DUAL SPACE OF THE MINKOWSKI-RÅDSTRÖM-HÖRMANDER SPACE OVER \mathbb{R}^{2}
 Jerzy Grzybowski, Ryszard Urbański

Dedicated to Lech Drewnowski on the occasion of his 70th birthday

Abstract

Let X be a real normed vector space and $\mathcal{B}(X)$ be the cone of all nonempty bounded closed convex subsets of X. For $A, B, C, D \in \mathcal{B}(X)$ we have a relation of equivalence defined by $(A, B) \sim(C, D)$ if and only if $\overline{A+D}=\overline{B+C}$. By $[A, B]$ we denote the quotient class of (A, B). The quotient space $\widetilde{X}=\mathcal{B}^{2}(X) / \sim$ is a vector space called the Minkowski-Rådström-Hörmander space over X. For $\tilde{x}=[A, B] \in \tilde{X}$ we have the Hausdorff norm $\|\tilde{x}\|_{H}=d_{H}(A, B)=\inf \{\varepsilon>$ $0 \mid A \subset B+\varepsilon \mathbb{B}, B \subset A+\varepsilon \mathbb{B}\}$ where \mathbb{B} is the closed unit ball in X. We also define BartelsPallaschke norm $\|\tilde{x}\|_{B P}=\inf \{\|C\|+\|D\| \mid(C, D) \in[A, B]\}$, where $\|A\|=\sup _{a \in A}\|a\|$. In this paper we prove that the bilinear function $(\cdot, \cdot):\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right) \times\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{B P}\right) \longrightarrow \mathbb{R}$ defined by $(\tilde{x}, \tilde{y})=2 V(\tilde{x}, \tilde{y})+\langle s \tilde{x}, s \tilde{y}\rangle$, where $V(\tilde{x}, \tilde{y})$ is a generalized mixed volume and $s \tilde{x}$ is a generalized Steiner's point, satisfies the inequality $|(\tilde{x}, \tilde{y})| \leqslant(2 \pi+1)\|\tilde{x}\|_{H}\|\tilde{y}\|_{B P}$. We also prove that this bilinear function defines an isomorphic mapping between Banach spaces $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{B P}\right)$ and the dual space to $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right)$ (Theorem 2).

Keywords: Minkowski-Rådström-Hörmander spaces, extreme points, pairs of closed bounded convex sets.

Let X be a real Hausdorff topological vector space and $\mathcal{B}(X)$ be the cone of all nonempty bounded closed convex subsets of X. For $A, B, C, D \in \mathcal{B}(X)$ we have the Minkowski sum $A+B=\{a+b \mid a \in A, b \in B\}$ and a relation of equivalence defined by

$$
(A, B) \sim(C, D) \quad \text { if and only if } \quad \overline{A+D}=\overline{B+C}
$$

By $[A, B]$ we denote the quotient class of (A, B). The quotient space $\widetilde{X}=\mathcal{B}^{2}(X) / \sim$ is a vector space with the addition and multiplication by real numbers defined by $[A, B]+[C, D]=[\overline{A+C}, \overline{B+D}]$ and $\alpha \cdot[A, B]=\left[\alpha^{+} A+\alpha^{-} B, \alpha^{-} A+\alpha^{+} B\right]$. The space \widetilde{X} is called the Minkowski-Rådström-Hörmander (MRH) space over X [7].

The MRH space [11], [17] is very useful in studying bounded-valued correspondences [5], [7], in quasidifferential calculus [6], [15], [20] and in calculating Aumann-Integral [4]. The MRH spaces were studied also in a number of papers, for example [8], [18] and [21].

In 2007 A. Pełczyński posed a question what is the dual space to the MRH space over \mathbb{R}^{2}. In fact the dual space depends on the norm in the MRH space.

Let $(X,\|\cdot\|)$ be a normed space, $\tilde{x}=[A, B] \in \tilde{X}$. The norm in the MRH space over X can be introduce in two natural ways. Hausdorff's metric determines the following norm (see [17]): $\|\tilde{x}\|_{H}=d_{H}(A, B)=\inf \{\varepsilon>0 \mid A \subset B+\varepsilon \mathbb{B}, B \subset$ $A+\varepsilon \mathbb{B}\}$ where \mathbb{B} is the closed unit ball in X. We also define Bartels-Pallaschke norm $\|\tilde{x}\|_{B P}=\inf \{\|C\|+\|D\| \|(C, D) \in[A, B]\}$, where $\|A\|=\sup _{a \in A}\|a\|$. Bartels-Pallaschke norm [2] is related to the norm given in [3] defined in the space of differences of real sublinear functions by $\|f\|=\inf \{\max \{\|g\|,\|h\|\} \mid g-h=$ f, where g, h are sublinear $\}$. Bartels-Pallaschke norm seems almost as natural as Hausdorff norm. Notice that $\|\cdot\|_{H} \leqslant\|\cdot\|_{B P}$. The normed space $\left(\widetilde{X},\|\cdot\|_{H}\right)$ is not complete unless $\operatorname{dim} X=1$ but for Banach space X, Bartels-Pallaschke norm turns the space $\left(\widetilde{X},\|\cdot\|_{B P}\right)$ into Banach space.

Let $N B V[a, b]$ be the space of normalized real functions of bounded variation on the interval $[a, b]$, that is for $f \in N B V[a, b]$ we have $f(a)=0$ and $f(t)=$ $f\left(t^{+}\right)=\lim _{s \rightarrow t^{+}} f(s)$, for $t \in[a, b)$.

By f^{+}, f^{-}we denote the smallest nondecreasing functions in $N B V[a, b]$ such that $f=f^{+}-f^{-}$. The space $N B V[a, b]$ with the norm defined by $\|f\|=\operatorname{var}_{a}^{b} f=$ $f^{+}(b)+f^{-}(b)$ is a Banach space. Now we are ready to state our first theorem.

Theorem 1. There exists an isomorphic mapping between Banach spaces $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{B P}\right)$ and $N B V[0,2 \pi]$.

Before we point out to the isomorphic mapping we need some more notations and definitions.

For our convenience we denote $e^{i t}=(\cos t, \sin t) \in \mathbb{R}^{2}$. For $A \in \mathcal{B}\left(\mathbb{R}^{2}\right), u \in \mathbb{R}^{2}$ we define the support function $p_{A}: \mathbb{R}^{2} \ni x \longmapsto \max _{a \in A}\langle x, a\rangle \in \mathbb{R}$, where $\langle x, a\rangle$ is the inner product of x and a, the face $H_{\langle u,\rangle} A=\left\{a \in A \mid\langle u, a\rangle=p_{A}(u)\right\}$, the boundary function $h_{A}:[0,2 \pi] \longrightarrow \partial A$ by $h_{A}=H_{\left\langle e^{i\left(t+\frac{\pi}{2}\right)},\right\rangle}\left(H_{\left\langle e^{i t},\right\rangle} A\right)$. We also need the arc length function $f_{A}:[0,2 \pi] \longrightarrow \mathbb{R}_{+}$where $f_{A}(t)$ is the length of the arc contained in ∂A joining $h_{A}(0)$ and $h_{A}(t)$. The function f_{A} is a nondecreasing function in $N B V[0,2 \pi]$. Most of these notations come from [9].

Let $s A$ be the Steiner's point of A (see [19], p. 42), that is

$$
s A=\frac{1}{\pi} \int_{S^{1}} u p_{A}(u) d \mathcal{H}^{1}(u)=\frac{1}{\pi} \int_{0}^{2 \pi} e^{i t} p_{A}\left(e^{i t}\right) d t .
$$

For $u \in \mathbb{R}^{2}$ we define the auxiliary function $f_{u}:[0,2 \pi] \longrightarrow \mathbb{R}_{+}$by

$$
f_{u}(t)=\frac{\|u\|}{\pi}(\sin (t-\operatorname{Arg} u)+\sin (\operatorname{Arg} u))=\frac{e^{i t} \bar{u}-e^{-i t} u+u-\bar{u}}{2 \pi i}
$$

The following lemma is essential in the proof of Theorem 1:

Lemma 1. The mapping $k: \widetilde{\mathbb{R}^{2}} \longrightarrow N B V[0,2 \pi]$, where $k(\tilde{y})=f_{C}-f_{D}+f_{z}$, $\tilde{y}=[C, D], z=s C-s D$ is an 1-1 isomorphic mapping between vector spaces.

Proof. Since the functions $p_{C}-p_{D}$ and $f_{C}-f_{D}$ do not depend on the choice of representatives of \tilde{y} (see [9]), the mapping k is well defined and preserves the addition and the multiplication by scalars. In order to give the inverse mapping we need more definitions and facts.

In a manner of [9] for nondecreasing function $f \in N B V[0,2 \pi]$ we define the function $h_{f}:[0,2 \pi] \longrightarrow \mathbb{R}^{2}$ by $h_{f}(t)=\int_{0}^{t} e^{i\left(s+\frac{\pi}{2}\right)} d f(s)$, where the latter is the Stieltjes integer.

If $h_{f}(2 \pi)=0$ then we denote $A_{f}=\overline{\operatorname{conv}} h_{f}([0,2 \pi])$. Then $A_{f_{A}}=A-h_{A}(0)$ and $f_{A_{f}}=f$ (see [9]). If $h_{f}(2 \pi) \neq 0$ then there exists the unique function $g \in$ $N B V[0,2 \pi]$ such that g is nondecreasing, g takes exactly two values and $h_{g}(2 \pi)=$ $-h_{f}(2 \pi)$. Hence $h_{f+g}(2 \pi)=0$.

Let $f \in N B V[0,2 \pi]$ and $w=w(f)=\int_{0}^{2 \pi} e^{i t} d f(t)$. Then

$$
\begin{aligned}
\int_{0}^{2 \pi} e^{i\left(t+\frac{\pi}{2}\right)} d f_{w}(t) & =\int_{0}^{2 \pi} e^{i\left(t+\frac{\pi}{2}\right)} \frac{\|w\|}{\pi} \cos (t-\operatorname{Arg} w) d t \\
& =\frac{\|w\|}{\pi} \int_{0}^{2 \pi} e^{i\left(t+\frac{\pi}{2}\right)} \frac{e^{i(t-\operatorname{Arg} w)}+e^{-i(t-\operatorname{Arg} w)}}{2} d t \\
& =\frac{\|w\|}{2 \pi}\left(\int_{0}^{2 \pi} e^{i\left(\frac{\pi}{2}-\operatorname{Arg} w\right)} e^{i 2 t} d t+\int_{0}^{2 \pi} e^{i\left(\frac{\pi}{2}+\operatorname{Arg} w\right)} d t\right) \\
& =\frac{\|w\|}{2 \pi}\left(0+2 \pi e^{i\left(\frac{\pi}{2}+\operatorname{Arg} w\right)}\right)=e^{i \frac{\pi}{2}} w=\int_{0}^{2 \pi} e^{i\left(t+\frac{\pi}{2}\right)} d f(t)
\end{aligned}
$$

Hence $h_{\left(f-f_{w}\right)^{+}}(2 \pi)-h_{\left(f-f_{w}\right)^{-}}(2 \pi)=\int_{0}^{2 \pi} e^{i\left(t+\frac{\pi}{2}\right)} d\left(f-f_{w}\right)(t)=0$ and $h_{\left(f-f_{w}\right)^{+}}(2 \pi)=h_{\left(f-f_{w}\right)^{-}}(2 \pi)$.

Then there exists the unique function $g \in N B V[0,2 \pi]$ such that g is nondecreasing, g takes exactly two values and $h_{g}(2 \pi)=-h_{\left(f-f_{w}\right)^{+}}(2 \pi)$. Hence $h_{\left(f-f_{w}\right)^{+}+g}(2 \pi)=0$ and $h_{\left(f-f_{w}\right)^{-+g}}(2 \pi)=0$.

Let $E=A_{\left(f-f_{w}\right)^{+}+g}$ and $F=A_{\left(f-f_{w}\right)^{-+g}}$. Let us define the mapping l : $N B V[0,2 \pi] \longrightarrow \widetilde{\mathbb{R}^{2}}$ by $l(f)=[E-s E+w, F-s F]$.

Let $\tilde{y} \in \widetilde{\mathbb{R}^{2}}, \tilde{y}=[C, D]$. We can assume that (C, D) is a minimal pair (see [14], [9], [20] and [15]). We have $l(k(\tilde{y}))=l\left(f_{C}-f_{D}+f_{z}\right)$ where $z=s C-s D$.

Notice that

$$
\begin{aligned}
w & =\int_{0}^{2 \pi} e^{i t} d(k(\tilde{y}))(t)=\int_{0}^{2 \pi} e^{i t} d f_{C}(t)-\int_{0}^{2 \pi} e^{i t} d f_{D}(t)+\int_{0}^{2 \pi} e^{i t} d f_{z}(t) \\
& =e^{-i \frac{\pi}{2}} h_{f_{C}}(2 \pi)-e^{-i \frac{\pi}{2}} h_{f_{D}}(2 \pi)+\int_{0}^{2 \pi} \frac{\|z\|}{\pi} e^{i t} \cos (t-\operatorname{Arg} z) d t \\
& =0-0+z=z .
\end{aligned}
$$

Hence $k(\tilde{y})-f_{w}=f_{C}-f_{D}$. Since the pair (C, D) is minimal, the maximal nondecreasing function $g \in N B V[0,2 \pi]$ such that the functions $f_{C}-g, f_{D}-g$ are nondecreasing takes not more than two values [9].

Then $\left(f_{C}-f_{D}\right)^{+}=f_{C}-g$ and $\left(f_{C}-f_{D}\right)^{-}=f_{D}-g$. Hence $E=A_{\left(f_{C}-f_{D}\right)^{+}+g}=$ $A_{f_{C}}=C-h_{C}(0)$ and $F=A_{\left(f_{C}-f_{D}\right)^{-}+g}=A_{f_{D}}=D-h_{D}(0)$ (see [9]).

Therefore, $l(k(\tilde{y}))=[E-s E+w, F-s F]=[C-s C+z, D-s D]=[C, D]=\tilde{y}$.
Now, let $f \in N B V[0,2 \pi]$. Then $k(l(f))=k([E-s E+w, F-s F])$, where $E=A_{\left(\left(f-f_{w}\right)^{+}+g\right.}, F=A_{\left(f-f_{w}\right)^{-+g}}$ and $w=\int_{0}^{2 \pi} e^{i t} d f(t)$.

Hence $k(l(f))=f_{E-s E+w}-f_{F-s F}+f_{z}=f_{E}-f_{F}+f_{w}$ because $z=s(E-$ $s E+w)-s(F-s F)=w$.

Therefore, $k(l(f))=\left(f-f_{w}\right)^{+}+g-\left(f-f_{w}\right)^{-}-g+f_{w}=\left(f-f_{w}\right)+f_{w}=f$.

Proof of Theorem 1. By the Open Operator Theorem we need only to prove that k is continuous. For $\tilde{y}=[C, D], z=s C-s D$ we have

$$
\begin{aligned}
\|k(\tilde{y})\| & =\left\|f_{C}-f_{D}+f_{z}\right\| \leqslant f_{C}(2 \pi)+f_{D}(2 \pi)+\left\|f_{z}\right\| \\
& =|\partial C|+|\partial D|+4 \frac{\|z\|}{\pi} \leqslant 2 \pi\|C\|+2 \pi\|D\|+4 \frac{\|s C\|+\|s D\|}{\pi} \\
& \leqslant\left(2 \pi+\frac{4}{\pi}\right)(\|C\|+\|D\|),
\end{aligned}
$$

where $|\partial A|$ is the length of the boundary ∂A.
Since these inequalities hold true for any pair $(C, D) \in \tilde{y}$ then $\|k(\tilde{y})\| \leqslant\left(2 \pi+\frac{4}{\pi}\right)$ $\|\tilde{y}\|_{B P}$.

The proof of Theorem 1 is completed. However, we can estimate the norm of the operator l. For $f \in N B V[0,2 \pi]$ we have

$$
\begin{aligned}
\|l(f)\|_{B P} & \leqslant\|E-s E+w\|+\|F-s F\| \\
& \leqslant \frac{1}{2}\left|\partial A_{\left(f-f_{w}\right)^{+}+g}\right|+\|w\|+\frac{1}{2}\left|\partial A_{\left(f-f_{w}\right)^{-}+g}\right| \\
& \leqslant \frac{1}{2}\left(\left(f-f_{w}\right)^{+}+g\right)(2 \pi)+\frac{1}{2}\left(\left(f-f_{w}\right)^{-}+g\right)(2 \pi)+\|w\| \\
& \leqslant\left(f-f_{w}\right)^{+}(2 \pi)+\left(f-f_{w}\right)^{-}(2 \pi)+\|w\| \leqslant\left\|f-f_{w}\right\|+\|w\| \\
& \leqslant\|f\|+\left\|f_{w}\right\|+\|w\|=\|f\|+\frac{4\|w\|}{\pi}+\|w\| \\
& \leqslant\|f\|+\left(\frac{4}{\pi}+1\right)\left\|\int_{0}^{2 \pi} e^{i t} d f(t)\right\| \leqslant\|f\|+\left(\frac{4}{\pi}+1\right)\|f\| \\
& =\left(2+\frac{4}{\pi}\right)\|f\| .
\end{aligned}
$$

If the norm in \mathbb{R}^{2} is not Euclidean then the inequalities above hold true with different constants.

Knowing that the MRH space $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{B P}\right)$ and the space $N B V[0,2 \pi]$ are isomorphic we see that the dual to MRH space $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{B P}\right)$ and the dual to the space $N B V[0,2 \pi]$ are also isomorphic. The dual to the space $N B V[0,2 \pi]$ is described for example in [1].

Let $V: \mathcal{B}^{2}\left(\mathbb{R}^{2}\right) \longrightarrow \mathbb{R}_{+}$be the mixed volume (see Theorem 5.1.6 in [19]). The function V can be extended to the bilinear function on $\left(\mathbb{R}^{2}\right)^{2}$ (see [22]) by $V(\tilde{x}, \tilde{y})=V(A, C)-V(A, D)-V(B, C)+V(B, D)$, where $\tilde{x}=[A, B], \tilde{y}=[C, D]$. Also the function $s: \mathcal{B}\left(\mathbb{R}^{2}\right) \longrightarrow \mathbb{R}^{2}$, where $s A$ is the Steiner's point of A can be extended to the linear function on $\widetilde{\mathbb{R}^{2}}$ by $s \tilde{x}=s A-s B$.

Theorem 2. The function $(\cdot, \cdot):\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right) \times\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{B P}\right) \longrightarrow \mathbb{R}$ defined by $(\tilde{x}, \tilde{y})=2 V(\tilde{x}, \tilde{y})+\langle s \tilde{x}, s \tilde{y}\rangle$ is bilinear and continuous. Moreover, the space of linear functions $\left\{(\cdot, \tilde{y}) \mid \tilde{y} \in \widetilde{\mathbb{R}^{2}}\right\}$ is dual to $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right)$.

Proof. Let $C[0,2 \pi]$ be the space of all continuous functions on $[0,2 \pi]$ and let $C_{0}[0,2 \pi]=\{q \in C[0,2 \pi] \mid q(0)=q(2 \pi)\}$. The bilinear function $(\cdot, \cdot): C[0,2 \pi] \times$ $N B V[0,2 \pi] \longrightarrow \mathbb{R}$ defined by $(q, f)=\int_{0}^{2 \pi} q(t) d f(t)$ establishes duality of $N B V[0,2 \pi]$ to $C[0,2 \pi]$ (see the theorem of Riesz in [12], 17.7.4) and to $C_{0}[0,2 \pi]$.

All the functions $t \longmapsto\left(p_{A}-p_{B}\right)\left(e^{i t}\right)$, where $A, B \in \mathcal{B}\left(\mathbb{R}^{2}\right)$, form a dense subspace of $C_{0}[0,2 \pi]$. Since k is an isomorphic mapping then the space of functions $\left\{\widetilde{\mathbb{R}^{2}} \ni \tilde{x} \longmapsto \int_{0}^{2 \pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right) d(k(\tilde{y}))(t) \in \mathbb{R} \mid \tilde{y} \in \widetilde{\mathbb{R}^{2}}\right\}, \tilde{x}=[A, B]$, is the space of all continuous linear functions on $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right)$.

Let $\tilde{x}, \tilde{y} \in \widetilde{\mathbb{R}^{2}}, \tilde{x}=[A, B], \tilde{y}=[C, D], z=s \tilde{y}$. By the formulas 1.7.3 and 5.1.15 in [19],

$$
s A=\frac{1}{\pi} \int_{0}^{2 \pi} p_{A}\left(e^{i t}\right) e^{i t} d t, \quad V(A, C)=\frac{1}{2} \int_{0}^{2 \pi} p_{A}\left(e^{i t}\right) d f_{C}(t)
$$

Then

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right) d(k(\tilde{y}))(t) \\
&= \int_{0}^{2 \pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right) d f_{C}(t)-\int_{0}^{2 \pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right) d f_{D}(t) \\
&+\int_{0}^{2 \pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right) d f_{z}(t) \\
&= 2 V(A, C)-2 V(A, D)-2 V(B, C)+2 V(B, D) \\
&+\int_{0}^{2 \pi} \frac{\|z\|}{\pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right) \cos (t-\operatorname{Arg} z) d t \\
&= 2 V(\tilde{x}, \tilde{y})+\int_{0}^{2 \pi} \frac{\|z\|}{\pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right)\left\langle e^{i t}, e^{i \operatorname{Arg} z}\right\rangle d t \\
&= 2 V(\tilde{x}, \tilde{y})+\frac{1}{\pi} \int_{0}^{2 \pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right)\left\langle e^{i t}, z\right\rangle d t \\
&= 2 V(\tilde{x}, \tilde{y})+\left\langle\frac{1}{\pi} \int_{0}^{2 \pi} p_{A}\left(e^{i t}\right) e^{i t} d t-\frac{1}{\pi} \int_{0}^{2 \pi} p_{B}\left(e^{i t}\right) e^{i t} d t, z\right\rangle \\
&= 2 V(\tilde{x}, \tilde{y})+\langle s A-s B, s C-s D\rangle=2 V(\tilde{x}, \tilde{y})+\langle\tilde{x}, \tilde{y}\rangle .
\end{aligned}
$$

Let us notice that

$$
\begin{aligned}
|V(\tilde{x}, \tilde{y})| & \leqslant\left|\frac{1}{2} \int_{0}^{2 \pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right) d f_{C}(t)\right|+\left|\frac{1}{2} \int_{0}^{2 \pi}\left(p_{A}-p_{B}\right)\left(e^{i t}\right) d f_{D}(t)\right| \\
& \leqslant \frac{1}{2} \sup _{u \in S^{1}}\left|\left(p_{A}-p_{B}\right)(u)\right| \cdot|\partial C|+\frac{1}{2} \sup _{u \in S^{1}}\left|\left(p_{A}-p_{B}\right)(u)\right| \cdot|\partial D| \\
& =\frac{1}{2}\|\tilde{x}\|_{H}(|\partial C|+|\partial D|) \leqslant \pi\|\tilde{x}\|_{H}(\|C\|+\|D\|) .
\end{aligned}
$$

Since the inequality holds true for any $(C, D) \in \tilde{y},|V(\tilde{x}, \tilde{y})| \leqslant \pi\|\tilde{x}\|_{H}\|\tilde{y}\|_{B P}$. By [16] we have $\|s \tilde{x}\|=\|s A-s B\| \leqslant \frac{4}{\pi} d_{H}(A, B)=\frac{4}{\pi}\|\tilde{x}\|_{H}$. Therefore, $|(\tilde{x}, \tilde{y})| \leqslant$ $|2 V(\tilde{x}, \tilde{y})|+|\langle s \tilde{x}, s \tilde{y}\rangle| \leqslant 2 \pi\|\tilde{x}\|_{H}\|\tilde{y}\|_{B P}+\frac{4}{\pi}\|\tilde{x}\|_{H}\|\tilde{y}\|_{H} \leqslant\left(2 \pi+\frac{4}{\pi}\right)\|\tilde{x}\|_{H}\|\tilde{y}\|_{B P}$.

By Theorem 15.7 in [13] the function of mixed volume V is continuous on $\left(\mathcal{B}\left(\mathbb{R}^{2}\right), d_{H}\right) \times\left(\mathcal{B}\left(\mathbb{R}^{2}\right), d_{H}\right)$. However, the following example shows that the extension of V is not continuous on $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right) \times\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right)$ (compare Theorem 5.2.2 in [19]).

Example. Let A_{n} be a regular n-gon in \mathbb{R}^{2} with the center in 0 and all sides of the length equal to 1 . Let B_{n} be the n-gon A_{n} rotated around 0 by the angle $\frac{\pi}{n}$. The radius r_{n} of the circle inscribed in A_{n} or B_{n} is $\frac{1}{2 \operatorname{tg}(\pi / n)}$. The radius R_{n} of the
circumscribed circle is $\frac{1}{2 \sin (\pi / n)}$. Denote $\tilde{x}_{n}=\left[A_{n}, B_{n}\right] \in \widetilde{\mathbb{R}^{2}}$. Then

$$
\begin{aligned}
V\left(\tilde{x}_{n}, \tilde{x}_{n}\right) & =V\left(A_{n}, A_{n}\right)-2 V\left(A_{n}, B_{n}\right)+V\left(B_{n}, B_{n}\right) \\
& =2\left(V\left(A_{n}, A_{n}\right)-V\left(A_{n}, B_{n}\right)\right) \\
& =2\left(\frac{1}{2} n r_{n}-\frac{1}{2} n R_{n}\right)=n\left(r_{n}-R_{n}\right) .
\end{aligned}
$$

We have $\left\|\tilde{x}_{n}\right\|_{H}=d_{H}\left(A_{n}, A_{n}\right)=R_{n}-r_{n}$. Since $R_{n}-r_{n}$ tends to 0 ,

$$
\lim _{n \rightarrow \infty} \frac{V\left(\tilde{x}_{n}, \tilde{x}_{n}\right)}{\left\|\tilde{x}_{n}\right\|_{H}^{2}}=\lim _{n \rightarrow \infty} \frac{-n}{R_{n}-r_{n}}=-\infty
$$

and the bilinear function V is not contnuous in 0 .
Theorem 2 shows that the MRH space $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{B P}\right)$ is basicly dual to the MRH space $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right)$. Then the dual space to $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{B P}\right)$ is double dual space to $\left(\widetilde{\mathbb{R}^{2}},\|\cdot\|_{H}\right)$.

We can also provide the space \mathbb{R}^{2} with the norm of Demyanov (see [6]) which is stronger than Hausdorff norm but weaker than Bartels-Pallaschke norm. We do not know what is the dual space to that space.

The unit ball in the space $\left(\widetilde{X},\|\cdot\|_{H}\right)$ has exactly two extreme points (see for example [10]). What are extreme points of the unit ball in $\left(\widetilde{X},\|\cdot\|_{B P}\right)$ is an open question, even if we know extreme points in $N B V[0,1]$.

In Theorem 2 in general we can naturally replace the bilinear function by $(\cdot, \cdot):\left(\widetilde{\mathbb{R}^{n}},\|\cdot\|_{H}\right) \times\left(\widetilde{\mathbb{R}^{n}},\|\cdot\|_{B P}\right) \longrightarrow \mathbb{R}$ defined by

$$
(\tilde{x}, \tilde{y})=2 V(\tilde{x}, \tilde{y}, \underbrace{\mathbb{B}, \ldots, \mathbb{B}}_{n-2})+\langle s \tilde{x}, s \tilde{y}\rangle,
$$

where \mathbb{B} is the Euclidean unit ball in \mathbb{R}^{n}. However, the theorem will no longer hold true.

References

[1] A.P. Artemenko, Obshchiy vid lineynogo funkcionala v prostanstve funkciy ogranichennoy variacii, Mat. Sbornik 6(48) (1939), no. 2, 215-219.
[2] S.G. Bartels and D. Pallaschke, Some remarks on the space of differences of sublinear functions, Applicationes Mathematicae 22 (1993), 419-426.
[3] U. Cegrell, On the space of delta-convex functions and its dual, Bul. Math. de la Soc. Math. de la R.S. de Roumaine 22 (1978), 133-139.
[4] F.H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley Pub. Comp. New York, 1983.
[5] G. Debreu, Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, Berkeley and Los Angeles, Univ. of California Press vol. 2, part 1 (1967), 351-372.
[6] V.F. Demyanov and A.M. Rubinov, Quasidifferentiability and Related Topics, Nonconvex Optimization and its Applications, Kluwer Academic. Publisher, Dortrecht-Boston-London, 2001.
[7] L. Drewnowski, Additive and countably additive correspondences, Comment. Math. 19 (1976), 25-54.
[8] P. Goossens, Completeness of Spaces of Closed Bounded Convex Sets, J. Math. Anal. Appl. 115(1) (1986), 192-201.
[9] J. Grzybowski, Minimal pairs of compact sets, Arch. Math. 63 (1994), 173181.
[10] J. Grzybowski and R. Urbański, Extreme points of lattice intervals in the Minkowski-Rådrtöm-Hörmander lattice, Proc. Amer. Math. Soc. 136(11) (2008), 3957-3962.
[11] L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv för Mathematik 3 (1954), 181-186.
[12] G. Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin-HeidelbergNew York, 1983.
[13] K. Leichtweiß, Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.
[14] D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of convex compact sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5.
[15] D. Pallaschke, R. Urbański, Pairs of Compact Convex Sets, Fractional Arithmetic with Convex Sets, Mathematics and Its Applications, Kluwer Academic Publisher, Dortrecht-Boston-London, 2002.
[16] K. Przesławski, Linear and Lipschitz continuous selectors for the family of convex sets in Euclidean vector spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 31-33.
[17] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[18] P. Praksash and M. R. Sertel, Hyperspaces of topological vector spaces: their embedding in topological vector spaces, Proc. Amer. Math. Soc. 61 (1976), 163-168.
[19] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, Vol. 44, Cambridge University Press, Cambridge, 1993.
[20] S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273.
[21] R. Urbański, A generalization of the Minkowski-Rådström-Hörmander theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709-715.
[22] W. Weil, Über den Vektorraum der Differenzen von Stützfunktionen konvexer Körper, Math. Nachr. 59 (1974), 353-369.

Address: Jerzy Grzybowski and Ryszard Urbański: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland.
E-mail: jgrz@amu.edu.pl, rich@amu.edu.pl
Received: 7 May 2013; revised: 26 September 2013

