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Abstract: Let X be a real normed vector space and B(X) be the cone of all nonempty bounded
closed convex subsets of X. For A,B,C,D ∈ B(X) we have a relation of equivalence defined by
(A,B) ∼ (C,D) if and only if A+D = B + C. By [A,B] we denote the quotient class of (A,B).
The quotient space X̃ = B2(X)/∼ is a vector space called the Minkowski–Rådström–Hörmander
space over X. For x̃ = [A,B] ∈ X̃ we have the Hausdorff norm ‖x̃‖H = dH(A,B) = inf{ε >
0|A ⊂ B + εB, B ⊂ A + εB} where B is the closed unit ball in X. We also define Bartels-
Pallaschke norm ‖x̃‖BP = inf{‖C‖ + ‖D‖ | (C,D) ∈ [A,B]}, where ‖A‖ = supa∈A ‖a‖. In this
paper we prove that the bilinear function (·, ·) : (R̃2, ‖ · ‖H) × (R̃2, ‖ · ‖BP ) −→ R defined by
(x̃, ỹ) = 2V (x̃, ỹ) + 〈sx̃, sỹ〉, where V (x̃, ỹ) is a generalized mixed volume and sx̃ is a generalized
Steiner’s point, satisfies the inequality |(x̃, ỹ)| 6 (2π + 1)‖x̃‖H‖ỹ‖BP . We also prove that this
bilinear function defines an isomorphic mapping between Banach spaces (R̃2, ‖ · ‖BP ) and the
dual space to (R̃2, ‖ · ‖H) (Theorem 2).

Keywords: Minkowski–Rådström–Hörmander spaces, extreme points, pairs of closed bounded
convex sets.

Let X be a real Hausdorff topological vector space and B(X) be the cone of all
nonempty bounded closed convex subsets of X. For A,B,C,D ∈ B(X) we have
the Minkowski sum A + B = {a + b|a ∈ A, b ∈ B} and a relation of equivalence
defined by

(A,B) ∼ (C,D) if and only if A+D = B + C.

By [A,B] we denote the quotient class of (A,B). The quotient space X̃ = B2(X)/∼
is a vector space with the addition and multiplication by real numbers defined by
[A,B] + [C,D] = [A+ C,B +D] and α · [A,B] = [α+A+α−B,α−A+α+B]. The
space X̃ is called the Minkowski–Rådström–Hörmander (MRH) space over X [7].
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The MRH space [11], [17] is very useful in studying bounded-valued corre-
spondences [5], [7], in quasidifferential calculus [6], [15], [20] and in calculating
Aumann–Integral [4]. The MRH spaces were studied also in a number of papers,
for example [8], [18] and [21].

In 2007 A. Pełczyński posed a question what is the dual space to the MRH
space over R2. In fact the dual space depends on the norm in the MRH space.

Let (X, ‖ · ‖) be a normed space, x̃ = [A,B] ∈ X̃. The norm in the MRH space
over X can be introduce in two natural ways. Hausdorff’s metric determines the
following norm (see [17]): ‖x̃‖H = dH(A,B) = inf{ε > 0|A ⊂ B + εB, B ⊂
A + εB} where B is the closed unit ball in X. We also define Bartels-Pallaschke
norm ‖x̃‖BP = inf{‖C‖ + ‖D‖ | (C,D) ∈ [A,B]}, where ‖A‖ = supa∈A ‖a‖.
Bartels-Pallaschke norm [2] is related to the norm given in [3] defined in the space
of differences of real sublinear functions by ‖f‖ = inf{max{‖g‖, ‖h‖} | g − h =
f, where g, h are sublinear}. Bartels-Pallaschke norm seems almost as natural as
Hausdorff norm. Notice that ‖ · ‖H 6 ‖ · ‖BP . The normed space (X̃, ‖ · ‖H) is
not complete unless dimX = 1 but for Banach space X, Bartels-Pallaschke norm
turns the space (X̃, ‖ · ‖BP ) into Banach space.

Let NBV [a, b] be the space of normalized real functions of bounded variation
on the interval [a, b], that is for f ∈ NBV [a, b] we have f(a) = 0 and f(t) =
f(t+) = lims→t+ f(s), for t ∈ [a, b).

By f+, f− we denote the smallest nondecreasing functions in NBV [a, b] such
that f = f+− f−. The space NBV [a, b] with the norm defined by ‖f‖ = varbaf =
f+(b) + f−(b) is a Banach space. Now we are ready to state our first theorem.

Theorem 1. There exists an isomorphic mapping between Banach spaces
(R̃2, ‖ · ‖BP ) and NBV [0, 2π].

Before we point out to the isomorphic mapping we need some more notations
and definitions.

For our convenience we denote eit = (cos t, sin t) ∈ R2. For A ∈ B(R2), u ∈ R2

we define the support function pA : R2 3 x 7−→ maxa∈A〈x, a〉 ∈ R, where 〈x, a〉
is the inner product of x and a, the face H〈u,·〉A = {a ∈ A|〈u, a〉 = pA(u)}, the
boundary function hA : [0, 2π] −→ ∂A by hA = H〈ei(t+

π
2

),·〉(H〈eit,·〉A). We also
need the arc length function fA : [0, 2π] −→ R+ where fA(t) is the length of the
arc contained in ∂A joining hA(0) and hA(t). The function fA is a nondecreasing
function in NBV [0, 2π]. Most of these notations come from [9].

Let sA be the Steiner’s point of A (see [19], p. 42), that is

sA =
1

π

∫
S1

upA(u)dH1(u) =
1

π

∫ 2π

0

eitpA(eit)dt.
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For u ∈ R2 we define the auxiliary function fu : [0, 2π] −→ R+ by

fu(t) =
‖u‖
π

(sin(t−Argu) + sin(Argu)) =
eitū− e−itu+ u− ū

2πi
.

The following lemma is essential in the proof of Theorem 1:

Lemma 1. The mapping k : R̃2 −→ NBV [0, 2π], where k(ỹ) = fC − fD + fz,
ỹ = [C,D], z = sC − sD is an 1-1 isomorphic mapping between vector spaces.

Proof. Since the functions pC − pD and fC − fD do not depend on the choice
of representatives of ỹ (see [9]), the mapping k is well defined and preserves the
addition and the multiplication by scalars. In order to give the inverse mapping
we need more definitions and facts.

In a manner of [9] for nondecreasing function f ∈ NBV [0, 2π] we define the
function hf : [0, 2π] −→ R2 by hf (t) =

∫ t
0
ei(s+

π
2 )df(s), where the latter is the

Stieltjes integer.

If hf (2π) = 0 then we denote Af = convhf ([0, 2π]). Then AfA = A − hA(0)
and fAf = f (see [9]). If hf (2π) 6= 0 then there exists the unique function g ∈
NBV [0, 2π] such that g is nondecreasing, g takes exactly two values and hg(2π) =
−hf (2π). Hence hf+g(2π) = 0.

Let f ∈ NBV [0, 2π] and w = w(f) =
∫ 2π

0
eitdf(t). Then

∫ 2π

0

ei(t+
π
2 )dfw(t) =

∫ 2π

0

ei(t+
π
2 ) ‖w‖

π
cos(t−Argw)dt

=
‖w‖
π

∫ 2π

0

ei(t+
π
2 ) e

i(t−Argw) + e−i(t−Argw)

2
dt

=
‖w‖
2π

(∫ 2π

0

ei(
π
2−Argw)ei2tdt+

∫ 2π

0

ei(
π
2 +Argw)dt

)
=
‖w‖
2π

(
0 + 2πei(

π
2 +Argw)

)
= ei

π
2 w =

∫ 2π

0

ei(t+
π
2 )df(t).

Hence h(f−fw)+(2π)− h(f−fw)−(2π) =
∫ 2π

0
ei(t+

π
2 )d(f − fw)(t) = 0

and h(f−fw)+(2π) = h(f−fw)−(2π).

Then there exists the unique function g ∈ NBV [0, 2π] such that g is non-
decreasing, g takes exactly two values and hg(2π) = −h(f−fw)+(2π). Hence
h(f−fw)++g(2π) = 0 and h(f−fw)−+g(2π) = 0.



202 Jerzy Grzybowski, Ryszard Urbański

Let E = A(f−fw)++g and F = A(f−fw)−+g. Let us define the mapping l :

NBV [0, 2π] −→ R̃2 by l(f) = [E − sE + w,F − sF ].

Let ỹ ∈ R̃2, ỹ = [C,D]. We can assume that (C,D) is a minimal pair (see [14],
[9], [20] and [15]). We have l(k(ỹ)) = l(fC − fD + fz) where z = sC − sD.

Notice that

w =

∫ 2π

0

eitd(k(ỹ))(t) =

∫ 2π

0

eitdfC(t)−
∫ 2π

0

eitdfD(t) +

∫ 2π

0

eitdfz(t)

= e−i
π
2 hfC (2π)− e−iπ2 hfD (2π) +

∫ 2π

0

‖z‖
π
eit cos(t−Argz)dt

= 0− 0 + z = z.

Hence k(ỹ) − fw = fC − fD. Since the pair (C,D) is minimal, the maximal
nondecreasing function g ∈ NBV [0, 2π] such that the functions fC − g, fD − g are
nondecreasing takes not more than two values [9].

Then (fC−fD)+ = fC−g and (fC−fD)− = fD−g. Hence E = A(fC−fD)++g =
AfC = C − hC(0) and F = A(fC−fD)−+g = AfD = D − hD(0) (see [9]).

Therefore, l(k(ỹ)) = [E−sE+w,F −sF ] = [C−sC+z,D−sD] = [C,D] = ỹ.
Now, let f ∈ NBV [0, 2π]. Then k(l(f)) = k([E − sE + w,F − sF ]), where

E = A((f−fw)++g, F = A(f−fw)−+g and w =
∫ 2π

0
eitdf(t).

Hence k(l(f)) = fE−sE+w − fF−sF + fz = fE − fF + fw because z = s(E −
sE + w)− s(F − sF ) = w.

Therefore, k(l(f)) = (f−fw)+ +g−(f−fw)−−g+fw = (f−fw)+fw = f . �

Proof of Theorem 1. By the Open Operator Theorem we need only to prove
that k is continuous. For ỹ = [C,D], z = sC − sD we have

‖k(ỹ)‖ = ‖fC − fD + fz‖ 6 fC(2π) + fD(2π) + ‖fz‖

= |∂C|+ |∂D|+ 4
‖z‖
π
6 2π‖C‖+ 2π‖D‖+ 4

‖sC‖+ ‖sD‖
π

6
(

2π +
4

π

)
(‖C‖+ ‖D‖),

where |∂A| is the length of the boundary ∂A.
Since these inequalities hold true for any pair (C,D) ∈ ỹ then ‖k(ỹ)‖ 6 (2π+ 4

π )
‖ỹ‖BP .

The proof of Theorem 1 is completed. However, we can estimate the norm of
the operator l. For f ∈ NBV [0, 2π] we have
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‖l(f)‖BP 6 ‖E − sE + w‖+ ‖F − sF‖

6
1

2
|∂A(f−fw)++g|+ ‖w‖+

1

2
|∂A(f−fw)−+g|

6
1

2
((f − fw)+ + g)(2π) +

1

2
((f − fw)− + g)(2π) + ‖w‖

6 (f − fw)+(2π) + (f − fw)−(2π) + ‖w‖ 6 ‖f − fw‖+ ‖w‖

6 ‖f‖+ ‖fw‖+ ‖w‖ = ‖f‖+
4‖w‖
π

+ ‖w‖

6 ‖f‖+
( 4

π
+ 1
)
‖
∫ 2π

0

eitdf(t)‖ 6 ‖f‖+
( 4

π
+ 1
)
‖f‖

=
(

2 +
4

π

)
‖f‖.

If the norm in R2 is not Euclidean then the inequalities above hold true with
different constants. �

Knowing that the MRH space (R̃2, ‖ · ‖BP ) and the space NBV [0, 2π] are
isomorphic we see that the dual to MRH space (R̃2, ‖ · ‖BP ) and the dual to
the space NBV [0, 2π] are also isomorphic. The dual to the space NBV [0, 2π] is
described for example in [1].

Let V : B2(R2) −→ R+ be the mixed volume (see Theorem 5.1.6 in [19]).
The function V can be extended to the bilinear function on (R̃2)2 (see [22]) by
V (x̃, ỹ) = V (A,C)− V (A,D)− V (B,C) + V (B,D), where x̃ = [A,B], ỹ = [C,D].
Also the function s : B(R2) −→ R2, where sA is the Steiner’s point of A can be
extended to the linear function on R̃2 by sx̃ = sA− sB.

Theorem 2. The function (·, ·) : (R̃2, ‖ · ‖H) × (R̃2, ‖ · ‖BP ) −→ R defined by
(x̃, ỹ) = 2V (x̃, ỹ) + 〈sx̃, sỹ〉 is bilinear and continuous. Moreover, the space of
linear functions {(·, ỹ)|ỹ ∈ R̃2} is dual to (R̃2, ‖ · ‖H).

Proof. Let C[0, 2π] be the space of all continuous functions on [0, 2π] and let
C0[0, 2π] = {q ∈ C[0, 2π]|q(0) = q(2π)}. The bilinear function (·, ·) : C[0, 2π] ×
NBV [0, 2π] −→ R defined by (q, f) =

∫ 2π

0
q(t)df(t) establishes duality of

NBV [0, 2π] to C[0, 2π] (see the theorem of Riesz in [12], 17.7.4) and to C0[0, 2π].
All the functions t 7−→ (pA − pB)(eit), where A,B ∈ B(R2), form a dense

subspace of C0[0, 2π]. Since k is an isomorphic mapping then the space of functions
{R̃2 3 x̃ 7−→

∫ 2π

0
(pA − pB)(eit)d(k(ỹ))(t) ∈ R | ỹ ∈ R̃2}, x̃ = [A,B], is the space of

all continuous linear functions on (R̃2, ‖ · ‖H).
Let x̃, ỹ ∈ R̃2, x̃ = [A,B], ỹ = [C,D], z = sỹ. By the formulas 1.7.3 and 5.1.15

in [19],

sA =
1

π

∫ 2π

0

pA(eit)eitdt, V (A,C) =
1

2

∫ 2π

0

pA(eit)dfC(t).
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Then∫ 2π

0

(pA − pB)(eit)d(k(ỹ))(t)

=

∫ 2π

0

(pA − pB)(eit)dfC(t)−
∫ 2π

0

(pA − pB)(eit)dfD(t)

+

∫ 2π

0

(pA − pB)(eit)dfz(t)

= 2V (A,C)− 2V (A,D)− 2V (B,C) + 2V (B,D)

+

∫ 2π

0

‖z‖
π

(pA − pB)(eit) cos(t−Argz)dt

= 2V (x̃, ỹ) +

∫ 2π

0

‖z‖
π

(pA − pB)(eit)〈eit, eiArgz〉dt

= 2V (x̃, ỹ) +
1

π

∫ 2π

0

(pA − pB)(eit)〈eit, z〉dt

= 2V (x̃, ỹ) +

〈
1

π

∫ 2π

0

pA(eit)eitdt− 1

π

∫ 2π

0

pB(eit)eitdt, z

〉
= 2V (x̃, ỹ) + 〈sA− sB, sC − sD〉 = 2V (x̃, ỹ) + 〈x̃, ỹ〉.

Let us notice that

|V (x̃, ỹ)| 6
∣∣∣∣12
∫ 2π

0

(pA − pB)(eit)dfC(t)

∣∣∣∣+

∣∣∣∣12
∫ 2π

0

(pA − pB)(eit)dfD(t)

∣∣∣∣
6

1

2
sup
u∈S1

|(pA − pB)(u)| · |∂C|+ 1

2
sup
u∈S1

|(pA − pB)(u)| · |∂D|

=
1

2
‖x̃‖H(|∂C|+ |∂D|) 6 π‖x̃‖H(‖C‖+ ‖D‖).

Since the inequality holds true for any (C,D) ∈ ỹ, |V (x̃, ỹ)| 6 π‖x̃‖H‖ỹ‖BP .
By [16] we have ‖sx̃‖ = ‖sA− sB‖ 6 4

πdH(A,B) = 4
π‖x̃‖H . Therefore, |(x̃, ỹ)| 6

|2V (x̃, ỹ)|+ |〈sx̃, sỹ〉| 6 2π‖x̃‖H‖ỹ‖BP + 4
π‖x̃‖H‖ỹ‖H 6 (2π+ 4

π )‖x̃‖H‖ỹ‖BP . �

By Theorem 15.7 in [13] the function of mixed volume V is continuous on
(B(R2), dH)× (B(R2), dH). However, the following example shows that the exten-
sion of V is not continuous on (R̃2, ‖ · ‖H)× (R̃2, ‖ · ‖H) (compare Theorem 5.2.2
in [19]).

Example. Let An be a regular n-gon in R2 with the center in 0 and all sides of
the length equal to 1. Let Bn be the n-gon An rotated around 0 by the angle π

n .
The radius rn of the circle inscribed in An or Bn is 1

2tg(π/n) . The radius Rn of the
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circumscribed circle is 1
2 sin(π/n) . Denote x̃n = [An, Bn] ∈ R̃2. Then

V (x̃n, x̃n) = V (An, An)− 2V (An, Bn) + V (Bn, Bn)

= 2(V (An, An)− V (An, Bn))

= 2

(
1

2
nrn −

1

2
nRn

)
= n(rn −Rn).

We have ‖x̃n‖H = dH(An, An) = Rn − rn. Since Rn − rn tends to 0,

lim
n→∞

V (x̃n, x̃n)

‖x̃n‖2H
= lim
n→∞

−n
Rn − rn

= −∞

and the bilinear function V is not contnuous in 0.

Theorem 2 shows that the MRH space (R̃2, ‖ ·‖BP ) is basicly dual to the MRH
space (R̃2, ‖ · ‖H). Then the dual space to (R̃2, ‖ · ‖BP ) is double dual space to
(R̃2, ‖ · ‖H).

We can also provide the space R2 with the norm of Demyanov (see [6]) which
is stronger than Hausdorff norm but weaker than Bartels-Pallaschke norm. We do
not know what is the dual space to that space.

The unit ball in the space (X̃, ‖ · ‖H) has exactly two extreme points (see for
example [10]). What are extreme points of the unit ball in (X̃, ‖ · ‖BP ) is an open
question, even if we know extreme points in NBV [0, 1].

In Theorem 2 in general we can naturally replace the bilinear function by
(·, ·) : (R̃n, ‖ · ‖H)× (R̃n, ‖ · ‖BP ) −→ R defined by

(x̃, ỹ) = 2V (x̃, ỹ,B, . . . ,B︸ ︷︷ ︸
n−2

) + 〈sx̃, sỹ〉,

where B is the Euclidean unit ball in Rn. However, the theorem will no longer
hold true.
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