

s

=
∑

m/M∈D̃
mp<Mpϕ

(
m′
M′

)
−ε

%(m′,mp)

+
∑

m/M∈D̃∣∣∣mp−Mpϕ
(

m′
M′

)∣∣∣>ε
O

((
X log

(
Mpϕ (m′/M′)

mp

))−1
)
.

(5.41)

The first term in the right hand side of (5.41) is∑
m/M∈D̃

mp<Mpϕ(m′/M′)−ε

%(m)

=
∑

m/M∈D̃
mp6Mpϕ(m′/M′)

%(m)−
∑

m/M∈D̃
Mpϕ(m′/M′)−ε6mp6Mpϕ(m′/M′)

%(m)

= SD +O (<(ϕ, ε)) .

(5.42)

We come back to the left hand side of (5.40) in which we take s = 1 + it. We have

∑
m/M∈D̃

%(m′,mp)

(
Mpϕ (m′/M′)

mp

)s
=

∑
m/M∈D̃

%(m)u
(m
M

)
e

(
t

2π
log u

(m
M

))
=

∑
m/M∈D̃

χ1

(m
M

)
e
(
Tft

(m
M

))
. (5.43)

Now, we combine all these formulas to get

SD =
1

2iπ

∫ 1+iX

1−iX

 ∑
m/M∈D̃

χ1

(m
M

)
e
(
Tft

(m
M

)) ds

s
+O (<(ϕ, ε))

+
∑

m/M∈D̃
|mp−Mpϕ(m′/M′)|>ε

O

((
X log

(
Mpϕ (m′/M′)

mp

))−1
)
.

(5.44)

The main term is the first one in the right hand side of (5.44). The inner sum
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may be transformed by Proposition 5.2, and this gives

1

2iπ

∫ 1+iX

1−iX

 ∑
m/M∈D̃

χ1

(m
M

)
e
(
Tft

(m
M

)) ds

s

=
M1 · · ·Mpe

iπσ/4

2πT p/2

∫ X

−X

∫
[0,1]p

S̃(t, ϑ)ZD̃(ϑ)dϑ
dt

1 + it

+O

((
p∏
i=1

(T +Mi)

)(
T−(p+1)/2δ−2 + (Tδ6)−(k−1)

)
Lp+1

)
.

(5.45)

Now, it remains only to bound the error term

R =
∑

m/M∈D̃
|mp−Mpϕ(m′/M′)|>ε

O

((
X log

(
Mpϕ (m′/M′)

mp

))−1
)
.

For this, we first note that elementary calculation yields the inequality(
log

(
Mpϕ (m′/M′)

mp

))−1

� Mp

|mp −Mpϕ (m′/M′)|
.

Moreover, the term R is obtained on summing both over m′ and mp. For each
m′, we define

R(m′) = X−1
∑

Mpap6mp6Mpbp

|mp−Mpϕ(m′/M′)|>ε

Mp

|mp −Mpϕ (m′/M′)|
,

so that we have
R�

∑
m′∈D′0

R(m′).

Define ν(m′) as being the integer mp which minimizes |mp −Mpϕ (m′/M′)| .
With this notation, we have

R(m′)� X−1 Mp

ε+ |ν(m′)−Mpϕ (m′/M′)|
+X−1Mp

∑
16h�Mp

1

h
.

Summing over m′ yields

R�
∑

m′∈D′0

R(m′)� M1 · · ·Mp−1Mp

Xε
+
M1 · · ·Mp

X
L. (5.46)

We transfer (5.45) and (5.46) in (5.44) and we get exactly (5.35). The theorem
is proved. �
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5.6. A bound for <(ϕ, ε)

This section is left void.

Appendix

We reproduce here a short note left by the Author, where he comments on Theo-
rem 4.1 and describes a further development which he unfortunately did not have
time to write up in full detail.

Une curiosité

La démonstration du Théorème 1 permet d’obtenir une estimation de l’intégrale
oscillante

Iγ(τ) =

∫
γ

χ(x)e(τf(x)dx,

avec les mêmes hypothèses que précédemment, mais lorsque l’intégrale s’effectue
sur un cône γ, ayant son sommet à l’origine, et ayant une propriété de “compati-
bilité avec Hf (0)”, de sorte que 0 soit à la fois un point critique non dégénéré de
la phase f et un point fortement singulier pour γ. Le cas où γ est un demi-espace
a été complètement étudié dans [H]. Pour décrire γ ainsi que le résultat obtenu, il
faut introduire des notations.

Soit A la matrice symétrique réelle p × p égale à Hf (0). Soit {λ1, . . . , λm,
−µ1, . . .−µn} l’ensemble des valeurs propres de A, comptées avec leur multiplicité,
de sorte que m+n = p (et σ = m−n, où σ est la signature de A). On suppose que
chaque λi et chaque µj est positif. Soit E+ (resp. E−) le sous-espace de dimension
m (resp. n) engendré par les vecteurs propres associés aux valeurs propres positives
(resp. négatives); soit S+ (resp. S−) la sphère unité de l’espace E+ (resp. E−)
pour la norme induite par la norme euclidienne de l’espace ambiant.

Soient enfinK+ un compact de S+, dont l’aire (m−1)-dimensionnelle est notée
Sm−1(K+), et K− un compact de S− dont l’aire (n− 1)-dimensionnelle est notée
Sn−1(K−). On définit alors le cône

γ = R+K
+ + R+K

− =
{
ru + sv | r > 0, s > 0, u ∈ K+, v ∈ K−

}
, (1)

ainsi que la constante

Gγ =
Γ(m/2)Γ(n/2)Sm−1(K+)Sn−1(K−)

4πp/2
. (2)

Nous dirons qu’un cône γ de la forme (8) est “compatible avec Hf (0)”. Nous
énonçons notre résultat sans nous soucier d’uniformité.

Théorème 2. Soit Ω un ouvert de Rp contenant l’origine. Soit f ∈ Cp+5(Ω,R)
une fonction possédant un point critique non dégénéré à l’origine. Soit également
un cône γ compatible avec Hf (0).
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Alors il existe un voisinage V de l’origine suffisamment petit, ne dépendant
que de f , tel que, pour toute fonction test χ ∈ Cp+5

0 (V,C), on ait

Iγ(τ) =
Gγe

σiπ/4χ(0)e(τf(0))

|detHf (0)|1/2 τp/2
+O

(
τ−(p+1)/2

)
quand τ → +∞, (3)

où Gγ est défini par (9) lorsque γ est donné par (8).

Remarque. L’aire (m − 1)-dimensionnelle de S+ est égale à 2πm/2/Γ(m/2), si
bien que, lorsque K+ = S+ et K− = S−, autrement dit si γ = Rp, alors Gγ = 1,
et on retrouve le terme principal classique. Seul le terme d’erreur O

(
τ−(p+1)/2

)
de (10) est moins bon que le terme d’erreur O(τ−p/2−1) dans (2).
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