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NOTES ON LOW DISCRIMINANTS AND THE GENERALIZED
NEWMAN CONJECTURE

Jeffrey Stopple

Abstract: Generalizing work of Polya, de Bruijn and Newman, we allow the backward heat
equation to deform the zeros of quadratic Dirichlet L-functions. There is a real constant ΛKr
(generalizing the de Bruijn-Newman constant Λ) such that for time t > ΛKr all such L-functions
have all their zeros on the critical line; for time t < ΛKr there exist zeros off the line. Under GRH,
ΛKr 6 0; we make the complementary conjecture 0 6 ΛKr. Following the work of Csordas et.
al. on Lehmer pairs of Riemann zeros, we use low-lying zeros of quadratic Dirichlet L-functions
to show that −1.13 · 10−7 < ΛKr. In the last section we develop a precise definition of a Low
discriminant which is motivated by considerations of random matrix theory. The existence of
infinitely many Low discriminants would imply 0 6 ΛKr.
Keywords: generalized Riemann hypothesis, de Bruijn-Newman constant, backward heat equa-
tion, Lehmer pair, Low discriminant, random matrix theory.

For −D < 0 a fundamental discriminant, and χ the Kronecker symbol, consider
the L-functions L(s, χ). We will assume the Generalized Riemann Hypothesis that
the nontrivial zeros of L(s, χ) are on the critical line. In fact we’ll assume a little
more, that also L(1/2, χ) 6= 0, which we will denote GRH+.

We define, for s = 1/2 + it,

Ξ(t, χ)
def.
=

(
D

π

)(s+1)/2

Γ((s+ 1)/2)L(s, χ),

=

∫ ∞
0

Φ(u, χ) cos(ut) du,

where

Φ(u, χ) = 4

∞∑
n=1

χ(n)n exp(3u/2− n2π exp(2u)/D). (1)
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Analogous to the Hardy function Z(t) for the Riemann zeta function we have

Z(t, χ) =

(
D

π

)it/2(
Γ(3/4 + it/2)

Γ(3/4− it/2)

)1/2

L(1/2 + it, χ),

so that

Ξ(t, χ) =

(
D

π

)3/4

|Γ(3/4 + it/2)|Z(t, χ).

Low discriminants

In 1965, Marc Low wrote a Ph.D. thesis [6] investigating possible real zeros of
L(s, χ). He was able to prove that L(s, χ) has no real zeros for −593000 < −D,
with the possible exception of −D = −115147. Imagine his frustration at being
unable to resolve the case of discriminant −115147! Watkins [17] was able to
extend Low’s results to −3 · 108 < −D without exceptions.
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Figure 1. Z(t, χ) for −D = −115 147

The graph of Z(t, χ) for −D = −115147 is shown in Figure 1. The value at
t = 0. is 0.0000603627 . . . The first zero [18] is at t = 0.0031576 . . . , extremely
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small for a discriminant of this size. (On average the lowest zero is at 1/ log(D/2π),
which in this case works out to be ≈ 0.1)

Since Z(t, χ) is an even function of t, Z ′(0, χ) = 0 and so

(logZ)
′′

(0, χ) =
Z ′′(0, χ)

Z(0, χ)
.

We deduce from the Hadamard product for Ξ(t, χ) and Mathematica evaluation
of the derivative of the digamma function that

(logZ)
′′

(0, χ) = −
∑
γ

1

γ2
+ 0.635467 . . . , (2)

where the sum is over the zeros γ of Z(t, χ), or equivalently zeros 1/2 + iγ of
L(s, χ). On GRH+, the γ are real and nonzero so −

∑
γ 1/γ2 < 0. Thus,

(logZ)
′′

(0, χ) < 0

as soon as there are enough low-lying zeros for the sum to overcome the positive
term 0.635467 . . . above. One can easily compute, using Michael Rubinstein’s pack-
age lcalc1, sufficient zeros for quadratic character L-functions with −104 < −D
to show that in fact

(logZ)
′′

(0, χ) < 0 for − 104 < −D < −119.

On the other hand, from a theorem of Siegel [12, Theorem IV] it follow that there
exists a universal constant C1 such that for D > C1, unconditionally

γ1(−D) <
4

log log logD
, (3)

or
1

γ2
1

>
(log log logD)2

16
.

On GRH+ we have that Z(t, χ) > 0 and, for D sufficiently large, Z ′′/Z(0, χ) <
0 so Z ′′(0, χ) < 0. Thus

Proposition. On GRH+, for D sufficiently large, Z(0, χ) is a positive local max-
imum. We conjecture that −D < −119 is sufficient.

If GRH fails by reason of a Landau-Siegel zero, we would expect Z(0, χ) < 0,
and, from (2), that Z ′′/Z(0, χ) > 0. So again Z ′′(0, χ) < 0, a negative local
maximum. Thus the example in Figure 1 represents a near violation of GRH, and
we will informally call such examples ‘Low discriminants’ in analogy with Lehmer
pairs for ζ(s). A precise definition will be made in the last section below. (There
are nineteen fundamental discriminants −119 6 −D 6 −3 such that Z(0, χ) is
a positive local minimum. This is simply analogous to the fact that the Hardy
function Z(t) does have a negative local maximum, at t = 2.47575 . . .)

1see http://oto.math.uwaterloo.ca/~mrubinst
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De Bruijn and Newman

Since we are going to introduce the heat equation we have a clash of notations:
t = Im(s) for L(s, χ) versus t representing time in the heat equation. So from now
on we will write Ξ(x, χ) instead of Ξ(t, χ). Following Polya [11] and de Bruijn [1]
we introduce a deformation parameter t:

Ξt(x, χ) =

∫ ∞
0

exp(tu2)Φ(u, χ) cos(ux) du,

so that for t = 0, Ξ0(x, χ) is just Ξ(x, χ). This function satisfies the backward heat
equation

∂Ξ

∂t
+
∂2Ξ

∂x2
= 0.

We have that Ξt(x, χ) is an entire, even function. Since Ξ0(x, χ) is of order one,
and

Ξt(x) =

( ∞∑
m=1

(−1)mtm

m!

(
d

dx

)2m
)

Ξ0(x),

[15, Theorem 11.4] gives that Ξt(x, χ) is of order at most one. Since Φ(u, χ) has
doubly exponential decay, [1, Theorem 13] applies to Ξt(x, χ) and we have an
analog of the theorem of de Bruijn for the Riemann zeta function:

1. For t > 1/2, Ξt(x, χ) has only real zeros.
2. If for some real t, Ξt(x, χ) has only real zeros, then Ξt′(x, χ) also has only

real zeros for any t′ > t.

For this same reason, [8, Theorem 3] applies to Ξt(x, χ) and we have an analog of
the theorem of Newman: There exists a real constant Λ−D, −∞ < Λ−D 6 1/2,
such that

1. Ξt(x, χ) has only real zeros if and only if t > Λ−D.
2. Ξt(x, χ) has some complex zeros if t < Λ−D.

Definition. We define

ΛKr = sup {Λ−D | −D fundamental} .

Generalized Newman Conjecture. Analogous to Newman’s conjecture for the
Riemann zeros, we conjecture that ΛKr > 0.

For the meaning of this we paraphrase by Newman’s often quoted remark

“This new conjecture is a quantitative version of the dictum that the
[Generalized] Riemann Hypothesis, if true, is only barely so.”

Under the GRH, ΛKr 6 0. We are free to assume this, since its negation is ΛKr > 0
which implies the above conjecture.

In [2] Csordas, Smith, and Varga give a precise, though somewhat technical,
definition of a Lehmer pair of Riemann zeros. Via the fact that the t-deformed
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Riemann xi function Ξt(x) satisfies the backward heat equation, they were able to
draw conclusions about the differential equation satisfied by the k-th gap between
the zeros as the deformation parameter t varies. From this, they were able to use
Lehmer pairs to give lower bounds on the de Bruijn-Newman constant Λ. Our
situation is exactly parallel, and we follow their exposition closely in the next
section.

ODEs and the motion of the zeros

Lemma (2.1 [2]). Suppose x0 is a simple real zero of Ξt0(x, χ). Then in some
open interval I containing t0, there is a real differentiable function x(t) defined on
I and satisfying x(t0) = x0, such that x(t) is a simple real zero of Ξt(x, χ) and
Ξt(x(t), χ) ≡ 0 for t ∈ I. Moreover, for t ∈ I,

x′(t) =
Ξ′′t (x(t), χ)

Ξ′t(x(t), χ)
. (4)

NB: While on the left side x′ obviously denotes derivative with respect to t, on the
right side Ξ′ denotes (confusingly) derivative with respect to x.

Proof. The existence of x(t) follows directly from the Implicit Function Theorem.
Differentiate Ξt(x(t)) ≡ 0 with respect to t to deduce

0 =
d

dt
Ξt(x(t), χ) =

∂

∂t
Ξt(x, χ)|x=x(t) + x′(t)

∂

∂x
Ξt(x, χ)|x=x(t)

= − ∂2

∂x2
Ξt(x, χ)|x=x(t) + x′(t)

∂

∂x
Ξt(x, χ)|x=x(t)

by the backward heat equation. �

Figure 2. Hypothetical sketch of Ξt0(x, χ), with two close zeros marked in red and green

Extended Paraphrase (p.111-112,[2]). “The significance of Lemma 2.1 is that
the movement of the simple real zero x(t) of Ξt(x, χ) is locally determined solely
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by the ratio
Ξ′′t (x(t), χ)

Ξ′t(x(t), χ)
.

To illustrate the result of Lemma 2.1, consider the graph of Ξt0(x, χ) in Figure 2,
where Ξt0(x, χ) has two close2 zeros x−1(t0) and x1(t0), and the remaining zeros
are widely separated from x−1(t0) and x1(t0). From the graph we see that

Ξ′′t (x(t), χ) < 0

on an interval containing [x−1(t0), x1(t0)], and

Ξ′t0(x−1(t0), χ) > 0 while Ξ′t0(x1(t0), χ) < 0.

Using (4) we conclude from Figure 2 that

x′−1(t0) < 0 while x′1(t0) > 0, (5)

and this indicates that, on decreasing t, x−1(t) increases while x1(t) decreases, i.e.,
these two zeros move towards one another as t decreases from t0, and similarly,
these two zeros move away from one another as t increases from t0.”

What can we deduce if two roots coalesce?

Lemma. Suppose for some real t0 and x0 we have a double root, i.e,

Ξt0(x0, χ) = 0 = Ξ′t0(x0, χ)

Then t0 6 Λ−D. For any t with Λ−D < t, the zeros are not only real but also
simple.

Proof. Suppose first Ξ′′t0(x0, χ) 6= 0. We compute a Taylor expansion in two
variables for the function Ξt0±δ2(x0 + ε, χ) out to second order terms, and use the
backward heat equation to eliminate all partial derivatives with respect to t. Then
(up to an error term of third order in ε and δ2)

Ξt0±δ2(x0 + ε, χ) ≈ Ξ′′t0(x0, χ) ·
(
ε2

2
∓ δ2

)
∓ Ξ′′′t0(x0, χ) · δ2ε+ Ξ′′′′t0 (x0, χ) · δ

4

2
.

The right side is a quadratic in ε, with discriminant

±2δ2 · Ξ′′t0(x0, χ)2 + δ4 ·
(
Ξ′′′t0(x0, χ)2 − Ξ′′t0(x0, χ) · Ξ′′′′t0 (x0, χ)

)
(6)

For −δ2 < 0, δ � 1, the discriminant (6) is negative, and so the quadratic in ε
has no real roots but rather two complex conjugate roots. Hence t0 < Λ−D.

It is also interesting to note that for +δ2 > 0, δ � 1, the discriminant is positive,
and so the quadratic has two simple real roots. (In fact, for fixed δ � 1 we can see

2i.e., both in the same interval I of the Lemma. A priori it is not obvious that such close
zeros exist for any D!
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explicitly the sign changes in Ξt0+δ2(x, χ) for x in the interval [x0 − 2δ, x0 + 2δ].
Up to the error term of third order, our expansion looks like

Ξt0+δ2(x0 − 2δ, χ) ≈ δ2 · Ξ′′t0(x0, χ) + 2δ3 · Ξ′′′t0(x0, χ) +
δ4

2
· Ξ′′′′t0 (x0, χ)

Ξt0+δ2(x0, χ) ≈ −δ2 · Ξ′′t0(x0, χ) +
δ4

2
· Ξ′′′′t0 (x0, χ)

Ξt0+δ2(x0 − 2δ, χ) ≈ δ2 · Ξ′′t0(x0, χ)− 2δ3 · Ξ′′′t0(x0, χ) +
δ4

2
· Ξ′′′′t0 (x0, χ).

The dominant δ2 term changes sign twice.)
If Ξ′′t0(x0, χ) = 0, a similar expansion to higher order gives the same result. �

Remark. Csordas et al. [2] give a different proof of the analogous result, although
they remark one may give a proof using the backward heat equation, presumably
similar to the above. Surprisingly, this seems to be the first mention in the de
Bruijn Newman constant literature, and the only mention in [2], of the backward
heat equation.

For Λ−D 6 t and k > 0, let xk(t) denote the k-th zero (by hypothesis real,
simple, positive) of Ξt, so xk(0) = γk. Given the symmetry of the zeros, we define
x−k(t) = −xk(t). From the Hadamard factorization theorem (as a function of x
in C) we have that

Ξt(x) = Ξt(0)

∞∏
k=1

(
1− x2

xk(t)2

)
. (7)

We introduce the summation notation
∑′
j where the superscript ′ denotes

the sum omitting the (undefined) term with j = 0, in addition to whatever side
condition is additionally imposed on the summation variable.

Lemma (2.4 [2]). The zeros xk(t) are the solutions to the initial value problem

x′k(t) =

′∑
j 6=k

2

xk(t)− xj(t)
, xk(0) = γk. (8)

Proof. Suppose q(z) is some function analytic in a domain D, and q(w) 6= 0.
Then for f(z) = (z − w)q(z) we have that

f ′′(w)

f ′(w)
= 2

q′(w)

q(w)
.

For example, fixing k we have that

Ξt(x, χ) = (x− xk(t))qt(x),

where

qt(x) = −Ξt(0, χ)

xk(t)
·
(

1 +
x

xk(t)

) ∞∏
j=1
j 6=k

(
1− x2

xj(t)2

)
.
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Then (writing w = xk(t))

x′k(t) =
Ξ′′t (w,χ)

Ξ′t(w,χ)
=

2q′t(w)

qt(w)
=

2

w + xk(t)
+

∞∑
j=1
j 6=k

2

w − xj(t)
+

2

w + xj(t)
,

and the lemma follows from x−j(t) = −xj(t). �

Lemma (2.4 [2]). The first zero x1(t) satisfies the following differential equation:

x1(t)′ =
1

x1(t)
− f(t)x1(t), (9)

where

f(t) =

′∑
j 6=−1,1

2

(x−1(t)− xj(t))(x1(t)− xj(t))
. (10)

-1

1

Figure 3. Approximate numerical solution of (8) for 0 6 t 6 1. Here −D = −115 147,
with trajectory of low lying zeros x−1(t), x1(t) shown in green and red

Proof. From (8) we have

x′1(t) =

′∑
j 6=1

2

x1(t)− xj(t)
, x′−1(t) =

′∑
j 6=−1

2

x−1(t)− xj(t)
.

Subtract, and separate out the j = −1 term from the first sum and the j = 1 term
from the second to obtain

x′1(t)− x′−1(t) =
2

x1(t)− x−1(t)
− 2

x−1(t)− x1(t)

+

′∑
j 6=−1,1

(
2

x1(t)− xj(t)
− 2

x−1(t)− xj(t)

)
.

The lemma follows from x1(t)− x−1(t) = 2x1(t). �
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Lemma. The initial value problem given by the ODE (9) and x1(0) = γ1 has the
solution

x1(t)2 = exp (−F (t))

(
−2

∫ 0

t

exp (F (u)) dy + γ2
1

)
, (11)

where

F (t) = −2

∫ 0

t

f(u) du. (12)

Proof. Multiply (9) by 2x1 to get

2x1 · x′1 = 2− 2f · x2
1 or

d

dt

(
x2

1

)
+ 2fx2

1 = 2.

An integrating factor is exp(F (t)), where

F (t) = 2

∫ t

0

f(u) du.

This gives

exp(F ) · d
dt

(
x2

1

)
+ 2f exp(F )x2

1 = 2 exp(F ),

d

dt

(
exp(F )x2

1

)
= 2 exp(F ),

exp(F (t))x1(t)2 = 2

∫ t

0

exp(F (u)) du+ x1(0)2.

We will be interested in t < 0, so we swap the limits of integration and introduce
the minus sign. �

Remark. Under the hypothesis that Λ−D 6 t, we have that x1(t)2 > 0. So any
estimate for f(t) which can show that

2

∫ 0

t0

exp (F (u)) du > γ2
1 ,

proves that t0 < Λ−D. This is the main idea of [2]. We now proceed to make such
an estimate.

Csordas et. al. introduce a function analogous to

g(t) =

′∑
j 6=−1,1

1

(x−1(t)− xj(t))2
+

1

(x1(t)− xj(t))2
, (13)

“in order to make the analysis of the movement of the zeros ... more tractable”.
For Λ−D < t it is elementary that

0 < f(t) < g(t).

They are able to show that
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Lemma (2.5 [2]). For Λ−D < t

g′(t) > −8g(t)2.

This is a little technical so the proof is deferred. From the lemma immediately
follows

1

g(0)
− 1

g(t)
= −

∫ 0

t

g′(u)

g(t)2
du < 8

∫ 0

t

du = −8t,

g(t) <
g(0)

1 + 8g(0)t
as long as

−1

8g(0)
< t.

In turn, this gives

F (t) = −2

∫ 0

t

f(u) du > −2

∫ 0

t

g(u) du > −2

∫ 0

t

g(0)

1 + 8g(0)u
du

=
1

4
log (1 + 8g(0)t) ,

and

2

∫ 0

t

exp (F (u)) du > 2

∫ 0

t

(1 + 8g(0)t)
1/4

du =

(
1− (1 + 8g(0)t)

5/4
)

5g(0)
. (14)

Theorem 1. Let −D be any discriminant for which

5γ2
1g(0) < 1. (15)

Then by choosing in the inequality (14) the value of t to be

λ =
(1− 5γ2

1g(0))4/5 − 1

8g(0)
, (16)

(note −1/8g(0) < λ) we have from (14) that

2

∫ 0

λ

exp (F (u)) du > γ2
1 .

Then (11) shows that

x2
1(λ) < 0 and so λ < Λ−D 6 ΛKr.

It will be helpful to have the series expansion

λ = −1

2
γ2

1

(
1 +

γ2
1g(0)

2
+O

(
γ4

1g(0)2
))

. (17)
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Remark. Were we to continue to follow [2], the formal definition of Low discrim-
inant would be any −D for which (15) holds. It is reasonable to wonder, to what
extent is such a definition natural, v. motivated by what we are able to prove?
How much do we give up by replacing f(t) by g(t)? How much do we give up when
we use the bound g′(t) > −8g(t)2? The interested reader will be able to verify,
imitating what we did above, that any estimate of the form

f ′(t) > −cf(t)2, c > 0

would lead to a lower bound

λc =
(1− c+2

c γ2
1f(0))

c
c+2 − 1

c f(0)
< 0

as long as
c+ 2

2
γ2

1f(0) < 1.

As above, it is useful to consider a series expansion for λc, to see the sensitivity
to the various parameters. We have

λc = −1

2
γ2

1

(
1 +

γ2
1f(0)

2
+

(
1

3
+

c

12

)
γ4

1f(0)2 +O
(
c2γ6

1f(0)3
))

Thus we see that if we were able to prove a stronger theorem, we could make
a definition that allowed more examples, but at the end of the day the bound we
get from any example is still ≈ −1/2 γ2

1 .
Rather than give an ad hoc definition which makes the theorem go through, we

will postpone making a definition of Low discriminant until we have more insight.
Our definition will actually give fewer examples, but (we hope) indicate why there
might be infinitely many such.

Proof of Lemma 2.5 [2]

We have (suppressing dependence on t)

g′(t) = −2

′∑
j 6=−1,1

x′−1 − x′j
(x−1 − xj)3

+
x′1 − x′j

(x1 − xj)3
.

Repeated applications of (8) show that we can write

g′(t) = − 4

′∑
j 6=−1,1

1

(x−1 − xj)3

 ′∑
i 6=−1

1

x−1 − xi
−

′∑
i 6=j

1

xj − xi


− 4

′∑
j 6=−1,1

1

(x1 − xj)3

 ′∑
i 6=1

1

x1 − xi
−

′∑
i6=j

1

xj − xi

 .
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In the four inner sums, separate out the i = j, i = −1, i = j, i = 1 terms to see
that we can write

g′(t) = A(t) +B(t),

where

A(t) = −8

′∑
j 6=−1,1

1

(x−1 − xj)4
+

1

(x1 − xj)4

and

B(t) = 4

′∑
j 6=−1,1

1

(x−1 − xj)2

∑
i 6=−1,j

1

(x−1 − xi)(xj − xi)

+ 4

′∑
j 6=−1,1

1

(x1 − xj)2

∑
i6=1,j

1

(x1 − xi)(xj − xi)
.

In B(t) we separate out the i = 1 term in the first double sum, and the i = −1
term in the second double sum to get that B(t) = C(t) +D(t), where

C(t) = 4

′∑
j 6=−1,1

1

(x−1 − xj)2(x1 − xj)2

and

D(t) = 4

′∑
j 6=−1,1

′∑
i 6=−1,1,j

{
1

(x−1 − xj)2(x−1 − xi)(xj − xi)

+
1

(x1 − xj)2(x1 − xi)(xj − xi)

}
We rewrite D(t) as D(t)/2 +D(t)/2, the sum of two (identical) double sums, and
interchange the roles of i and j in the second:

D(t) = 2

′∑
j 6=−1,1

′∑
i 6=−1,1,j

{
1

(x−1 − xj)2(x−1 − xi)(xj − xi)

+
1

(x1 − xj)2(x1 − xi)(xj − xi)

}
+ 2

′∑
i 6=−1,1

′∑
j 6=−1,1,i

{
1

(x−1 − xi)2(x−1 − xj)(xi − xj)

+
1

(x1 − xi)2(x1 − xj)(xi − xj)

}
.

Both double sums range over the same set of indices: all distinct i, j taken from
Z\{−1, 0, 1}. So we may combine the first and third fraction over a common
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denominator, and also the second and fourth to get

D(t) = 2

′∑
j 6=−1,1

′∑
i 6=−1,1,j

1

(x−1 − xj)2(x−1 − xi)2
+

1

(x1 − xj)2(x1 − xi)2
.

Both C(t) and D(t) are positive for Λ−D < t, so B(t) > 0 and

g′(t) > A(t) > −8g(t)2. �

Following [2] we can conclude

Theorem 2. Suppose there exist infinitely many discriminants satisfying (15).
Then 0 6 ΛKr.

Proof. We have that for
0 < 5γ1(−D)2g(0,−D)

def.
= u < 1

we have
λ(−D)

γ1(−D)2
=

5

16
·
(
(1− u)4/5 − 1

)
u

.

The function f(u) on the right side above satisfies

−5/16 < f(u) < −1/4 for 0 < u < 1.

Since γ1(−D)2 → 0 via (3), then λ(−D)→ 0 as well. �

Table 1. Examples of discriminants with low lying zeros

−D γ1 γ1 · log(D/2π) −γ2
1/2

−163 0.202901 0.66062 −2.05844 · 10−2

−1411 0.077967 0.04221 −3.03943 · 10−3

−17923 0.030986 0.24652 −4.80057 · 10−4

−115147 0.003158 0.03099 −4.98648 · 10−6

−175990483 0.000475 0.00814 −1.12813 · 10−7

Numerical experiments

Because of the applications to bounds on class numbers of positive definite binary
quadratic forms [7, 16], examples of fundamental discriminants with low lying zeros
are well studied; several are shown in Table 1. Via (17) we expect λ ≈ −γ2

1/2 to
be a lower bound. Observe that from (16) we have

dλ

dg(0)
=
−1 + g(0)γ2

1 + (1− 5g(0)γ2
1)1/5

8g(0)2(1− 5g(0)γ2
1)1/5

,

and −1 + y + (1 − 5y)1/5 < 0 for 0 < y < 1/5 implying that λ is a decreasing
function of g(0). Thus to get a lower bound for λ it suffices to upper bound
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g(0). Furthermore, (17) indicates that the value of λ is relatively insensitive to
the tightness of this bound.

Via γ−j = −γj we determine that

g(0) = 2

∞∑
j=2

1

(γj + γ1)2
+

1

(γj − γ1)2
= 2

∞∑
j=2

1

γ2
j

·
(

1

(1 + γ1/γj)2
+

1

(1− γ1/γj)2

)
.

Let N be such that γN > 1. Since

1

(1 + y)2
+

1

(1− y)2
= 2 · 1 + y2

(1− y2)2

is an increasing function on (0, 1), we can bound g(0) by replacing γ1/γj by γ1 for
those j > N . Thus

g(0) 6 2
∑

26j<N

1

(γj + γ1)2
+

1

(γj − γ1)2
+ 4

1 + γ2
1

(1− γ2
1)2

∞∑
N6j

γ−2
j . (18)

From the Hadamard product

Ξ(t, χ) = Ξ(0, χ)

∞∏
j=1

(
1− t2

γ2
j

)
,

we see that

−1

2

Ξ′′(0, χ)

Ξ(0, χ)
=

∞∑
j=1

γ−2
j .

So to bound g(0) it suffices to compute only the first N zeros, and then numerically
integrate the moments

Ξ(0, χ) =

∫ ∞
0

Φ(u, χ) du, Ξ′′(0, χ) = −
∫ ∞

0

u2Φ(u, χ) du, (19)

where recall that Φ(u, χ) is defined by (1). Now (18) becomes

g(0) 6 g(0)bound,

where

g(0)bound = 2
∑

26j<N

1

(γj + γ1)2

+
1

(γj − γ1)2
− 1 + γ2

1

(1− γ2
1)2

2
Ξ′′(0, χ)

Ξ(0, χ)
+ 4

∑
16j<N

γ−2
j

 .

(20)
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It is easy to compute the moments (19) in Mathematica; we need only convince
the reader we can bound the truncation error in the improper integral and infinite
series. We have

|Φ(u, χ)| <
∫ ∞

1

x exp(3/2u− x2 exp(2u)/D) dx < D exp(− exp(2u)/D).

Thus we can bound the tails of the integrals∫ ∞
U

Φ(u, χ) du <

∫ ∞
U

u2Φ(u, χ) du <

∫ ∞
U

Du2 exp(− exp(2u)/D) du

<

∫ ∞
U

D exp(2u) exp(− exp(2u)/D) du < D exp(− exp(2U)/D).

We see that for U = log(D log(2 · 1015D2)), the truncation error in the improper
integral is less than 5 ·10−16. Next we desire to bound the tail of the infinite series
in order to compute Φ(u, χ) with an error of less than 5 · 10−16/U , in order that
the accumulated error in the integral over [0, U ] is less than 5 · 10−16. Again we
estimate∣∣∣∣∣
∞∑
n=N

χ(n)n exp(3u/2− n2π exp(2u)/D)

∣∣∣∣∣ <
∫ ∞
x=N

x exp(3/2u− x2 exp(2u)/D) dx

< D exp(−N2 exp 2u)/D).

Thus we need

N(u) = D1/2 exp(−u) log(2 · 1015DU)1/2

= D1/2 exp(−u) log(2 · 1015D log(D log(2 · 1015D2)))1/2

terms of the series, as a function of the variable u. The error in computing the
moments is less than 10−15.

Table 2. Examples of discriminants with low lying zeros, and corresponding bound on ΛKr

−D γ1 λ

−163 0.202901 −2.15787 · 10−2

−1411 0.077967 −3.07533 · 10−3

−17923 0.030986 −4.81901 · 10−4

−115147 0.003158 −4.98563 · 10−6

−175990483 0.000475 −1.12929 · 10−7

We compute in Table 2 that each of the discriminants in Table 1 satisfies (15),
and give the corresponding lower bound of Theorem 1 on ΛKr. These computations
were verified in several ways:

1. Values of Dirichlet L-functions are independently implemented in Mathemat-
ica. The zero moment Ξ(0, χ) was compared to

(D/π)3/4Γ(3/4)L(1/2, χ),

giving the same values (to 25 digits).
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2. The first 104 zeros were computed with lcalc. The ratio

−1

2

Ξ′′(0, χ)

Ξ(0, χ)
was compared to

104∑
j=1

γ−2
j ,

with good accuracy.
3. The upper bound g(0)bound was compared to a numerical estimate of g(0)

using the same first 104 zeros, and achieved the desired inequality.
4. Finally, in all cases we observe that λ ≈ −γ1/2, as predicted.
The example of −D = −175990483 required extra care, in that g(0)bound is

the difference of two very large but approximately equal numbers, leading to po-
tentially significant cancellation error. The package lcalc, even compiled with
double precision, did not compute zeros to sufficient accuracy. Instead the method
of [13, 14] was used to compute the zeros with γ < 1 to 25 digits of accuracy. In
this example, we obtain that

5γ2
1 · g(0)bound = 0.00008,

sufficiently less than 1 that we are confident of the results.

Theorem 3. We have that −D = −175990483 satisfies (15), and the correspond-
ing zero gives the bound

−1.12929 · 10−7 < ΛKr.

Random matrix theory

In [9, 10] Odlyzko presents heuristic arguments that random matrix theory pre-
dictions for the Riemann zeros lead one to believe Newman’s conjecture Λ > 0.
It seems to be difficult to make these more than heuristic. The present case
of quadratic Dirichlet L-functions appears to be different, because the functional
equation for Z(t, χ) transposes our close pair of zeros γ1 and −γ1. This distinction
is largely the motivation for the present paper.

The standard conjectures [4] predict that low lying zeros of quadratic Dirichlet
L-functions should be distributed according to a symplectic random matrix model.
In particular, [4] shows that there exists a probability measure ν(−, j) such that

lim
N→∞

νj(USp(2N)) = ν(−, j),

where νj(USp(2N)) gives the distribution of the j-th eigenvalue of a random ma-
trix from USp(2N). If we normalize the zeros via γ̃j = γj log(D/2π), then as D
varies the γ̃j are predicted be distributed according to ν(−, j).

We can now re-write

g(0) = 2

∞∑
j=2

γ−2
j ·

(
1

(1 + γ̃1/γ̃j)2
+

1

(1− γ̃1/γ̃j)2

)
We suppose an extra condition on the discriminants: that γ̃j > 1 for j > 2. A
positive proportion3 of discriminants are predicted to satisfy this. (This holds

3In fact, for most discriminants since the mean of ν(−, 2) is about 1.76 . . .
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for all discriminants in Table 1.) Under this hypothesis we can bound g(0) by
replacing γ̃1/γ̃j by γ̃1. Thus

g(0) 6 4
1 + γ̃2

1

(1− γ̃2
1)2

∞∑
j=2

γ−2
j . (21)

We can use the fact that for y > 0

1− 3y2 6
(1− y2)2

1 + y2
,

and rearrange the terms in (15) and (21) to see that a sufficient condition for (15)
is that γ̃2(−D) > 1 and

−1

2
· Ξ′′(0, χ)

Ξ(0, χ)
<

21

20
· γ1(−D)−2 − 3

20
· log(D/2π)2.

(For context, observe the expression on the left, as a series, begins with γ1(−D)−2.)
Now Ξ′′/Ξ(0, χ) differs from log(L(1/2, χ))′′ by the derivative of the digamma

function at 3/4:

−1

4
ψ′(3/4) ≈ −0.63547 . . . , where ψ(z) =

Γ′(z)

Γ(z)
.

Furthermore we have that for D > 100,

1

20
(log(D/2π))

2
>

1

8
ψ′(3/4).

Definition. We call a fundamental discriminant −D < 0 a Low discriminant, if
γ2(−D) log(D/2π) > 1 and

−1

2
· log (L(1/2, χ))

′′
<

21

20
· γ1(−D)−2 − 1

5
· log(D/2π)2. (22)

This is a sufficient condition for (15) to hold. Table 3 shows examples; note this
criterion fails for −D = −163.

This definition is motivated by the random matrix theory. In [5], the authors
use the characteristic polynomial of a random matrix from USp(2N), with 2N ≈
log(D/2π) to model L(1/2+ it, χ). One might hope to show that a random matrix
analog of (22) holds with a positive probability. This would give, under random
matrix theory predictions for the distributions of the zeros, an infinite sequence
of Low discriminants with associated λ(−D) lower bound for ΛKr. By Theorem
2, random matrix theory predictions for the distribution of the zeros would imply
the Generalized Newman Conjecture.

Acknowledgements. Thanks to Steven J. Miller for his careful reading of the
manuscript and helpful suggestions.
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Table 3. Examples of Low discriminants

−D −0.5 log (L(1/2, χ))
′′

1.05γ−2
1 − 0.2 log(D/2π)2

−163 25.0367 23.3845
−1411 165.731 166.867
−17923 1043.82 1080.95
−115147 100299. 105291.
−175990483 4.4276 · 106 4.6489 · 106
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