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Abstract: We introduce and analyse the notion of slice continuity between operators on Banach
spaces in the setting of the Daugavet property. It is shown that under the slice continuity
assumption the Daugavet equation holds for weakly compact operators. As an application we
define and characterise the Daugavet property for bilinear maps, and we prove that this allows us
to describe some p-convexifications of the Daugavet equation for operators on Banach function
spaces that have recently been introduced.
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1. Introduction

A Banach spaceX is said to satisfy the Daugavet property if the so-called Daugavet
equation

‖Id +R‖ = 1 + ‖R‖

is satisfied for every rank one operator R: X → X. In recent years, the Dau-
gavet property for Banach spaces has been studied by several authors, and various
applications have been found (see for instance [11, 12, 13, 23, 24]).

The aim of this paper is to introduce and analyse the notion of slice continuity
between operators on Banach spaces. We will show that under this assumption one
can easily characterise when the Daugavet equation holds for a couple of operators
T and R between Banach spaces, i.e., when

‖T +R‖ = ‖T‖+ ‖R‖.

Recently, some new ideas have been introduced in this direction. The notion
of Daugavet centre has been studied in [4, 5, 6]. According to Definition 1.2 in [6],
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a nonzero operator T between (maybe different) Banach spaces is a Daugavet cen-
tre if the above Daugavet equation holds for every rank one operator R. In this
paper we develop a notion that is in a sense connected to this one but provides
a direct tool for analysing when a particular couple of operators satisfies the Dau-
gavet equation. Our idea is to relate the set of slices defined by each of the two
operators. Recall that the slice S(x′, ε) of the unit ball of a real Banach space X
determined by a norm one element x′ ∈ X ′ and an ε > 0 is the set

S(x′, ε) = {x ∈ BX : 〈x, x′〉 > 1− ε}.

Let Y be a Banach space. Let T : X → Y be an operator. We will define the
set of slices associated to T by

ST := {S(T ′(y′)/‖T ′(y′)‖, ε): 0 < ε < 1, y′ ∈ Y ′, T ′(y′) 6= 0},

and we will say that an operator R: X → Y is slice continuous with respect to T
– we will write SR 6 ST – if for every S ∈ SR there is a slice S1 ∈ ST such that
S1 ⊂ S. This notion will be used for characterising when the Daugavet equation
holds by adapting some of the known results on the geometric description of the
Daugavet property to our setting. From the technical point of view, we use some
arguments on the Daugavet property defined by subspaces of X ′ that can be found
in [11]. This is done in Section 2. In Section 3 we develop the framework for using
our results in the setting of the bilinear maps in order to obtain the main results
of the paper regarding applications. Finally in Section 4 we provide examples and
applications, mainly related to a unified general point of view to understand the
p-convexification of the Daugavet equation for Banach function spaces that have
recently been studied in [20, 21].

Our notation is standard. Let X,Y and Z be real Banach spaces. BX and
SX are the unit ball and the unit sphere of X, respectively. We write UX for the
open unit ball and X ′ for the dual space. We denote by L(X,Y ) the space of
continuous operators and by B(X × Y, Z) the space of continuous bilinear maps
from X × Y to Z. If T is an operator, we write T ′ for its adjoint operator. If
x′ ∈ X ′ and y ∈ Y , we identify the tensor x′⊗ y with the operator x′⊗ y: X → Y
mapping x to x′(x)y. Throughout the paper all the bilinear maps are assumed
to be continuous. In general, we consider the norm ‖(x, y)‖ = max{‖x‖X , ‖y‖Y }
for the direct product X × Y . We will say that a bilinear map B is convex or
has convex range (resp. is weakly compact) if the norm closure of B(BX , BY ) is
convex (resp. weakly compact).

Regarding Banach function spaces we also use standard notation. If 1 6 p 6∞
we write p′ for the extended real number satisfying 1/p+1/p′ = 1. Let us fix some
definitions and basic results. Let (Ω,Σ, µ) be a σ-finite measure space. A Banach
function space X(µ) over the measure µ is an order ideal of L0(µ) (the space of
µ-a.e. equivalence classes of integrable functions) that is a Banach space with a
lattice norm ‖ . ‖ such that for every A ∈ Σ of finite measure, χA ∈ X(µ) (see [14,
Def. 1.b.17]). We will write X instead of X(µ) if the measure µ is clear from the
context. Of course, Banach function spaces are Banach lattices, so the following
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definition makes sense for these spaces. Let 0 < p < ∞. A Banach lattice E is
p-convex if there is a constant K such that for each finite sequence (xi)

n
i=1 in E,

∥∥∥( n∑
i=1

|xi|p
)1/p∥∥∥

E
6 K

( n∑
i=1

‖xi‖pE
)1/p

.

It is said that it is p-concave if there is a constant k such that for every finite
sequence (xi)

n
i=1 in X,

( n∑
i=1

‖xi‖pE
)1/p

6 k
∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

E
.

M (p)(E) and M(p)(E) are the best constants in these inequalities, respectively.
Let 0 6 p <∞. Consider a Banach function space X(µ). Then the set

X(µ)[p] := {h ∈ L0(µ): |h|1/p ∈ X(µ)}

is called the p-th power of X(µ), which is a quasi-Banach function space when
endowed with the quasinorm ‖h‖X[p]

:= ‖|h|1/p‖pX , h ∈ Xp (see [8], [15, 7] or
[16, Ch. 2]; the symbols that are used there for this concept are Xp, X1/p and
X[p], respectively); if X is p-convex and M (p)(X(µ)) = 1 – we will say that X is
constant 1 p-convex –, then X(µ)[p] is a Banach function space, since in this case
‖ . ‖X[p]

is a norm; if 0 < p < 1, the p-th power of a Banach function space is
always a Banach function space. Every p-convex Banach lattice can be renormed
in such a way that the new norm is a lattice norm with p-convexity constant 1
([14, Prop. 1.d.8]). Let f ∈ X. Throughout the paper we use the notation fp for
the sign preserving p-th power of the function f , i.e., fp := sign{f}|f |p.

Remark 1.1. The following basic facts regarding p-th powers of Banach function
spaces will be used several times. Their proofs are immediate using the results in
[16, Ch. 2]. Let X(µ) be a Banach function space and 0 < p <∞.

(a) For every couple of functions f ∈ X and g ∈ X[p/p′] one has ‖fg‖X[p]
6

‖f‖X‖g‖X[p/p′] , and

‖h‖X[p]
= inf{‖f‖X‖g‖X[p/p′] : fg = h, f ∈ X, g ∈ X[p/p′]}.

(b) For every h ∈ X[p] one has h = |h|1/ph1/p′ , h1/p ∈ X, h1/p′ ∈ X[p/p′], and

‖h‖X[p]
= ‖h1/p‖pX = ‖h1/p‖X‖h1/p‖p/p

′

X

= ‖h1/p‖X‖(h1/p′)p
′/p‖p/p

′

X = ‖h1/p‖X‖h1/p′‖X[p/p′] .
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2. Slice continuity for couples of linear maps

Let us start by adapting some facts that are already essentially well known (see [12]).

Proposition 2.1. Let X and Y be Banach spaces. Let T : X → Y be a norm one
linear map, and consider a norm one linear form x′ ∈ X ′. Let y ∈ Y \ {0}. The
following assertions are equivalent.

(1) ‖T + x′ ⊗ y‖ = 1 + ‖x′ ⊗ y‖ = 1 + ‖y‖.
(2) For every ε > 0 there is an element x ∈ S(x′, ε) such that∥∥∥T (x) +

y

‖y‖

∥∥∥ > 2− 2ε.

Proof. (1)⇒(2). By Lemma 11.4 in [1] (or [24, p. 78]) we can assume that y ∈ SY .
By hypothesis, ‖T + x′ ⊗ y‖ = 1 + ‖y‖ = 2, and then there is an element x ∈ BX
such that

2− ε 6 ‖T (x) + 〈x, x′〉y‖ 6 ‖T (x)‖+ |〈x, x′〉| 6 1 + |〈x, x′〉|.

Note that we can assume that 〈x, x′〉 > 0; otherwise take −x instead of x. Since
for every ε > 0

2− ε 6 ‖T (x) + 〈x, x′〉y‖ 6 ‖T (x) + y‖+ ‖〈x, x′〉y − y‖
6 ‖T (x) + y‖+ (1− 〈x, x′〉)‖y‖ 6 ‖T (x) + y‖+ ε,

we obtain (2).
(2)⇒(1). Let x′ ∈ SX′ and y ∈ Y and consider the rank one map x′⊗y. Again

by Lemma 11.4 in [1] we need consider only the case ‖y‖ = 1. Let ε > 0. Then
there is an x ∈ S(x′, ε) such that ‖y + T (x)‖ > 2− 2ε. Thus,

2− 2ε 6 ‖y + T (x)‖ 6 ‖y − 〈x, x′〉y‖+ ‖〈x, x′〉y + T (x)‖
6 (1− 〈x, x′〉)‖y‖+ ‖〈x, x′〉y + T (x)‖ 6 ε+ ‖x′ ⊗ y + T‖.

Consequently, ‖x′ ⊗ y‖+ ‖T‖ = 2 = ‖x′ ⊗ y + T‖. �

When a subset of linear maps V ⊂ L(X,Y ) is considered, the following gener-
alisation of the Daugavet property makes sense.

Definition 2.2. Let X,Y be Banach spaces and let T : X → Y be a norm one
operator. The Banach space Y has the T -Daugavet property with respect to
V ⊂ L(X,Y ) if for every R ∈ V ,

‖T +R‖ = 1 + ‖R‖.

This definition encompasses the notion of Daugavet centre given in Defini-
tion 1.2 of [6].

Corollary 2.3. Let X and Y be Banach spaces. Let T : X → Y be an operator,
and consider a set of norm one linear forms W ⊂ X ′. Let W · Y = {x′ ⊗ y:
x′ ∈W, y ∈ Y }. The following statements are equivalent.
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(1) Y has the T -Daugavet property with respect to W · Y .
(2) For every y ∈ SY , for every x′ ∈W and for every ε > 0 there is an element

x ∈ S(x′, ε) such that
‖T (x) + y‖ > 2− 2ε.

Definition 2.4. Let T : X → Y be a continuous linear map. Let y′ ∈ Y ′. We
denote by Ty′ : X → R the linear form given by Ty′(x) := 〈x,T ′(y′)〉

‖T ′(y′)‖ whenever
T ′(y′) 6= 0. The natural set of slices defined by T is then

ST = {S(Ty′ , ε): 0 < ε < 1, y′ ∈ Y ′, T ′(y′) 6= 0}.

If R: X → Y is another operator, we use the symbol SR 6 ST to denote that for
every slice S in SR there is a slice S1 ∈ ST such that S1 ⊂ S. We will say in this
case that R is slice continuous with respect to T .

For operators T having particular properties, slice continuity allows easy geo-
metric descriptions. Let T : X → Y be an operator between Banach spaces such
that T ′ is an isometry onto its range, i.e., T is a quotient map, and let R: X → Y
be an operator. The following assertions are equivalent.
(1) SR 6 ST .
(2) For every y ∈ SY , y′ ∈ SY ′ such that R′(y′) 6= 0, and every ε > 0 there is an

element y′0 ∈ SY ′ such that (Ry′ ⊗ y)(S(T ′(y′0), ε)) ⊂ Bε(y).

To see this just notice that for every y′ ∈ SY ′ such that R′(y′) 6= 0 and y ∈ SY

S(Ry′ , ε) = {x ∈ BX : 1− ε 6 Ry′(x) 6 1} = {x ∈ BX : ‖Ry′(x)y − y‖ 6 ε}.

For a general operator T the canonical example of when the relation SR 6 ST
holds is given by the case R = P ◦ T , where T : X → Y and P : Y → Y are
operators. In this case, 〈R(x), y′〉 = 〈x, T ′(P ′(y′))〉, and so clearly SR 6 ST . So
the reason is that we have the inclusion R′(Y ′) ⊂ T ′(Y ′). However, there are
examples of couples of operators T,R such that R is slice continuous with respect
to T but R 6= P ◦ T for any operator P . Let us show one of them.

Example 2.5. Let T : C[0, 1]⊕1 R→ C[0, 1], T (f, α) = f , and R: C[0, 1]⊕1 R→
C[0, 1], R(f, α) = f + α1, where 1 stands for the constant one function and ⊕1

denotes the direct sum with the 1-norm. Then R and T have norm one. Since
the kernel of T is not contained in the kernel of R, we do not have R = P ◦ T for
any operator P . But the slice condition holds. A simple calculation gives that for
every µ in the unit sphere of C[0, 1]∗, ‖T ′(µ)‖ = ‖R′(µ)‖ = 1. Let Sr ∈ SR be the
slice generated by any µ ∈ C[0, 1]∗ of norm one and ε > 0. We claim that the slice
St generated by the same µ and ε/2 is contained in Sr. Indeed, if (f, α) is in the
unit ball and 〈µ, f〉 > 1− ε/2, then ‖f‖ > 1− ε/2 and hence |α| 6 ε/2. Therefore,
for such (f, α), 〈µ, f + α1〉 > 〈µ, f〉 − |α| > 1 − ε, and so the inclusion St ⊂ Sr
holds.

Remark 2.6. Let T,R: X → Y be a couple of operators, ‖T‖ = 1. Notice that
Proposition 2.1 gives that for every y ∈ SY and y′ ∈ Y ′ such that R′(y′) 6= 0, the
following are equivalent.
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(1) ‖T +Ry′ ⊗ y‖ = 2.
(2) For every ε > 0 there is an element x ∈ S(Ry′ , ε) such that

‖T (x) + y‖ > 2− 2ε.

Thus for the case R = T and assuming that T ′ is an isometry onto its range
we obtain that Y has the Daugavet property if and only if Y has the T -Daugavet
property with respect to the set {Ty′ : y′ ∈ Y ′\{0}}·Y . This is a direct consequence
of the well-known characterisation of the Daugavet property (see Lemma 2.1 in
[12]) and Corollary 2.3. Consequently, for any other R, if Y has the Daugavet
property and SR 6 ST , we obtain that for every y ∈ SY and every y′ ∈ Y ′ such
that R′(y′) 6= 0,

‖T +Ry′ ⊗ y‖ = 2.

Note that something like the slice continuity requirement SR 6 ST is neces-
sary for this to be true; indeed, a quotient map T : X → Y is not necessarily a
Daugavet centre, even if the spaces involved have the Daugavet property. Take
the operators T,R: L1[0, 1] ⊕1 L

1[1, 2] → L1[0, 1] given by T ((f, g)) := f and
R((f, g)) := (

∫ 2

1
g dx) · h0, (f, g) ∈ L1[0, 1] ⊕1 L

1[1, 2], where h0 is a norm one
function in L1[0, 1]. Clearly, ‖T‖ = ‖R‖ = 1, but ‖T +R‖ 6 1.

Theorem 2.7. Let Y be a Banach space with the Daugavet property. Let T :
X → Y be an operator such that T ′ is an isometry onto its range and R: X → Y
a norm one operator. Then:

(1) If for every ε > 0 there is a slice S0 ∈ ST and an element y ∈ SY such that
R(S0) ⊂ Bε(y), then

‖T +R‖ = 2.

(2) If SR 6 ST and R is weakly compact, then

‖T +R‖ = 2.

Proof. (1) Take ε > 0. Then there are S0 = S(Ty′0 , δ) ∈ ST and y ∈ SY such that
for every x ∈ S0, ‖R(x) − y‖ 6 ε. We can assume that δ 6 ε. Since Y has the
Daugavet property, Y has the T -Daugavet property with respect to the set {Ty′ :
y′ ∈ Y ′ \ {0}} · Y (see Remark 2.6 above). Therefore, by Corollary 2.3 we find an
element x ∈ S0 such that

‖T +R‖ > ‖T (x) + y‖ − ‖y −R(x)‖ > 2− ε− 2δ > 2− 3ε.

Since this holds for every ε > 0, the proof of (1) is complete.
The proof of (2) follows the same argument as the one for operators in spaces

with the Daugavet property (see [12, Th. 2.3]), so we only sketch it. Assume
that ‖R‖ = 1. Since by hypothesis K = R(BX) is a convex weakly compact
set, it is the closed convex hull of its strongly exposed points. Since this set
is convex and ‖R‖ = 1, there is a strongly exposed point y0 ∈ K such that
‖y0‖ 6 1 and ‖y0‖ > 1 − ε. Take a functional y′0 that strongly exposes y0 and
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satisfies 〈y0, y
′
0〉 = maxy∈K〈y, y′0〉 = 1. It can be proved by contradiction that

there is a slice S ∈ SR such that R(S) is contained in the ball Bε(y0) (see the
proof of [12, Th. 2.3]). Since SR 6 ST , there is also a slice S0 ∈ ST such that
R(S0) ⊂ R(S) ⊂ Bε(y0). Then part (1) gives the result. �

The example in Remark 2.6 makes it clear that some condition like slice con-
tinuity is necessary for (2) in Theorem 2.7 to be true. The following variation of
this example gives a genuine weakly compact operator that is not of finite rank
which does not satisfy the Daugavet equation. Take T defined as in Remark 2.6
and R: L1[0, 1]⊕1 L

2[1, 2]→ L1[0, 1] given by R((f, g)) := g(x− 1). This operator
is weakly compact and ‖R‖ = ‖T‖ = 1, but again the norm of the sum of both
operators is less than 2.

Remark 2.8. Notice that the condition in (1) on the existence of a slice S ∈ ST
such that R(S) ⊂ Bε(y) can be substituted by the existence of a slice S ∈ ST and
a δ > 0 such that R(S + δBX) ⊂ Bε(y). The argument given in the proof based
on this fact makes it also clear that the relation ST 6 SR can be substituted by
the following weaker one and the result is still true: For every slice S ∈ SR and
δ > 0 there is a slice S1 ∈ ST such that

S1 ⊂ S + δBX .

3. Bilinear maps and the Daugavet property

In this section we analyse the Daugavet property for bilinear maps defined on
Banach spaces. Our main idea is to provide a framework for the understanding
of several new Daugavet type properties and prove some general versions of the
main theorems that hold for the case of the Daugavet property. We centre our
attention on the extension of the Daugavet equation for weakly compact bilinear
maps. Let X,Y and Z be Banach spaces. Consider a norm one continuous bilinear
map B: X × Y → Z. Then we can consider the linearisation TB : X⊗̂πY → Z,
where X⊗̂πY is the projective tensor product with the projective norm π (see for
instance [9, Sec. 3.2] or [19, Th. 2.9]). This linear operator will provide meaningful
results for bilinear maps by applying the ones of Section 2. However, a genuinely
geometric setting for bilinear operators – slices, isometric equations, . . . – will
also be defined in this section in order to provide the specific links between the
(bilinear) slice continuity and the Daugavet equation.

We will consider bilinear operators B0: X × Y → Z satisfying that B0(UX ×
UY ) = UZ . Obviously, such a map has always convex range, i.e., B0(UX×UY ) is a
convex set. We will say that a map satisfying these conditions is a norming bilinear
map. If B0 is such a bilinear operator, we will say that a Banach space Z has the
B0-Daugavet property with respect to the class of bilinear maps V ⊂ B(X×Y, Z)
if

‖B0 +B‖ = 1 + ‖B‖
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for all B ∈ V . Notice that Z has the B0-Daugavet property with respect to V
if and only if it has the TB0

-Daugavet property with respect to the set
{TB : X⊗̂πY → Z: B ∈ V }. Let us consider some examples.

Example 3.1. (1) Take a Banach space X and consider the bilinear form B0:
X ×X ′ → R given by B0(x, x′) = 〈x, x′〉, x ∈ X, x′ ∈ X ′. Consider the set

V = {BT : X ×X ′ → R: BT (x, x′) = 〈T (x), x′〉, T : X → X is weakly compact}.

Then notice that

sup
x∈BX ,x′∈BX′

|B0(x, x′) +BT (x, x′)| = sup
x∈BX ,x′∈BX′

|〈x+ T (x), x′〉| = ‖Id + T‖

and ‖B0‖ + ‖BT ‖ = 1 + ‖T‖. Therefore R has the B0-Daugavet property with
respect to V if and only if X has the Daugavet property (see Theorem 2.3 in [12]).

(2) Take a measure space (Ω,Σ, µ) and a couple of Banach function spaces
X(µ) = X and Z(µ) = Z over µ satisfying that the space of multiplication op-
erators XZ is a saturated Banach function space over µ and X is Z-perfect, i.e.,
(XZ)Z = X, and UX · UXZ = UZ (here · represents the pointwise product of
functions). Consider the bilinear map B0: X ×XZ → Z given by B0(f, g) = f · g,
f ∈ X, g ∈ XZ (see [7] for definitions and results regarding multiplication opera-
tors on Banach function spaces). Consider the set

V = {BS : X ×XZ → Z: BS(f, g) = S(f · g), S: Z → Z is weakly compact}.

Then

sup
f∈BX, g∈BXZ

‖B0(f, g) +BS(f, g)‖Z = sup
f∈BX, g∈BXZ

‖f · g + S(f · g)‖Z = ‖Id + S‖

and ‖B0‖ + ‖BS‖ = 1 + ‖S‖. Therefore Z has the B0-Daugavet property with
respect to V if and only if Z has the Daugavet property (see again Theorem 2.3
in [12]).

(3) Take 1 < p < ∞, its conjugate index p′, a measurable space (Ω,Σ), a
Banach space Z and a countably additive vector measure m: Σ→ Z. Consider the
corresponding spaces ofm-integrable functions Lp(m) and Lp

′
(m), and the bilinear

map B0: Lp(m)×Lp′(m)→ Z given by the composition of the multiplication and
the integration map Im: L1(m) → Z, i.e., B0(f, g) =

∫
fg dm. This map is well

defined and continuous (see [16, Chapter 3] for the main definitions and results on
the spaces Lp(m)). Assume also that B0(ULp(m)×ULp′ (m)) = Im(ULp(m) ·ULp′ (m))
coincides with the open unit ball of Z. Take the set

U =
{
BR: Lp(m)× Lp

′
(m)→ Z: BR(f, g) := R(Im(f · g)), R: Z → Z rank one

}
.

Since

‖B0 +BR‖ = sup
f∈BLp(m), g∈BLp′ (m)

∥∥∥∫
Ω

fg dm+R
(∫

Ω

fg dm
)∥∥∥

Z
= ‖Id +R‖

and ‖B0‖+‖BR‖ = 1+‖R‖, we obtain again that Z has the B0-Daugavet property
with respect to U if and only if Z has the Daugavet property.
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Remark 3.2. More examples can be given by considering the following bilinear
maps:

(i) BC(K): C(K)× C(K)→ C(K), BC(K)(f, g) = f · g.
(ii) B∗: L1(R)× L1(R)→ L1(R), B∗(f, g) = f ∗ g, where ∗ is the convolution

product. In this case we haveB∗(UL1(R), UL1(R)) = UL1(R) as a consequence
of Cohen’s Factorisation Theorem (see Corollary 32.30 in [10]).

(iii) For a σ-finite µ, BL∞ : L∞(µ)×L1(µ)→ R given by BL∞(f, g) =
∫
fg dµ.

Bilinear operators for which the Daugavet equation will be shown to hold –
together with norming bilinear maps – are weakly compact operators with convex
range. Although the usual way of finding such a map is to compose a bilinear map
with convex range and a weakly compact linear one, other examples can be given.
Let us show one of them that is in fact not norming.

Example 3.3. Consider a constant 1 p-convex reflexive Banach function space
X. In particular, X must be order continuous. Take f ′0 ∈ SX′ and f0 ∈ SX and
define the bilinear map B: X × X[p/p′] → X[p] given by B(f, g) = 〈f, f ′0〉f0 · g.
Note that ‖B‖ = 1. Let us show that the (norm) closure K = B(BX ×BX[p/p′])
is a convex weakly compact set.

Let z1, z2 ∈ B(BX ×BX[p/p′]). Let f1, g1, f2 and g2 be such that B(f1, g1) = z1

and B(f2, g2) = z2. Take 0 < α < 1 and consider the element αz1 + (1−α)z2. Let
us prove that it belongs to B(BX × BX[p/p′]). Notice that since −1 6 〈f, f ′0〉 6 1

for every f ∈ BX , g3 = α〈f1, f
′
0〉g1 + (1 − α)〈f2, f

′
0〉g2 belongs to BX[p/p′] . Take

now an element f3 ∈ BX such that 〈f3, f
′
0〉 = 1 (it exists since X is reflexive), and

note that
B(f3, g3) = αz1 + (1− α)z2.

So, K is convex. Notice that B(BX ×BX[p/p′]) is also relatively weakly compact;
it is enough to observe that the set is uniformly µ-absolutely continuous (see for
instance Remark 2.38 in [16] and the references therein), i.e., that

lim
µ(A)→0

sup
z∈K
‖zχA‖ = 0.

But this is a direct consequence of the fact that X is order continuous (see for
instance [14, Th. 1.c.5 and Prop. 1.a.8]) and the Hölder inequality for the norms
of p-th power spaces (adapt [16, Lemma 2.21] or [14, Prop. 1.d.2(i)]). For every
z = 〈f, f ′0〉f0 · g ∈ B(BX , BX[p/p′]) and A ∈ Σ,

‖zχA‖X[p]
= ‖〈f, f ′0〉f0 · g‖X[p]

6 |〈f, f ′0〉|‖f0χA‖X · ‖g‖X[p/p′] .

Since X is order continuous, ‖f0χA‖X → 0 when µ(A)→ 0, which gives the result.

Let us now start to adapt the results of the previous section. In order to do
so, let us define the natural set of slices associated to a norm one bilinear form
b ∈ B(X × Y,R). Let 0 < ε < 1. Following the notation given for the linear case,
we define S(b, ε) by

S(b, ε) := {(x, y): x ∈ BX , y ∈ BY , b(x, y) > 1− ε}.
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The following result shows the relation between slices defined by a bilinear form
and the ones defined by the linearisation of this map.

Lemma 3.4. Let b ∈ B(X×Y,R) be a norm one bilinear form (i.e., Tb ∈ (X⊗̂πY )′

with norm one) and ε > 0. Then:
(1) There is an elementary tensor x ⊗ y such that ‖x‖ = ‖y‖ = 1 and x ⊗ y ∈

S(Tb, ε).
(2) co{x⊗ y: (x, y) ∈ S(b, ε)} ⊂ S(Tb, ε).
(3) S(Tb, ε

2) ⊂ co{x⊗ y: (x, y) ∈ S(b, ε)}+ 4εBX⊗̂πY .

Proof. (1) Take a norm one element t ∈ S(Tb, ε/2). Then there is an element
t0 =

∑n
i=1 αixi⊗yi ∈ X⊗Y such that ‖xi‖ = ‖yi‖ = 1, αi > 0 for all i = 1, . . . , n,∑n

i=1 αi = 1 and π(t− t0) < ε/2. Then

〈t0, Tb〉 = 〈t0 − t, Tb〉+ 〈t, Tb〉 > 〈t, Tb〉 − |〈t0 − t, Tb〉| > 1− ε

2
− ε

2
,

and so t0 ∈ S(Tb, ε). Then
n∑
i=1

αib(xi, yi) >
n∑
i=1

αi(1− ε),

and so there is at least one index i0 such that b(xi0 , yi0) > 1 − ε. Consequently,
xi0 ⊗ yi0 ∈ S(Tb, ε).

(2) is a direct consequence of the fact that S(Tb, ε) is norm closed in the
projective tensor product.

(3) Let us show now that S(Tb, ε
2) ⊂ co{x⊗ y: (x, y) ∈ S(b, ε)} + 4εBX⊗̂πY .

Let u ∈ S(Tb, ε
2). Find v such that ‖v‖ < 1, Tb(v) > 1 − ε2, and ‖v − u‖ 6 ε.

Write v =
∑∞
i=1 αixi ⊗ yi with all ‖xi‖ = ‖yi‖ = 1, αi > 0 and α :=

∑∞
i=1 αi < 1.

Note that α > 1− ε2. Now consider

I := {i ∈ N: b(xi, yi) > 1− ε} = {i ∈ N: (xi, yi) ∈ S(b, ε)},
J := {i ∈ N: b(xi, yi) < 1− ε}.

Let αI :=
∑
i∈I αi and αJ :=

∑
i∈J αi. We have

1− ε2 6
∞∑
i=1

αib(xi, yi) 6 αI + αJ(1− ε) < 1− εαJ

and hence αJ < ε. Let w =
∑
I
αi
αI
xi ⊗ yi ∈ co{x⊗ y: (x, y) ∈ S(b, ε)}; we then

have (note that v = αIw +
∑
J αixi ⊗ yi)

‖v − w‖ 6 |αI − 1|‖w‖+ αJ .

Furthermore 0 6 1− αI = αJ + 1− α 6 ε+ ε2; hence

‖u− w‖ 6 ‖u− v‖+ ‖v − w‖ 6 ε+ ((ε+ ε2) + ε) 6 4ε,

as claimed. �
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If z ∈ Z, we define bz: X × Y → Z as the (rank one) bilinear map given by
bz(x, y) = b(x, y)z, x ∈ X, y ∈ Y . Let B: X × Y → Z be a continuous bilinear
map. In what follows we need to introduce some elements related to duality and
adjoint bilinear operators. Following Ramanujan and Schock in [17], we consider
the adjoint operator B×: Z ′ → B(X,Y ) given by B×(z′)(x, y) = 〈B(x, y), z′〉 (this
definition does not coincide with the one given originally by Arens in [2], although
the setting is of course the same). B× is a linear and continuous operator, and
‖B‖ = ‖B×‖.

Definition 3.5. Let B: X × Y → Z be a continuous bilinear map. Let z′ ∈ SZ′
and consider the adjoint bilinear form 〈B, z′〉: X×Y → R given by 〈B, z′〉(x, y) =
B×(z′)(x, y). We denote by Bz′ : X×Y → R the bilinear form given by Bz′(x, y) =
〈B(x,y),z′〉
‖〈B,z′〉‖ whenever ‖〈B, z′〉‖ 6= 0 and by 〈B,Z ′〉 the set of all these bilinear forms.

The natural set of slices defined by B is then

SB = {S(Bz′ , ε): 0 < ε < 1, ‖Bz′‖ 6= 0}.

If B1 is another (continuous) bilinear map, B1: X × Y → Z, we use the symbol
SB 6 SB1

to denote that for every slice S in SB there is a slice S1 ∈ SB1
such

that S1 ⊂ S. We can also consider the relation STB 6 SB1
to be defined in the

same way: for every S ∈ STB there is a slice S1 ∈ SB1 such that the set {x ⊗ y:
(x, y) ∈ S1} is included in S. Lemma 3.4 gives an idea of how this relation works.

As in the linear case, the canonical example of the relation SB 6 SB1 between
sets of slices associated to two bilinear maps is given by bilinear maps B that
are defined as a composition T ◦ B1, where B1: X × Y → Z is a continuous
bilinear map and T : Z → Z is a continuous operator. In this case, 〈B(x, y), z′〉 =
〈B1(x, y), T ′(z′)〉, and so clearly SB 6 SB1

. Let us show some examples.

Example 3.6. Let (Ω,Σ, µ) be a finite measure space and consider a rearrange-
ment invariant (r.i.) constant 1 p-convex Banach function space X(µ) (see [14,
p. 28 and Sections 1.d, 2.e] or [16, Ch. 2 and p. 202]). In this case, (X(µ)[p])

′ is
also r.i. Take a measurable bijection Φ: Ω → Ω such that µ(Φ(A)) = µ(A) for
every A ∈ Σ. Then it is possible to define the isometry Tr: X[r] → X[r], 0 6 r 6 p,
by Tr(f) = f ◦ Φ.

Define the bilinear map B: X × X[p/p′] → X[p] given by B(f, g) = T1(f) ·
Tp/p′(g). Let us show the relation between the slices defined by B0: X×X[p/p′] →
X[p], B0(f, g) = fg, and the slices defined by B. Assume also that X is order
continuous. Then X[p] is also order continuous and the dual of the space can be
identified with the Köthe dual, which is also r.i., and so every continuous linear
form is an integral. Note that in this case the property SB 6 SB0

holds, since
for every couple of functions f ∈ X and g ∈ X[p/p′], B(f, g) = T1(f) · Tp/p′(g) =
(f ◦ Φ) · (g ◦ Φ) = (f · g) ◦ Φ. Consequently, every element z′ ∈ S(X[p])′ satisfies
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that for every pair of functions f and g as above,

〈B0(f, g), z′〉 =

∫
Ω

fgz′ dµ =

∫
Ω

((fg) ◦ Φ) · (z′ ◦ Φ) dµ

=

∫
Ω

B(f, g) · (z′ ◦ Φ) dµ = 〈B(f, g), z′ ◦ Φ〉.

Therefore, there is a one-to-one correspondence between SB0
and SB given by

identifying S((B0)z′ , ε) and S(Bz′◦Φ, ε), which implies that SB0
= SB .

Fix a norming bilinear map B0: X × Y → Z and consider a norm one bilinear
map B: X×Y → Z. Let us provide now geometric and topological properties for B
that imply that the Daugavet equation is satisfied for B0 and B, i.e., ‖B0+B‖ = 2.
These properties will be proved as applications of the result of the previous section.

Corollary 3.7. Let Z be a Banach space with the Daugavet property. Let B0:
X × Y → Z be a norming bilinear map and B: X × Y → Z a continuous bilinear
map. Then:

(1) If for every ε > 0 there is a slice S0 ∈ SB0
and an element z ∈ SZ such that

B(S0) ⊂ Bε(z), then
‖B0 +B‖ = 1 + ‖B‖.

(2) If STB 6 SB0
and TB is weakly compact (equivalently, B(BX × BY ) is

a relatively weakly compact set), then

‖B0 +B‖ = 1 + ‖B‖.

Proof. (1) is just a consequence of Theorem 2.7(1): let us take ε/5 and apply this
theorem to TB0

and TB . By hypothesis there is a slice S0 = S(b, δ) ∈ SB0
such

that B(S0) ⊂ Bε/5(z). We can assume without loss of generality that δ 6 ε/5 and
‖B‖ 6 1. Then by Lemma 3.4(3),

TB(S(Tb, δ
2)) ⊂ TB(co(S0)) + 4

5εTB(BX⊗̂πY )

⊂ co(B(S0)) + 4
5ε‖TB‖BZ ⊂ Bε/5(z) + 4

5εBZ

⊂ Bε(z),

and (1) is proved. For (2), apply Theorem 2.7(2) and Remark 2.8. �

Example 3.8. It is well known that for a purely non-atomic measure µ and a Ba-
nach space E the space of Bochner integrable functions L1(µ,E) has the Daugavet
property (see [12]). The next simple application of Corollary 3.7 provides a similar
result for the Pettis norm ‖ . ‖P , i.e., for operators T from (L1(µ,E), ‖ . ‖L1(µ,E)) to
the normed space (L1(µ,E), ‖ . ‖P ). Consider the bilinear map B0: L1(µ,E)×E′ →
L1(µ) given by

B0(f, x′)(w) = 〈f(w), x′〉, w ∈ Ω.
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Take an operator T : L1(µ,E) → L1(µ,E) and define the bilinear map BT :
L1(µ,E)× E′ → L1(µ) given by

BT (f, x′)(w) = 〈(T (f))(w), x′〉, w ∈ Ω.

Assume that BT is weakly compact and has convex range and suppose that SBT 6
SB0 (or that TBT is weakly compact and STBT 6 STB0

). Then by Corollary 3.7(3)
(or (4)),

sup
f∈BL1(µ,E)

‖f + T (f)‖P = sup
f∈BL1(µ,E), x

′∈BE′
‖B0(f, x′) +BT (f, x′)‖L1(µ)

= sup
f∈BL1(µ,E), x

′∈BE′
‖B0(f, x′)‖

+ sup
f∈BL1(µ,E), x

′∈BE′
‖BT (f, x′)‖L1(µ)

= sup
f∈BL1(µ,E)

‖f‖P + sup
f∈BL1(µ,E)

‖T (f)‖P .

Corollary 3.7 suggests that the natural examples of bilinear maps that satisfy
the Daugavet equation with respect to B0 are the ones defined as B = T ◦B0, where
T : Z → Z is a weakly compact operator. Corollary 3.10 generalises in a sense the
idea of (2) and (3) in Example 3.1. Notice, however, that there are other simple
bilinear maps that fit into the Daugavet setting, as the following example shows.

Example 3.9. Let us show an example of a bilinear map B: X × Y → Z such
that B0 and B satisfy the Daugavet equation but there is no operator T : Z → Z
such that B = T ◦ B0. Let (Ω,Σ, µ), X(µ) and Φ be as in Example 3.6 and
consider the isometry T1: X → X defined there. Assume also that µ(Ω) < ∞
and the constant 1 function satisfies ‖χΩ‖X = 1. Consider the bilinear map B:
X ×X[p/p′] → X[p] given by B(f, g) = T1(f) · g. Then, since T1(χΩ) = χΩ,

2 > ‖B0 +B‖ = sup
f∈BX , g∈BX

[p/p′]

‖fg + T1(f)g‖X[p]

= sup
f∈BX , g∈BX

[p/p′]

‖(f + T1(f))g‖X[p]
= sup
f∈BX

‖f + T1(f)‖X

> ‖χΩ + χΩ‖ = 2.

Notice that in general a bilinear map defined in this way cannot be written as
T ◦B0 for any operator T . For instance, suppose that there is a set B ∈ Σ such that
0 < µ(B) and B ∩Φ(B) = ∅ and consider a couple of non-trivial functions f1 and
f2 in X with support in Φ(B) and B, respectively, and such that ‖(f1◦Φ) ·f2‖ > 0.
Then B0(f1, f2) = 0, but B(f1, f2) 6= 0, so there is no operator T : X[p] → X[p]

such that B = T ◦B0.

Corollary 3.10. Let B0: X × Y → Z be a norming bilinear map. Consider
the subsets R, C and WC of L(Z,Z) of rank one, compact and weakly compact
operators, respectively, and the sets R ◦B0 = {B = T ◦B0: X × Y → Z: T ∈ R},
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C ◦ B0 = {B = T ◦ B0: X × Y → Z: T ∈ C} and WC ◦ B0 = {B = T ◦ B0:
X × Y → Z: T ∈WC}. Then the following are equivalent.

(1) Z has the Daugavet property.
(2) Z has the B0-Daugavet property with respect to R ◦B0.
(3) Z has the B0-Daugavet property with respect to C ◦B0.
(4) Z has the B0-Daugavet property with respect to WC ◦B0.
(5) For every norm one operator T ∈ R, every z ∈ Z and every ε > 0 there is

an element (x, y) ∈ S(T ◦B0, ε) such that

‖z +B0(x, y)‖ > 2− ε.

Proof. The equivalence between (1) and (2) is a direct consequence of the follow-
ing equalities. For every rank one operator T : Z → Z,

‖Id + T‖ = sup
z∈BZ

‖z + T (z)‖ = sup
x∈BX ,y∈BY

‖B0(x, y) + T (B0(x, y))‖.

Since the norm closure of the convex hull B(BX × BY ) is a weakly compact set,
(2) implies (4) as a consequence of Corollary 3.7(2). Obviously (4) implies (2),
and so the equivalence of (2) and (3) is also clear. The equivalence of (2) and (5)
holds as a direct consequence of Corollary 2.3 and the arguments used above. �

Remark 3.11. Conditions under which a bilinear map B: X × Y → Z is com-
pact or weakly compact (i.e., the norm closure B(BX ×BY ) is compact or weakly
compact, respectively) have been studied in several papers; see [17, 18] for com-
pactness and [3, 22] for weak compactness. The reader can find in these papers
some factorisation theorems and other characterisations of these properties, also
related with the notion of Arens regularity of a bilinear map.

4. Applications. p-convexifications of the Daugavet property and bilin-
ear maps

Different p-convexifications of the Daugavet property have been introduced in
[20, 21]. In this section we show that in a sense they can be considered as particular
cases of a Daugavet property for bilinear maps. We centre our attention on the case
of Banach function spaces such that their p-th powers have the Daugavet property
that have been characterised in [20]. However, more examples of applications will
be given as well. Throughout this section µ is supposed to be finite.

We explain now two suitable examples of p-convexification of the Daugavet
property. Let us start with one regarding p-concavity in Banach function spaces.

Example 4.1. Let 1 6 p <∞. Consider a constant 1 p-convex Banach function
space X, Y = X[p/p′] ⊕∞ X[p/p′] (the direct product with the maximum norm),
Z = X[p], and the bilinear map B0: X × (X[p/p′] ×∞ X[p/p′]) → X[p] given by
B0(f, (g, h)) = f · P1(g, h) = fg. Take an operator T : X → X and consider
the bilinear map B: X × (X[p/p′] ⊕∞ X[p/p′]) → X[p] given by B(f, (g, h)) =
T (f) · P2(g, h) = fh (here P1 and P2 denote the two natural projections in the
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product space X[p/p′]⊕∞X[p/p′]). A direct calculation shows that in this case the
Daugavet equation for the pair given by B0 and B is

‖B0 +B‖ = 1 + ‖T‖,

since ‖B‖ = ‖T‖. Assume that ‖T‖ = 1. Then ‖T (f)‖ 6 1 for every f ∈ BX , and
so, taking g = fp/p

′ ∈ BX[p/p′] and h = T (f)p/p
′ ∈ BX[p/p′] for each f ∈ BX , we

obtain

2 > ‖B0 +B‖ = sup
f∈BX , g∈BX

[p/p′]
, h∈BX

[p/p′]

‖fg + T (f) · h‖X[p]

> sup
f∈BX

‖|f |p + |T (f)|p‖X[p]

> sup
f∈BX

‖(|f |p + |T (f)|p)1/p‖pX .

Thus, if X is also a constant 1 p-concave space (i.e., X is an Lp-space) we get

sup
f∈BX

‖(|f |p + |T (f)|p)1/p‖pX > sup
f∈BX

(‖f‖pX + ‖T (f)‖pX) = 2.

Therefore, in this case the Daugavet equation holds for B0 and for every bilinear
map B defined by an operator T : X → X in the way explained above.

The following construction shows another example of a Daugavet type property
for a bilinear map that is in fact a p-convex version of the Daugavet property, in
the sense that is studied in [21].

Example 4.2. Let (Ω,Σ, µ) be a measure space and consider an r.i. constant 1
p-convex Banach function space X(µ). Consider as in Example 3.6 the bilinear
map B0 given by the product and a measurable bijection Φ: Ω→ Ω satisfying that
µ(Φ(A)) = µ(A) for every A ∈ Σ and the isometries Tr: X[r] → X[r], 0 < r 6 p.

Take the bilinear map B: X×X[p/p′] → X[p] given by B(f, g) = T1(f)·Tp/p′(g).
Notice that ‖B‖ = 1. Then

2 > ‖B0 +B‖ > sup
f∈BX , g∈BX

[p/p′]

‖B0(f, g) +B(f, g)‖X[p]

> sup
f∈BX

‖f · fp/p
′
+ T1(f) · Tp/p′(fp/p

′
)‖X[p]

= sup
x∈BX

‖fp + T1(f)p‖X[p]

= sup
f∈BX

‖|fp + T1(f)p|1/p‖pX .

Now, if Φ satisfies that there is a set A ∈ Σ such that µ(A ∩ Φ(A)) < µ(A), there
is a norm one function f0 such that f0 and T1(f0) are disjoint and ‖T1(f0)‖ = 1.
Assume that X is also p-concave (constant 1), i.e., X is an Lp-space. Then

sup
f∈BX

‖|fp + T1(f)p|1/p‖pX > ‖f0‖pX + ‖T1(f0)‖pX = 2,

and thus the so called p-Daugavet equation is satisfied for T1 (see Definition 1.1
in [21]), and B and B0 satisfy the Daugavet equation.
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Let 1 6 p < ∞. In what follows we study the p-convex spaces whose
p-th powers satisfy the Daugavet property by giving some general results in the
setting of the examples presented above. We analyse the case of X = X(µ),
a constant 1 p-convex Banach function space, Y = X(µ)[p/p′], Z = X(µ)[p], and
B0: X × X[p/p′] → X[p] given by B0(f, g) = f · g. We assume that X[p] has the
Daugavet property. The main example we have in mind is given by X = Lp[0, 1],
Y = X[p/p′] = Lp

′
[0, 1] and Z = X[p] = L1[0, 1]. Recall that µ is assumed to be

finite.

Definition 4.3. Let X(µ), Y (µ) and Z(µ) be three Banach function spaces over
µ. We say that a continuous bilinear map B: X(µ)×Y (µ)→ Z(µ) satisfying that
for every A,C ∈ Σ, B(χA, χC) = B(χA∩C , χA∪C), is a symmetric bilinear map.

Proposition 4.4. Let X(µ) be an order continuous p-convex Banach function
space with p-convexity constant equal to 1. Then the following assertions are equiv-
alent.

(1) For every rank one operator T : X(µ)[p] → X(µ)[p],

sup
f∈BX

‖|fp + T (fp)|1/p‖pX = 1 + ‖T‖.

(2) For every rank one operator T : X(µ)[p] → X(µ)[p],

‖B0 + T ◦B0‖ = 1 + ‖T‖.

(3) For every z ∈ SX[p]
, for every x′ ∈ S(X[p])′ and for every ε > 0 there is an

element (f, g) ∈ S((B0)x′ , ε) such that

‖z +B0(f, g)‖X[p]
> 2− 2ε.

(4) Each weakly compact symmetric bilinear map B: X(µ) × X[p/p′] → X[p]

satisfies the equation
‖B0 +B‖ = 1 + ‖B‖.

(5) X[p] has the Daugavet property.

Proof. For the equivalence of (1) and (2), note that the constant 1 p-convexity of
X implies that BX ·BX[p/p′] = BX[p]

is the unit ball of the Banach function space
X[p]; so, using also Remark 1.1 the following inequalities are obtained:

sup
f∈BX

‖|fp + T (fp)|1/p‖pX 6 sup
f∈BX , g∈BX

[p/p′]

‖fg + T (fg)‖X

6 sup
h∈BX[p]

‖h+ T (h)‖X[p]

6 sup
f∈BX

‖|fp + T (fp)|1/p‖pX ,

and then both assertions are seen to be equivalent. The equivalence of (2) and (3)
is obtained by applying Corollary 2.3 to the setting of bilinear maps.
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Taking into account that the map i[p]: X → X[p] given by i[p](f) = fp is
a bijection satisfying ‖i[p](f)‖X[p]

= ‖f‖pX for every f ∈ X, and the definition of
the norm ‖ . ‖X[p]

, the equivalence of (1) and (5) is also clear using the well-known
geometric characterisation of the Daugavet property in terms of slices (see for
instance Lemma 2.2 in [12]).

Thus, it only remains to prove the equivalence of (2) and (4). Let us show first
the following

Claim. Let X be a p-convex (constant 1) Banach function space such that the
simple functions are dense and let B: X(µ)×X(µ)[p/p′] → X(µ)[p] be a continuous
bilinear map. Then B is symmetric if and only if there is an operator T : X[p] →
X[p] such that B = T ◦B0.

In order to prove this, note that by hypothesis the set S(µ) of simple functions
is dense in X(µ) and so for every 0 6 r 6 p it is also dense in X(µ)[r]; this
can be shown by a direct computation just considering the definition of the norm
in ‖ . ‖X[r]

and the fact that if X is constant 1 p-convex then it is constant 1
r-convex for all such r, see for instance [14, Prop. 1.b.5] or [16, Prop. 2.54]. So this
holds for r = p/p′. If B is symmetric, then for every couple of simple functions
f =

∑n
i=1 αiχAi and g =

∑m
j=1 βjχBj , where {Ai}ni=1 and {Bi}mj=1 are sequences

of pairwise disjoint measurable sets,

B(f, g) =

n∑
i=1

m∑
j=1

αiβjB(χAi , χBj )

=

m∑
j=1

n∑
i=1

αiβjB(χAi∩Bj , χAi∪Bj )

=

m∑
j=1

n∑
i=1

βjαiB(χBj , χAi) = B(g, f).

Therefore, because of the continuity of B and the order continuity of the spaces,
B(f, g) = B(g, f) for every couple of simple functions f, g ∈ X ∩ X[p/p′]. Define
now the map T : X[p] → X[p] by T (h) = B(f, g) for every function h = fg, first for
products of simple functions and then by density for the rest of the elements of X[p]

(note that the norm closure of the set (S(µ)∩BX) ·(S(µ)∩BX[p/p′]) coincides with
BX[p]

). It can easily be proved that T is well defined since B is symmetric. For
if f1, g1, f2, g2 are simple functions with f1g1 = f2g2, then B(f1, g1) = B(f2, g2),
and by continuity of B, B(f, g) = B(g, f) for every couple f ∈ X and g ∈ X[p/p′].
Further, T is continuous also by the continuity ofB and Remark 1.1. Consequently,
B = T ◦B0 and the claim is proved.

Thus, (2) is equivalent to (4) as a consequence of Corollary 3.10, since the
operator T constructed in the Claim is weakly compact if and only if B is weakly
compact. �
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