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ON THE SPECIAL VALUES OF ARTIN L-FUNCTIONS FOR
DIHEDRAL EXTENSIONS

YuTaKA KONOMI

Abstract: We study special values of Artin L-functions for dihedral extensions at negative
integers. We give a relation between these values and orders of the x-parts of certain étale
cohomology groups.
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1. Introduction and the main result

Let p and [ be distinct odd primes. We denote by Dy the dihedral group of
order 2I. Let LT be a dihedral extension over a number field F'™ of degree 21.
Suppose that both LT and FT are totally real. For a totally positive algebraic
number r € F* let L = L*(y/—r) and F = F*(y/—r). Let Op, be the integer ring
of L. Let x be a character of Gal(L/F*). Denote by Z(L/F™,x,s) the Artin
L-function attached to x and put dy = [Z,[Im(x)] : Z,]. We say that x is even
if it is the inflation of a character of Gal(L™/F™T), while odd if it is the product
of an even character with the inflation of the non-trivial character of Gal(F/F¥).
Moreover, a ~y, b signifies that a and b are two p-adic numbers with the same
valuation. Let H¢ (SpecOp[1/p],Z,(n)) be the étale cohomology group, which
we will simply denote by H®(O%,Z,(n)). The main result of this paper is the
following theorem.

Theorem 1.1. Let n > 2 be an integer and x an irreducible character of
Gal(L/F7T). Assume that x is even if n is even and x is odd if n is odd. Then

#H? (O, Zp(n))*

2 (L/F* 5,1 —n)XMh o ,
(L/FEXA =0~ i or 2 ()

where H* (0, Z,(n))* means the x-part of H' (O}, Zy(n)).
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The definition of y-part will be given in Section 2. Theorem 1.1 is close to the
following known result for an abelian extension, which will be used by our proof.

Theorem 1.2 ([3], p. 707). Let n > 2 be an integer and L/K a totally complex
abelian extension of the totally real base field K of degree prime to p. Let x be
a character of Gal(L/K), such that x(—1) = (=1)" , and view x as a p-adic
character. Then

#H?(O, Zy(n))X

2 (LB =)™~ G oE

Now, we can interpret Theorem 1.1 in terms of K-groups. For n > 2, it is seen
that the p-adic Chern maps

Kon—i(OL) ®7,Z, — H' (O}, Zy(n)) (i=1,2)

are isomorphisms, which is known as the Quillen-Lichtenbaum conjecture (cf. [7],
[8]). Consequently, Theorem 1.1 gives the relation

-~ #KQH*Q(OL)gorS
b #KQTL—l (OL)icors

for x with the same parity of n > 2. Further, we add the fact that (1.1) is
essentially valid for n = 1, by

2 (L)FF, %, 1 —n)XD% (1.1)

Ko(OL)ZZ@ClL, KI(OL):OZ
and the main theorem of [4] (p. 1063). Here, Cly denotes the ideal class group
of L.

2. Proof of the main theorem

Let Do = {(a,b) with a' = b?> = 1 and bab~! = a~!. It is known that Do has the
two one-dimensional representations and the (I —1)/2 irreducible two-dimensional
representations. The character table is as follows:

| 1p, ' (1<i<3)

3 1 1 1
n 1 1 ~1
A L

where (; = exp(2mv/—1/1).
Take 0 € Hom((a>,@x) satisfying o(a) = ¢;, and write o; = 0 (0 <4 <1—1).
Then, the characters y are induced from oy and o;_g, namely,

Xk = Indop = Indoy_y (2.1)

forall k € {1,---, 5L}
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Fix an embedding @X — @X and regard any character as p-adic one. Let
Irr(Ds;) be the set of all irreducible characters of Dy;. For x € Irr(Dy), put
Oy = Zp[Imy| and define

ex = % > x(g7 g € Oy[Dal.

gE€Dyy

Let M be a module over Z,[Dy]. We call e, (M ® 0,) the x-part of M and
simply denote this by MX. Put & = Z,[(;]. Since {e,} is orthogonal
idempotents of &[Dy] and 15(p,] = >

x€Irr(Daoy)

YEIrr(Dyy) Ex» WE may write

Moo= P M~
x€Irr(Da;)

where MX = e, (M ® €). On the other hand, it is well-known that

-1
M®6 =M
=0

as an O[(a)]-module where M? = {z € M ® 0 | ax = 0;(a)x}. In particular,

when M is finite, we have

-1

T aMeo)  #Meo)
#@ e = TELE9) ) _ w@uer,
@ # (M@ nm)  #M @

(2.2)

since M@ M"={x e M® O |ax =z} = M°°.
Lemma 2.1. Let dy, =[O : O,,]. If M is a finite Z,[Dy]-module, then

(#I)" = (#M7+)

forallk e{1,--- ,1_71}
Proof. Since ey, = e, + €5, , in O[Dy], we have the natural homomorphism

[ MY — M% @ M—*, Exp® (efka?ef’l—kx)

as abelian groups. Take z € M ® 0 with (e, @, €q,_,x) = (0,0). This yields
ex,T = €5, T + €5,_, & = 0, which implies that f is injective. Thus the equation
(2.2) leads to

#MXk — #(Mo'k @ Mtfsz)

for each k, therefore f is also surjective. Note that be,, = e,, ,bandbe,, , = €. b.
The homomorphism
M — M=+ x> bx
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is an isomorphism because
M=k — M, x +— bx

is its inverse map. It follows that #M7% = #M71-+ so #MXk = (#M"k)Q. On
the other hand, we know #MX+ = (#MXk)d’“ by

M®0=Me(0%) = (M 0y,)"
as Oy, [Da]-modules. This completes the proof. [ |

Now we give a proof of Theorem 1.1. In the following arguments, we identify
Gal(LT/F*) with Dy = (a,b). Let K be the fixed field of (a) in LT and
K = K*(y/=r). For an irreducible character ¢ of Gal(L™T/F*), we define the
characters ¢ and ¢~ of Gal(L/F™) by

v (g) =(gl+), ¥ (g9) =(glp)v(glL+),

respectively, where v is the non-trivial character of Gal(F/F™). In fact, we know
that " is even while ¢~ is odd. For a character o of Gal(L*t/K™), define the
characters 0% of Gal(L/K*) in the same manner. Using these notations and
Theorem 4.21 of 2], we obtain

Ir(Gal(L/F 1) = {05 x5+ i |

2

and
Hom (Gal(L/K+),@X) ={of, 01}

First, we treat the characters of two-dimensional representations. For a finite
Zy|Gal(L/FT)]-module M, we have

d +/d
(#Mxki) (Tki/ xki, — (3@9]\40’%)27
by Lemma 2.1, and therefore

(#2(05. 2, ()t )+
v Lp(n Xk ko Xk HZO/,Z;DTL 013:2
: GO B

(#H O 2y () /N (O, Zy(m)F)

We remark that characters of dihedral groups take real values. Since E = Xf =
Ind (of)~! by (2.1), it follows from Chapter VII, Proposition 10.4 (iv) of [5] that

f(L/FﬂE,l—n) = 2 (LJK*, (05) " 1—n). (2.4)
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By the way, we can apply Theorem 1.2 to L/ KT because Gal(L/K™) is the direct
product of two cyclic groups of order [ and 2. Hence,

(n)

d (n H2 / 7. o,
K% (L/K+, (Jl(cn))ilvl . n) o™ ~p # (OL’ p(n)) ’(‘n) (2.5)
#H (O, Zp(n))7
where J,(cn) = o} if n is even and J,g") = 0, if n is odd. Since X,f(l) = 2, the

relationship (2.5) is equivalent to

2 / O'(M 2
)Xm.dw (#1205, Zy ()"
n k ~ - 3
(#1107, 2y ()"

Combining this with (2.3) and (2.4), we deduce that

2 (LK (o)1 -

(n) da(n)/d (n)
o) A (#HOL Z ) )

(L/F 7Xk 1 ) ¢ Np (n) d ('n,)/d (n)7

(#H1 (O, Ty )

ie.
R /2 AL
- O

" BHV(O, T, ()N

2 (/P01 -

This completes the proof for the case x = Xf
We next explain the cases y = e* that are linear characters. For this purpose
we prepare the following lemma, which seems folklore for experts.

Lemma 2.2. Let L/K be a finite Galois extension of number fields and suppose
p is prime to [L : K|. Then the canonical homomorphism

3 i Gal (L/K
H' (Ol Zy(n)) — H' (O, Z, (n)) ™ /1)
is bijective for any i and any n.

Proof. We write A = Og[1/p], B=Og[1/p] and I' = Gal(L/K). Let p,~ denote
the group scheme of p"-th root of unity over A. Then p,- is étale and finite over
A since p is invertible in A, and the Tate tw1st Hopr ®" is also representable by an
étale finite group scheme over A. Put G = u " and let Resg 4G denote the Weil
restriction with respect to the finite extension B/A. We have the natural inclusion
t : G — Resp 4G and the natural norm homomorphism Nr : Resp/aG — G.
Furthermore, it is readily seen that

(1) Nro is equal to the multiplication-by-[L : K] map over G;
(2) ¢oNrisequal to > v over Resp/4G.
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Note that the Weil restriction is nothing but the direct image of the étale sheaf on
SpecB by the morphism 7 : SpecB — SpecA. Therefore, the canonical homomor-
phism

H'(A,Resp/aG) — H' (B,G)

is bijective since 7 is finite (cf. [1], Expo VIII, Cor 5.6). Moreover, the homomor-
phism ¢ : G — Resp/4G gives rise to a homomorphism

L H (A,G) — Hi(A,ResB/AG) ~ H' (B,G),

which is nothing but the homomorphism induced by 7 : SpecB — SpecA. On the
other hand, Nr : Resg,4G — G gives rise to a homomorphism

Nr: H'(B,G)~ H'(A,Resp/aG) — H' (A,G).

It follows from (1) and (2) that
(1)’ Nro is equal to the multiplication-by-[L : K] map over H' (4, Q);
(2)" toNris equal to 35y over H'(B, G).

Passing to the limit, we obtain homomorphisms
L+ H' (A, Z,y(n)) — H' (B,Z,(n))

and
Nr: H' (B, Zy(n)) — H" (A, Z,(n)).

It follows again from (1)’ and (2)’ that

(1)” Nrou is equal to the multiplication-by-[L : K] map over H® (A,Z(n));
(2)” toNris equal to Y- vy over H' (B, Z(n)),

and therefore toNT is equal to the multiplication-by-[L: K| map over H(B, Zp(n))lj

Note that the two multiplication-by-[L : K] maps Nro . : H'(A,Zy(n)) —
H(A,Zy(n)) and 1o Nr : H (B, Zy(n))" — H' (B,Z,(n))" are bijective because
p does not divide [L : K]. This implies that ¢ : H* (4, Z,(n)) — H* (B, Zy(n))" is
bijective. |

Let 4+ : Gal(F/F*) — Q," and v~ : Gal(F/FT) — Q, " be the trivial and
non-trivial character, respectively. Note that d,+ =1, (yF)"! =%, and e = £
We can apply Theorem 1.2 to the quadratic extension F/F 7T, so,

_ #H (O, Zy(m)"”
P HHY (O, Zy(m)™

2 (F/F*, (/1)1 = n) (2.6)
For the left side of (2.6), it follows from Chapter VII, Proposition 10.4 (iii) of [5]
that

g(L/Ft?i,l_n) = 2 (F/F*, (%) 1-n). (2.7)
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Since ge.+ = e .+ for all g € Gal(L/F'), we find
i + i - i
H'(Op, Zy(n))" & H'(OF,Zy(n))" =~ H"(OF,Zy(n))
~ H'(O, Zp(n)) ST
) T ) _
~ H'(O,Zy(n))* & H' (0L, Zp(n))"
and
"
O Zy () S/
Of+,Zp(n))
a +
Ol Zp(n)) S E/FD)
+
01, Zp(n))*®

H'(Ofp, Zy(n))""

12

12

12

Hi
Hi
Hi
Hi

o~ o~~~

12

by Lemma 2.2. Thus, the following equations

+

] / * % €
#H'(Op, Zy(n))" = #H' (01, Zy(n)) (2.8)
hold for ¢ = 1,2. These (2.6), (2.7) and (2.8) lead to

#H?(0, Z,y(n))""
P HHY (O}, Zy(n))=™"

.z(L/Fﬂﬁ,l—n) ~

This completes the proof for the case x = e*.

Similarly, by [5, Proposition 10.4 (iii) in Ch. VII], we can apply Theorem 1.2
to K/FT to obtain the desired result for the case y = n*.
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