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ON FUNCTIONS THAT ARE BDS-INTEGRABLE OVER
CONVEXLY BOUNDED VECTOR MEASURES

Iwo Labuda

Dedicated to Lech Drewnowski on
the occasion of his 70th birthday

Abstract: Spaces of scalar functions that are integrable in the sense of Bartle-Dunford-Schwartz
integration, with respect to a convexly bounded vector measure µ, are studied.

For instance, under the assumption that the range space X of µ is sequentially complete,
the effect of the Orlicz-Pettis property (with respect to a weaker topology on X) on the size of
L1(µ) is investigated. Some completeness properties of the space L1

•(µ) of ‘scalarly integrable
functions’ are established for general X.
Keywords: convexly bounded vector measure, Bartle-Dunford-Schwartz integration, spaces of
integrable functions, σ-Lebesgue property, σ-Levi property.

1. Introduction

A vector measure is a countably additive set function defined on a σ-algebra, say
A, of subsets of a set T and taking values in a topological vector space, say X.
We shall say that it is bounded (resp., convex ly bounded) if its range (resp., the
convex hull of its range) is bounded.

A recent article on the theory of BDS-integral of scalar functions integrated
with respect to general convexly bounded measures to which we refer is [2]. The
adjective ‘general’ means, in this case, that in [2] the measures were taking values
in a topological vector space X under the only assumption that X was sequentially
complete.

The present paper is an addendum to that article. There are at least two
reasons to publish it. First, there were a few topics that, while worth studying, did
not make it into [2] for reasons of space (the journal to which [2] was submitted
limits the size of the papers). These topics include some consequences of the
Orlicz-Pettis property as well as a formula concerning the integration against the
indefinite integrals. Secondly, even though a sequentially complete Hausdorff tvs
is a truly general object, there are situations where the assumption of sequential
completeness is not convenient. For instance, this is the case when X is a locally
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convex space equipped with its weak topology or weak* topology. Some number of
completeness type results about the ‘spaces of scalarly integrable functions’ L1

•(µ),
results which persist without any completeness assumption on the space X, are
given.

Needless to say that, in view of the remarks above, some of the results presented
here will be familiar to the co-author of [2] whose jubilee is honored in the present
special volume of ‘Functiones et Approximatio’. This is an additional reason,
besides the memory of our life-long mathematical interactions, for which the paper
is dedicated to Lech with affection.

2. Vector measures and the space L0(µ) of measurable functions

Throughout, let X = (X, τ) be a tvs (i.e., a Hausdorff topological vector space)
and let
• U denote any base of balanced neighborhoods for 0 in X, and
• Fs(X) denote any base of continuous F -seminorms on X.
We recall that X is embedded as a dense subspace in its (vector topological)

completion X̂. The topology τ̂ of X̂ is generated by the base Û whose generic
member Û is obtained as the closure U of the corresponding neighborhood U
in X̂. Similarly, Fs(X̂) is obtained extending the F -seminorms from Fs(X) by
continuity onto X̂.

Here is some terminology and notation from [2]. Let A be a σ-algebra of
subsets of a set T , and µ : A → X be a vector measure. The triple (T,A, µ) is
called a vector measure space.

A set A ∈ A is said to be µ-null if µ(B) = 0 for any B ∈ A contained in A.
Of course, the family N (µ) of all µ-null sets is a σ-ideal in A. Given a continuous
F -seminorm | · | on X, we denote by |µ|∗ the submeasure majorant for µ with
respect to | · |; it is defined by the formula |µ|∗(A) = sup{|µ(B)| : B ∈ A, B ⊂ A}
for A ∈ A. It is known that |µ|∗ is order continuous (i.e., |µ|∗(An)→ ∅ whenever
An ↓ 0), hence it is also σ-subadditive. Evidently, a set A ∈ A is µ-null iff
|µ|∗(A) = 0 for each | · | ∈ Fs(X).

For the real-valued and, more generally, extended real-valued functions on T ,
we use the following terminology. Two such functions, say f and g, are said to be
µ-equivalent (or equal µ-a.e.) if there is a µ-null set N such that f = g on T rN .
A function f : T → R is called µ-simple (resp., µ-measurable) if it is µ-equivalent
to an A-simple (resp., A-measurable) real valued function. The class of all µ-
measurable functions is stable under the µ-a.e. convergence (i.e., the pointwise
convergence outside a µ-null set) of sequences.

We denote by L0(µ) the vector space of all µ-measurable real functions on T , by
L∞(µ) its subspace of µ-essentially bounded functions, and by S(µ) the subspace
of the latter consisting of µ-simple functions. Actually, we usually identify func-
tions that are equal µ-a.e., and consider these spaces as consisting of µ-equivalence
classes of functions. But, in practice, we work with the most convenient represen-
tatives of such classes. In particular, when we consider an f ∈ L0(µ), we always
assume that it is (represented by) a finite A-measurable function.
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Treated this way, L0(µ) is a Dedekind σ-complete and laterally σ-complete
vector lattice, L∞(µ) is a solid subspace of L0(µ) and a Banach space under the
norm ‖·‖∞ of µ-essential supremum, and S(µ) is a dense subspace of L∞(µ).

In what follows,

B∞(µ) = the closed unit ball of L∞(µ) and S∞(µ) = B∞(µ) ∩ S(µ).

A natural topology in L0(µ) is the Hausdorff vector topology τ0 = τ0(µ) of
convergence in measure µ. It has a base for the neighborhoods of zero consisting
of the sets

{f ∈ L0(µ) : |µ|∗({t ∈ T : |f(t)| > ε}) 6 ε},
where | · | ∈ Fs(X) and ε > 0. Alternatively, τ0 is defined by the F -seminorms | · |0,
where |f |0 = inf

{
ε > 0 : |µ|∗({t ∈ T : |f(t)| > ε}) 6 ε} and | · | ∈ Fs(X). Unless

stated otherwise, the space L0(µ) is always considered with the topology τ0.
Evidently, if (fn) is a sequence in L0(µ), then fn → 0 (τ0), written also as

fn → 0 (µ), iff limn |µ|∗({t ∈ T : |fn(t)| > ε}) = 0 for all ε > 0 and | · | ∈ Fs(X).
Furthermore, if fn → 0 µ-a.e., then fn → 0 (µ).

A vector measure space (T,A, µ), or the vector measure µ itself, is of type
(C) (resp. (SC)) if the corresponding space L0(µ) is complete (resp. sequentially
complete).

Theorem 2.1. For a vector measure space (T,A, µ), the following are equivalent.
(a) µ is of type (C).
(b) L0(µ) is a universally complete Lebesgue Levi topological vector lattice.

Moreover, if this is the case, L0(µ) has the countable sup property iff it is metriz-
able.

A vector measure µ is said to satisfy the countable chain condition, (ccc), if
every family of disjoint sets from A \ Nµ is at most countable.

Theorem 2.2. The following conditions are equivalent.
(a) The measure µ satisfies (ccc).
(b) There exists an F -normed space Y = (Y, | · |), and a continuous linear map

h : X → Y such that Nµ = Nh◦µ.
(c) L0(µ) is an F -lattice.

Let τ ′ be another Hausdorff vector topology on X. We say that τ -subseries
convergence is contained in τ ′-subseries convergence, if every series that is subseries
convergent in (X, τ) is also subseries convergent in (X, τ ′). If µ satisfies (ccc)
when treated as a vector measure into (X, τ ′), then it satisfies (ccc). We quote
the following result.

Corollary 2.3. Suppose X admits a metrizable topology τ ′ such that τ -subseries
convergence is contained in τ ′-subseries convergence. Then L0(µ) is a Dedekind
complete F -lattice with the countable sup property.

The reference for all undefined terms, notions and results given without proofs
is [2].
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3. BDS-integrable functions

Let A be a σ-algebra of subsets of a set T and let µ : A → X be a vector measure
space. A function f ∈ L0(µ) is said to be BDS -integrable (or µ-integrable) if there
exists a sequence (fn) of simple functions such that fn → f µ-a.e. and, for each
A ∈ A, limn

∫
A
fn dµ exists in X. Then, by definition,∫

A

f dµ = lim
n→∞

∫
A

fn dµ.

As already mentioned, one of the global assumptions in [2] was that the space
X was sequentially complete. It is clear, however, that the above definition does
not require any completeness condition on X. Moreover, a quick look at the
arguments used in [2] reveals that the correctness of the definition is not affected,
and that the indefinite integral µf is a vector measure on A.

3.A. Special case: X is sequentially complete

In this section, as in [2], X = (X, τ) is a Hausdorff topological vector space which
is sequentially complete, and µ : A → X is convexly bounded.

Let ρ, ρ ⊂ τ , be another Hausdorff vector topology on X. Denote by ρ -L1(µ)
the space of functions that are (BDS) integrable with respect to µ : A → (X, ρ).

Theorem 3.1. Suppose τ has the OP-property with respect to ρ, i.e., ρ-subseries
convergent series are τ -convergent. Then ρ-L1(µ) = L1(µ).

Proof. It is clear that L1(µ) is contained in ρ -L1(µ). Let f ∈ L0(µ) be BDS-
integrable with respect to µ : A → (X, ρ). Then µf is a ρ-measure by the Nikodym
Theorem, and therefore also a τ -measure by the assumed OP-property. Let (En)
be a disjoint partition of T such that f |En is bounded for each n ∈ N. Then
the integrals τ -

∫
En
f dµ exist and coincide with ρ -

∫
En
f dµ. Further, the series∑

n

∫
A
fχEn dµ τ -converges for each A ∈ A. Hence f ∈ L1(µ) by Remark 3.3(3)

in [2]. �

Assume additionally that X possesses a vector space X ′ of continuous linear
functionals on X that separate the points of X. We will say that f ∈ L0(µ) is
X ′-weakly integrable if for each A ∈ A there exists xA ∈ X such that

〈xA, x′〉 =

∫
A

f d〈µ, x′〉

for all x′ ∈ X ′.
Here 〈µ, x′〉 = µ ◦ x′ : A → X. If X ′ is understood, we write xA = weak-∫

A
f dµ; xT = weak-

∫
f d〈µ, x′〉, and the space of all such functions is denoted by

weak-L1(µ).

Proposition 3.2. Suppose τ has the OP-property with respect to σ = σ(X,X ′).
Then L1(µ) = σ-L1(µ) = weak-L1(µ).
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Proof. In view of the previous Proposition, it is sufficient to show that the first
and the third L1 are equal. But, by its very definition, the weak integral of f ,
as a set function on A, is a σ(X,X ′)-countably additive measure into X. Hence
f ∈ L1(µ) by the same argument as in the previous proposition. �

Let us recall how the space L1
◦(µ), the largest vector subspace of L1(µ) which

is a solid subset of L0(µ), was introduced. For each f ∈ L0(µ), we put

N(f) = {g ∈ L0(µ) : |g| 6 |f | µ-a.e.} = {fh : h ∈ B∞(µ)},

and L1
◦(µ) was the set of all f ∈ L1(µ) such that N(f) ⊂ L1(µ).

The first theorem characterizing L1
◦(µ) was the following

Theorem 3.3. If f ∈ L1
◦(µ), then

(a) the indefinite integrals
∫
g dµ are equi-exhaustive for g ∈ N(f);

(b) for g ∈ N(f), the operators h →
∫
T
gh dµ from L∞(µ) to X, and the

operators h→
∫
gh dµ from L∞(µ) to cbca(A, X), are equi-continuous;

(c) the indefinite integral µf of f is convexly bounded and∫
T

fh dµ =

∫
T

h dµf for all h ∈ L∞(µ). (+)

Conversely, if f ∈ L1(µ) and µf is convexly bounded, then f ∈ L1
◦(µ).

We are interested in an extension of the integration formula (+) of the above
Theorem 3.3 (c). It will give us the formula for the integration against the indefinite
integrals.

Since this has some delicate points, we precede it with a preliminary discussion.
Recall that N (µ) ⊂ N (µf ) for each f ∈ L1(µ).

Lemma 3.4. Let f ∈ L1
◦(µ), and let g be a µf -measurable function on T . Then

fg is a µ-measurable function on T . If, moreover, g = 0 µf -a.e., then fg = 0
µ-a.e.

Proof. By assumption, there is a µf -null set N1 such that g|(T r N1) is A-
measurable. Then, by Proposition 3.5 of [2], f = 0 µ-a.e. on N1 so that there is
a µ-null set N2 ⊂ N1 such that f = 0 on N1 rN2. Since f is µ-measurable, there
is a µ-null set N3 containing N2 such that f |(T rN3) is A-measurable. Then fg
is obviously A-measurable on T r (N1∪N3) as well as on N1rN2 because on that
set fg = 0. Thus, denoting by E the union of these two sets, we see that E ∈ A
and that fg is A-measurable on E. Since T rE = N2 ∪ (N3 rN1) ∈ N (µ), fg is
µ-measurable.

To verify the other assertion simply note that if g = 0 µf -a.e., then in the
argument above one can choose the set N1 ∈ N (µf ) so that g = 0 on T r N1.
In consequence, fg = 0 on E. �
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Theorem 3.5. Let f ∈ L1
◦(µ), and let g be a µf -measurable function on T . Then

fg is µ-integrable iff g is µf -integrable, and in this case∫
A

fg dµ =

∫
A

g dµf for all A ∈ A.

Moreover, if g ∈ L1
◦(µf ), then fg ∈ L1

◦(µ).

Proof. There is a µf -null set N such that g|(T rN) is A-measurable. Note that
replacing g with gχTrN will make no effect on the existence and equality of the
integrals involved. Therefore, we may assume that g is A-measurable. Fix an
increasing sequence (En) with union T such that g is bounded on each of the
sets En. Then, by Theorem 3.3 (c), for each A ∈ A one has∫

A

fgχEn dµ =

∫
A

gχEn dµf .

Since En ↑ T , the µ-integrability of fg or the µf -integrability of g imply that
both the integrals in the last displayed formula converge in X for each A ∈ A as
n→∞. To finish, apply Theorem 3.7 of [2].

The ‘moreover’ part is an obvious consequence of the first part. �

Corollary 3.6. Let f ∈ L1
◦(µ). Then the map g → fg is a well-defined continuous

injective linear operator from L1(µf ) into L1(µ) and from L1
◦(µf ) into L1

◦(µ). In
fact, for each | · | ∈ Fs(X) one has |fg|1 = |g|1 and |fg|1◦ = |g|1◦, respectively.

Question 3.7. If g ∈ L1
◦(µ) is such that fg ∈ L1

◦(µ) for all f ∈ L1
◦(µ), does then

g ∈ L∞(µ)? This is not always true, but maybe it is true under the assumption
that X contains no copy of the space ω = RN?

3.B. General case: X is arbitrary

The setting in this section does not change except for the fact that we do not
assume anymore that X is sequentially τ -complete.

For every f ∈ L0(µ), let us set

N◦◦(f) = {g ∈ S(µ) : |g| 6 |f |} and M◦◦(f) =
{∫

T

g dµ : g ∈ N◦◦(f)
}
.

We denote by τ• the translation invariant topology on L0(µ) for which a neigh-
borhood base at zero is formed by the sets

{f ∈ L0(µ) : M◦◦(f) ⊂ U} (U ∈ U)

where U is a neighborhood base at zero for τ . It is determined by the FG-
seminorms µ•i associated with the F -seminorms {| . |i : i ∈ I} = Fs(X) via the
formula

µ•i (f) = sup
{∣∣∣ ∫

T

g dµ
∣∣∣
i

: g ∈ N◦◦(f)
}
.
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Consider L0(A, µ,X) corresponding to µ : A → X and, then, consider µ into
the completion X̂ together with its L0(A, µ, X̂). In view of our definitions, these
two spaces are clearly identical, so we will use the previously used symbol L0(µ).
Let | · | be a continuous F -seminorm on X, and | · |̂ be its extension on X̂. Working
for a moment with X̂, let us note that it was already observed in Section 5 of [2]
(in which L1

•(µ) was introduced) that we have the identity µ• = | . |0• when these
two FG-seminorms are defined using | · |̂ . But on the integrals of simple functions
the F -seminorm | . |̂ reduces to | · |. It follows that we have

Proposition 3.8. (L0(µ), µ•) = (L0(µ), | . |0•), where the first FG-seminorm was
calculated for µ : A → X and the second for µ : A → X̂. In particular,
(L0(µ), τ•) = (L0(µ), τ0

• ).

As a consequence, the results about spaces of BDS-integrable functions ob-
tained in Section 5 of [2] apply in the present setting although no completeness
assumption was imposed on X. Let us spell out a few that may be of interest in
the present context.

Proposition 3.9. The topology τ• is stronger than τ0.

Proof. Indeed, this is true by Prop 5.4 of [2] on the right of our equation in 3.8. �

Let us denote by L1
•(µ) the largest vector subspace (in fact, an ideal) in L0(µ)

on which τ• is a vector topology (in fact, a vector lattice topology). It consists of
precisely those f ∈ L0(µ) for which the setM◦◦(f) is bounded in X. Alternatively,

L1
•(µ) =

{
f ∈ L0(µ) : lim

n
µ•i

( 1

n
f
)

= 0

}
for each basic F -seminorm. We may use the same notation as in [2], because in
the situation discussed there L1

•(µ) is the same here and there.
In view of Prop. 5.5 in [2], we have

Proposition 3.10. (L0(µ), τ•) has the σ-Fatou property, that is, for every con-
tinuous F -seminorm | · | on X, if 0 6 fn ↑ f in L0(µ), then µ•(fn) → µ•(f).
Moreover, if fn → f µ-a.e. in L0(µ), then µ•(f) 6 lim infn µ

•(fn). The same
holds when fn → f in measure µ.

The following corresponds to Theorem 5.8 of [2].

Theorem 3.11. L1
•(µ) has the σ-Levi property.

Theorem 3.12. If µ is of type (SC), then (L0(µ), τ•) and L1
•(µ) are sequentially

complete. If µ satisfies (ccc), then L1
•(µ) is Fatou Levi and complete. In particular,

if X is an F -space, then (L0(µ), | · |0•) is a complete metric vector lattice-group and,
consequently, L1

•(µ) is an F -lattice.



158 Iwo Labuda

Let us provide a proof, although it is very similar to the one of Prop. 5.6 in [2].

Proof. By Proposition 3.10, τ• has a base of sequentially τ0-closed neighborhoods
of zero. Since τ• > τ0 (Proposition 3.9), the sequential τ•-completeness of L0(µ)
follows. To see the same for L1

•(µ), observe that L1
•(µ), as the largest vector

subspace on which τ• is a vector topology, is τ•-closed.
If µ satisfies (ccc), L0(µ) has the countable sup property and µ is of type (C)

(see Theorem 2.1 and Theorem 2.2). Hence, L1
•(µ) has the countable sup property

and so it is Fatou. It also is Levi. To see it, let (fα) be an increasing positive
bounded net in L1

•(µ). Considering this net in L0(µ) and taking advantage of
the fact that the latter space has the Levi property by Theorem 2.1, we find its
supremum f in L0(µ). By the countable sup property, we can find a subsequence
(fαn) such that fαn ↑ f . The σ-Levi property of L1

•(µ), Theorem 3.11, locates f
in that space. Hence L1

•(µ) is indeed Levi. The completeness of L1
•(µ) now follows

from the Nakano Theorem [1, Theorem 4.37]. �

As above, let X ′ be a separating space of linear continuous functionals on X.
We say that f ∈ L0(µ) is X ′-scalarly integrable (resp. scalarly integrable when
X ′ is understood) if

∫
f d < µ, x′ > exists for each x′ ∈ X ′.

Remark 3.13. Note that for the scalar measure µ ◦ x′ : A → R its semivariation
equals its total variation and if | < µ, x′ > | denotes the total variation, then∫
f d < µ, x′ > exists iff

∫
|f | d| < µ, x′ > | <∞.

Proposition 3.14. Let X be locally convex and X ′ its dual. Then L1
•(µ) is the

space of all scalarly integrable functions.

Proof. Clearly, if f is scalarly integrable, then M◦◦(f) =
{∫

T
g dµ : g ∈ N◦◦(f)

}
is weakly bounded in X. But then, it is also τ -bounded by the Mackey theorem.
Hence f ∈ L1

•(µ). �

Here is an interesting corollary. We stress that no completeness assumption is
imposed on X.

Corollary 3.15. Let X be a metrizable locally convex space or a locally convex
space that admits a weaker F -norm. Then L1

•(µ), i.e., the space of all scalarly
µ-integrable functions is Fatou, Levi and complete.

Another interesting case occurs with L1
◦(µ). It is defined in [2] in such a way

that the sequential completeness of X seems to be really needed. However, by
Corollary 4.11 and Proposition 4.10 in [2] , L1

◦(µ) = S(µ) and, moreover, it is
the largest σ-Lebesgue subspace of (L0(µ), τ0

• ). Thus, one can define the space
of integrable functions as S(µ) in (L0(µ), τ•). This actually is how L1 is defined
by Turpin in [8] and by Thomas in [6], [5]. Incidentally, we see that their L1

corresponds to our L1
◦(µ).

Besides the work of Thomas and of Turpin on their TT -integral discussed in [2],
there is also an early Polish contribution. Namely, in his book [3], S. Rolewicz
proposes the following definition of integrability of a scalar function f with respect
to a vector measure µ.
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A positive µ-measurable function f is integrable if, for each increasing sequence
of positive simple functions (fn) converging µ-a.e to f , the corresponding sequence
of integrals (

∫
fn dµ) is convergent and

∫
f dµ = limn

∫
fn dµ. Then the integral

for an arbitrary f is defined via its positive and negative part.
To be precise, there is a misprint in [3] which makes the definition unintelligible.

The definition is given according to Turpin [7, 2.16], who attributes it to Rolewicz.
In the book, Rolewicz does not go beyond proposing a definition and, in fact, it
is not obvious at all how to check the unicity of his integral. Yet, the attempt
is historically interesting because Turpin showed (loc.cit.) that the definition of
Rolewicz, for convexly bounded measures, produces an integral which is equivalent
with the TT-integral. In the approach of [2] the latter fact can be dealt with in
the same way as in the proof of Proposition 3.9 there.

In the second edition of the book [4], Rolewicz does not return to his own
definition. He gives a sketch of the TT -integral following the approach presented
in Turpin’s thesis [8].
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