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SIGN CHANGES OF COEFFICIENTS OF CERTAIN DIRICHLET
SERIES

Jaban Meher, Sudhir Pujahari and Karam Deo Shankhadhar

Abstract: In this paper, we give criteria for infinitely many sign changes of the coefficients of
any Dirichlet series if the coefficients are real numbers. We also provide examples where our
criteria are applicable.
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1. Introduction

The sign changes in a sequence of real numbers have attracted many for different
reasons. In particular, the signs of the Fourier coefficients of different automorphic
forms have been studied due to their various number theoretic applications. Com-
ing back to the general scenario, given a sequence of real numbers, one may ask
a natural question about the number of sign changes in the sequence. Pribitkin
[17] proved a general result about the sign changes of the coefficients of any general
Dirichlet series. More precisely, he proved that the coefficients of a general Dirich-
let series change signs infinitely often. In [18], he has given numerous applications
of his result. In this article, we prove two results about the sign changes of the co-
efficients of certain kind of Dirichlet series. Using the method similar to Kohnen’s
method of proof in [10], we prove our first result about the sign changes. In our
next result, we give a criterion for a Dirichlet series with real coefficients to have
infinitely many sign changes. To prove our second result, we follow the method
similar to the proof of the main result of [4]. Furthermore, we provide applica-
tions of these two results in §4. Using these results, we conclude the oscillatory
behaviour (infinitely many sign changes) of the Fourier coefficients of elliptic cusp
forms, Siegel cusp forms, Maass cusp forms and second order cusp forms. The
sign change results in the case of elliptic cusp forms, Siegel cusp forms and sym-
metric power L-functions associated to elliptic cusp forms have been established
in [8, 9, 16] using different techniques. The applications provided in the case of
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second order cusp forms and Maass cusp forms are new. We establish the oscilla-
tory behaviour of the Fourier coefficients of second order cusp forms and infinitely
many sign change in the subsequences {anj}∞n=1 of the sequence {an}∞n=1 of the
Fourier coefficients of Maass cusp forms for any j = 1, 2, 3, 4.

J. Kaczorowski kindly informed the third author that his recent paper with
A. Perelli [6] deals with a similar subject as this though the methods used are
quite different. More precisely, under some simple conditions they show that the
real and imaginary parts of any linear combination of coefficients of L-functions
from the Selberg class have infinitely many sign changes by proving a general
Ω-theorem for the coefficients of polynomial combinations of such L-functions.

2. Statement of results

Let k and N be given positive integers. Put WN =

(
0 −1
N 0

)
. Let f be any non-

zero function defined on the upper half-plane H = {z ∈ C : Im(z) > 0}. Define
f |kWN (z) := (

√
Nz)−kf(−1

Nz ). Our first result is the following.

Theorem 1. Suppose that f and g = f |kWN have the following Fourier series
expansions.

f(z) =
∑
n>0

ane
2πinz and g(z) = f |kWN (z) =

∑
n>0

bne
2πinz.

Assume that the Fourier coefficients an, bn (n > 1) are bounded by O(nα), where
α is a positive constant. If a0 (respectively b0) is zero and bn (respectively an) are
real numbers for n > 1, then the sequence {bn}∞n=1 (respectively {an}∞n=1) changes
signs infinitely often.

As a consequence of the above theorem, we have the following corollary.

Corollary 2. Let f and g be as in the above theorem. Suppose that a0 = b0 = 0
and an, bn are real numbers for n > 1. Then both the sequences {an}∞n=1 and
{bn}∞n=1 change signs infinitely often.

Remark 3. The type of function considered in Theorem 1 has appeared in the
recent work of Choie and Kohnen [1].

We state our second result about the sign changes in a given sequence of real
numbers.

Theorem 4. Let {an}∞n=1 be a sequence of real numbers such that an = O(nα), for
some real number α. Assume that the Dirichlet series

∑∞
n=1

an
ns can be analytically

continued to Re(s) > r > 0 and has polynomial growth in Im(s) in this region.
Furthermore, assume that the Dirichlet series

∑∞
n=1

an
2

ns has a singularity at s =
k > 0 such that α + r < k. Then the sequence {an}∞n=1 changes signs infinitely
often.
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Remark 5. The condition in the hypothesis of Theorem 4 that α + r < k is
essential. For example, take the case of Riemann zeta function ζ(s) =

∑
n>1

1
ns ,

we have α = 0, r = 1 and k = 1. The condition α + r < k is not satisfied and all
the coefficients are of positive sign.

3. Proofs

We first begin with a theorem due to Hecke [5, Theorem 7.3].

Theorem 6. Let k and N be positive integers. Suppose that f and g are given by
the Fourier series

f(z) =
∑
n>0

ane
2πinz and g(z) =

∑
n>0

bne
2πinz,

with coefficients an, bn (n > 1) bounded by O(nα), where α is a positive constant.
Let

L(s, f) =
∑
n>1

an
ns
, L(s, g) =

∑
n>1

bn
ns

and

L∗(s, f) = (
√
N/2π)

s
Γ(s)L(s, f), L∗(s, g) = (

√
N/2π)

s
Γ(s)L(s, g).

Then the following assertions are equivalent:

(i) The functions f and g are related by g = f |kWN , where f |kWn is defined
just before the statement of Theorem 1.

(ii) Both L∗(s, f) and L∗(s, g) have meromorphic continuation over the whole
complex plane,

L∗(s, f) +
a0

s
+ i−k

b0
k − s

, L∗(s, g) +
b0
s

+ i−k
a0

k − s

are entire and bounded on vertical strips, and they satisfy

L∗(s, f) = ikL∗(k − s, g).

Proof of Theorem 1. Let L(s, f) =
∑
n>1

an
ns and L(s, g) =

∑
n>1

bn
ns be

the Dirichlet series associated to f and g respectively. Let

L∗(s, f) = (
√
N/2π)

s
Γ(s)L(s, f) and L∗(s, g) = (

√
N/2π)

s
Γ(s)L(s, g).

Since g|kWN = (f |kWN )|kWN = (−1)kf , it is sufficient to consider the case a0 = 0
and bn(n > 1) are real. Let a0 = 0. Assume on the contrary that bn > 0 for all but
finitely many n. Then by Landau’s theorem on Dirichlet series with non-negative
coefficients, L(s, g) is either convergent for all s ∈ C or it has a singularity at the
real point of the abscissa of convergence. Since g = f |kWN , using Theorem 6,
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L∗(s, g) + b0
s is an entire function of s and therefore L∗(s, g) does not have any

singularity in the region Re(s) > 0. Since Γ(s) has its poles exactly at non-positive
integers, L(s, g) is an entire function of s. From the above discussion, the series
L(s, g) converges for all s and it has zero at all negative integers {−1,−2, . . .}.
Let m1,m2, . . . ,mt be all positive integers with m1 < m2 . . . < mt such that
bm1

, bm2
, . . . , bmt are strictly negative. For ν = −1,−2, . . ., we have∑

n>1

bn
nν

= 0.

Dividing both sides by m−νt , we get

∑
n>1,

n 6=m1,m2,...,mt

bn

(
n

mt

)−ν
= −bm1

(
m1

mt

)−ν
− · · · − bmt . (1)

Letting −ν → ∞, we see that the right hand side of the above equation has the
limit −bmt , which is strictly positive. If there were n > mt for which bn > 0, then
the left hand side of (1) would tend to infinity as −ν →∞, giving a contradiction.
Thus, we deduce that bn = 0 for all n > mt. Therefore for all ν = −1,−2, . . ., we
have

mt∑
n=1

bn
nν

= 0. (2)

Let 1 6 m 6 mt be the largest positive integer for which bm 6= 0. Then from (2),
we have

m−1∑
n=1

bn

( n
m

)−ν
+ bm = 0.

Again letting −ν →∞, we get bm = 0. This is a contradiction to the assumption
that m is the largest integer for which bm 6= 0. This proves the theorem. �

Remark 7. The above theorem can be proved also by using Theorem 6 and the
result on Dirichlet series proved in [17].

Proof of Theorem 4. Assume on the contrary that an > 0 for all n > T for
some sufficiently large number T . Since an = O(nα), the series M(s) =

∑∞
n=1

an
ns

is absolutely convergent for Re(s) > α + 1. Using the inverse Mellin transform,
we get

1

2πi

∫ α+1+i∞

α+1−i∞
M(s)Γ(s)xsds =

∑
n>1

ane
−n/x. (3)

Since M(s) can be analytically continued to Re(s) > r > 0 (which is assumed),
for any ε > 0 if we move the line of integration to Re(s) = r + ε, we see that on
the vertical line Re(s) = r + ε, the gamma function decreases exponentially and
the function M(s) has polynomial growth. Thus, we do not get any singularity
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for Re(s) > r. Then the integral on the left hand side of (3) is O(xr+ε), for any
ε > 0. This implies that ∑

n>1

ane
−n/x = O(xr+ε). (4)

We have

e
∣∣∣ ∑
n>T

ane
−n/x

∣∣∣− e∣∣∣ ∑
n6T

ane
−n/x

∣∣∣ 6 e∣∣∣∑
n>1

ane
−n/x

∣∣∣ 6 βxr+ε,
where β is some constant and e denotes the exponential. Since an is non-negative
for n > T , the above equation gives us the following.∑

T<n6x

an 6 e
∑
n>T

ane
−n/x 6 γxr+ε, (5)

for some constant γ.
Now, we claim that if A(x) =

∑
T<n6x

a2
n, then for every c with 0 < c < k,

every constant α1 > 0 and every x, there exists an x0 > x such that

A(x0) > α1x
c
0. (6)

Assume towards a contradiction that there exists c < k such that A(x) = O(xc).
Using the partial summation formula, we have for Re(s) > k,

∑
n>T

a2
n

ns
= s

∫ ∞
T

A(u)

us+1
du. (7)

Since A(x) = O(xc), the right hand side of (7) is an analytic function for Re(s) > c.
Under the hypothesis of the theorem, the left hand side of (7) has a singularity at
s = k, which is a contradiction. This proves the claim (6).

Using (6) and (5) with the assumption that an = O(nα), we get the following.

α1x
−α+c
0 6 x−α0

∑
T<n6x0

a2
n 6

∑
T<n6x0

a2
n

nα
6 λ

∑
T<n6x0

an 6 λγx
r+ε
0 , (8)

for some constant λ. This implies,

xc−r−α−ε0 6
λγ

α1
. (9)

Since r+α < k holds by assumption, we can choose c and ε in such a way that the
exponent on the left hand side of the above equation is greater than 0, whereas
the right hand side would be less than 1, giving a contradiction. This proves the
theorem. �
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4. Applications

4.1. Applications of Theorem 1

(i) Elliptic cusp forms. Let k,N be positive integers. Let us denote the
space of cusp forms (elliptic) of weight k and level N by Sk(N). If f is
such a cusp form then it is easy to see that f |kWN ∈ Sk(N). Therefore
the Fourier coefficients of both f and f |kWN are bounded by the Hecke’s
trivial bound O(nk/2). Assume that the Fourier coefficients of f are real
numbers, then applying Theorem 1, we deduce the following proposition.
Proposition 8. If f is any elliptic cusp form of weight k and level N with
real Fourier coefficients, then the coefficients change signs infinitely often.

(ii) Second order cusp forms.
Definition 9. A holomorphic function f : H −→ C is called a second order
cusp form of weight k and level N if it satisfies the following conditions.

(a) The function f |k(γ − 1)(z) := (cz + d)−kf
(
az+b
cz+d

)
− f(z) ∈ Sk(N) for

all γ =

(
a b
c d

)
∈ Γ0(N).

(b) f |k(π − 1) = 0 for all parabolic elements π in Γ0(N).
(c) f has exponential decay at each cusp of Γ0(N).
We denote the space of second order cusp forms of weight k and level
N by S2

k(N). It is proved in [3, Proposition 10] that if f ∈ S2
k(N) then

f |kWN ∈ S2
k(N). The n-th Fourier coefficient of any second order cusp

form of weight k and level N satisfies the trivial bound O(nk/2 log n) [3,
Lemma 7]. We get the following result by applying Theorem 1 in this
situation.
Proposition 10. If the Fourier coefficients of a second order cusp form
are real numbers, then they change signs infinitely often.

4.2. Applications of Theorem 4

(i) Elliptic cusp forms. Let f(z) =
∑
n>1 a(n)e2πinz be any cusp form of

weight k and level N such that a(n) are real numbers. We normalize
the Fourier coefficients by setting an = a(n)/n(k−1)/2. We see that, the
sequence of real numbers {an}∞n=1 satisfies the hypothesis of Theorem 4.
We have the Deligne’s bound an = O(nε), for any ε > 0. The series∑∞
n=1

an
ns extends to an analytic function to the whole complex plane and

has a polynomial growth in Im(s) in the region Re(s) > 0. Using Rankin-
Selberg convolution, one can prove that the series

∑∞
n=1

an
2

ns has a pole at
s = 1. In this case, α+ r = ε < 1. Applying Theorem 4, we get infinitely
many sign changes for the sequence {an}∞n=1. Note that the Hecke’s trivial
bound of a(n) = O(nk/2) would also suffice to use Theorem 4 to get this
application.
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(ii) Siegel cusp forms of degree 2. Let F be a degree 2 Siegel cusp form of weight
k for the Siegel modular group Sp4(Z) , which is an eigenform for all the
Hecke operators T (n) with eigenvalues λF (n) and not a Saito-Kurokawa
lift. Then it is well known that λF (n) are real numbers. We normalize
the eigenvalues by setting λn = λF (n)/nk−3/2. We know that λn = O(nε)
for any ε > 0, as a consequence of the Ramanujan-Petersson conjecture,
proved by Weissauer [19]. The analytic properties of the Dirichlet series∑
n>1 λnn

−s are well studied. In fact, it can be analytically continued to
Re(s) > 0 and has polynomial growth in Im(s) in this region (see [11]). In
[2, Theorem 1.1], it has been proved that the Dirichlet series

∑
n>1 λ

2
nn
−s

admits an analytic continuation to Re(s) > 1/2 with the exception of a
simple pole at s = 1. In this case, α + r = ε < 1 . Thus the sequence of
eigenvalues {λn}∞n=1 satisfies all the hypothesis of Theorem 4 and therefore
it is oscillatory (infinitely many sign changes).

(iii) Maass cusp forms. Let g(z) be a Maass cusp form for the full modular
group SL2(Z) with Laplace eigenvalue 1/4 + ν2. Suppose that the Fourier
expansion of g is given by

g(z) =
∑
n 6=0

an
√
yKiν(2π|n|y)e2πinx,

where z = x+ iy and Kiν is the modified Bessel function of the third kind.
Assume that an (n > 1) are real numbers. The Dirichlet series attached
to g is defined as follows.

L(s, g) =
∑
n>1

an
ns
.

By a result of Kim and Sarnak [7], we have an = O(n7/64+ε), for any
ε > 0. Let us fix µ = 0 or 1 accordingly g is even or odd respectively.
Let

Λ(s, g) = π−sΓ

(
s+ µ+ iν

2

)
Γ

(
s+ µ− iν

2

)
L(s, g).

It is well known that Λ(s, g) is entire and hence L(s, g) is entire. The
Dirichlet series L(s, g) has polynomial growth in Im(s) for Re(s) > 0.
By Rankin-Selberg convolution, the series

∑
n>1

an
2

ns has a simple pole at
s = 1. In this case, α+r = 7/64+ ε < 1. Applying Theorem 4, we deduce
that the sequence {an}∞n=1 changes signs infinitely often.
Remark 11. The sign change result for elliptic cusp forms is obtained in
[8] also. The result pertaining to Siegel cusp forms of degree 2 was first
established by Kohnen in [9]. In the case of Maass cusp forms, we do not
know whether the Dirichlet series attached to it, has infinitely many real
zeros or not if ν 6= 0. Thus, we cannot apply Theorem 1 of [17] in this
case. However, in [8] it is remarked that the sign change result for Maass
cusp forms can be formulated along the lines of their theorems for elliptic
cusp forms.
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(iv) Symmetric power L-functions associated to elliptic cusp forms. Let us
assume that f(z) =

∑
n>1 a(n)e2πinz ∈ Sk(1) be a Hecke eigen cusp form

(that is, an eigenfunction for all the Hecke operators T (n), n > 1) of weight
k for the full modular group SL2(Z). Let an = a(n)

n(k−1)/2 . It is known that
an, n > 1 are real numbers. For any j = 2, 3, 4, using Theorem 4 we show
that the subsequence {anj}∞n=1 changes signs infinitely often. For any fix
j ∈ {2, 3, 4}, we verify that the sequence of real numbers {anj}∞n=1 satisfies
the hypothesis of Theorem 4. For any n > 1 we have anj = O(njε) for
any ε > 0. Consider the Dirichlet series

∑
n>1 anjn

−s. For j = 2, this
series can be analytically continued to the half plane Re(s) > 1

2 [5, §13.8]
and has polynomial growth in this region. From [15, (2.7),(2.10), Proof of
Theorem 1.2], we have the analytic continuation and polynomial growth in
Im(s) of the series

∑
n>1 anjn

−s, j = 2, 3 in the region Re(s) > 1
2 . From

[12, (3.1)], we know that the series
∑
n>1 a

2
njn
−s has a simple pole at

s = 1. For any j = 2, 3, 4, α+r = jε+ 1
2 < 1. Applying Theorem 4 we get

the infinitely many sign changes for any subsequence {anj}∞n=1, j = 2, 3, 4.

Remark 12. In [16], certain quantitative results for the sign change in
each subsequence {anj}∞n=1, j ∈ {2, 3, 4} have been established and hence
infinitely many sign change in the subsequences. The proof uses suitable
bounds for the two average sums

∑
16n6x a(nj) and

∑
16n6x a(nj)

2.
Here we are using less tools to conclude the infinitely many sign change
but we do not get any quantitative result.

(v) Symmetric power L-functions associated to Maass cusp forms. Let g(z) =∑
n 6=0 an

√
yKiν(2π|n|y)e2πinx be a Maass cusp form for the full modular

group SL2(Z) with Laplace eigenvalue 1/4 + ν2. Suppose that it is an
eigenfunction for all the Hecke operators T (n), n > 1. Using Theorem 4,
we show that the subsequences {anj}∞n=1 , j = 2, 3, 4 change signs infinitely
often. For any n > 1 we have anj = O(nj(

7
64 +ε)) for any ε > 0. Consider

the Dirichlet series L2(s) :=
∑
n>1 an2n−s. Let L(s, sym2g) denotes the

symmetric square L-function attached to g. It is known that,

L(s, sym2g) = ζ(2s)
∑
n>1

an2n−s, Re(s) > 1.

Since L(s, sym2g) can be extended to an entire function, the series∑
n>1 an2n−s admits an analytic continuation for the region Re(s) > 1/2.

For j = 3, 4, consider the Dirichlet series Lj(s) :=
∑
n>1 anjn

−s. Let
L(s, symjg) be the symmetric cube and 4th power L-function attached to
g for j = 3, 4 respectively. In [13, Lemma 3.3], Lau and Lü proved the
following.

Lj(s) = L(s, symjg)

 ∏
16i6j/2

L(2s, sym2j−4ig)−1

Hj(s), Re(s) > 1,
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where Hj(s) converges absolutely in the half-plane Re(s) > 1/3. Using the
above result together with the properties of symmetric power L-function,
we get the analytic continuation of the Dirichlet series Lj(s), j = 3, 4 for
the region Re(s) > 1/2. By using Phragmen-Lindelöf principle we get the
polynomial growth for Lj(s), j = 2, 3, 4 in the region Re(s) > 1/2.
By using the theory of symmetric power L-functions and their Rankin-
Selberg convolution (for definitions and basic properties see [13, §3]), we
prove that for any j = 2, 3, 4 the Dirichlet series

∑
n>1 a

2
njn
−s has a

pole at s = 1. In [14, §7], using the known facts about the L-functions
L(s, symjg), j = 2, 3, 4 and their Rankin-Selberg convolution Li and Young
have studied the analytic properties of the series

∑
n>1 a

4
n2n−s in detail.

Following this we can write the series
∑
n>1 a

2
njn
−s as product of the

Rankin-Selberg L-function L(s, symjg × sumjg) and another Dirichlet se-
ries Uj(s), where the series Uj(s) can be analytically continued beyond the
line Re(s) = 1. Since L(s, symjg× symjg) has a pole at s = 1, we see from
the above decomposition that the series∑

n>1

a2
njn
−s

has also a pole at s = 1. Also we have α + r = j(7/64 + ε) + 1/2 < 1,
j = 2, 3, 4. Thus the subsequences of coefficients {anj}∞n=1, j = 2, 3, 4
satisfies all the hypothesis of Theorem 4 and therefore they are oscillatory
(infinitely many sign changes).
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