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Abstract: We deal with decomposition theorems for measures on Boolean algebras or – more
generally – for modular functions on lattices. In particular, for measures on Boolean algebras with
values in locally solid `-groups we compare decomposition theorems obtained with the Frechét-
-Nikodým-approach and decomposition theorems obtained using the band decomposition theo-
rem of Riesz.
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1. Introduction

In this article we deal with decomposition theorems for measures on Boolean alge-
bras or - more generally - for modular functions on lattices. Recall that a function
µ on a lattice L is called modular if µ(x ∨ y) + µ(x ∧ y) = µ(x) + µ(y) for all
x, y ∈ L.

In the `-group-valued case the band decomposition theorem of Riesz is an
adequate means to obtain various decomposition theorems for measures. If one
studies measures with values in a Banach space - or more generally - in a topological
group, then a topological approach is convenient. In this paper we present these
two methods and compare them for measures with values in a locally solid `-group.
This is done - as far as possible - in the more general setting of modular functions
on lattices.

The method that uses the Riesz band decomposition theorem to obtain de-
composition theorems for measures is applied for real-valued measures e.g. in
[8] and for `-group-valued measures in [10]. Bauer already used the band de-
composition theorem for certain decompositions of modular functions with values
in a Dedekind complete Riesz space E, see [6, 7] 1. The basic tool here is the
fact that the corresponding space of modular functions is a Riesz space. Birkhoff

2010 Mathematics Subject Classification: primary: 28B15
1Bauer observed that some of his results remain true in the `-group-valued case, see [6,

Footnote 2a] and [7, Footnotes 3 and 7]
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[9, Chapter X.6]2 proved that the space of all real -valued modular functions of
bounded variation is a Riesz space; in particular, the decomposition µ = µ+ − µ−
generalizes the classical Jordan decomposition functions of bounded variation into
monotone summands and the decomposition of real-valued bounded measures into
positive measures to real-valued modular functions on lattices. Bauer [6, footnote
15] observed that Birkhoff’s proof also works for E-valued modular functions 3.

In Section 3 we give (in the `-group-valued case) an alternative proof of
Birkhoff’s result mentioned above, based on the concept of a “distance function”.
If µ : L→ G is an `-group-valued modular function, then

µ(x, y) := µ(x ∨ y)− µ(x ∧ y) (1)

satisfies µ(x ∧ y, x) = µ(y, x ∨ y) and µ(x, z) = µ(x, y) + µ(y, z) if x 6 y 6 z.
Therefore we study the space d(L,G) of all “distance functions” α : L2 → G with
the following properties:

x 6 y 6 z ⇒ α(x, z) = α(x, y) + α(y, z), (2)

α(x ∧ y, x) = α(y, x ∨ y), (3)

α(x, y) = α(x ∧ y, x ∨ y). (4)

The relationship between modular functions and distance functions is clarified in
Theorem 2.3. In Theorem 3.5 we show that the subspace of functions of d(L,G)
which have finite variation is a Dedekind complete `-group. This yields - combined
with the band decomposition theorem of Riesz - decomposition theorems for mod-
ular functions. The advantage to consider first the space d(L,G) is the fact that
the order relation on d(L,G) is the pointwise order 4.

Section 4 presents the known Fréchet-Nikodým-approach to decomposition the-
orems for measures with values in topological groups. Drewnowski was the first to
develop the Fréchet-Nikodým-approach in measure theory in a systematical way,
in particular with an application to decomposition theorems. In Theorem 4.1 we
present Traynor’s decomposition theorem [22], which was suggested by a question
of Drewnowski [14, p. 47].

In Section 5 we consider modular functions or measures with values in a lo-
cally solid Dedekind complete `-group G and compare decomposition theorems
obtained with the Fréchet-Nikodým-approach (Section 4) and decomposition the-
orems obtained as band decomposition (Section 3). For real -valued measures on
Boolean algebras both methods yield the same decomposition theorems. This is
not anymore true for R2-valued measures: If λ is a probability measure, µ = (λ, λ),
µ1 = (λ, 0), µ2 = (0, λ), then µ = µ1 + µ2, µ1 ∧ µ2 = 0, but µ1 ⊥ µ2 is not true.
Therefore we can only ask the converse question whether decompositions with
respect to (w.r.t.) an FN-topology (Theorem 4.1) are also band decompositions.

2This theorem was already given in the first edition (1940) of [9] on p. 45.
3Bauer considered modular functions of finite variation to include the case of linear operators

between Riesz spaces.
4see (8) for the order relation between modular functions
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A related question is e.g.: Is it possible to decompose an order bounded measure
µ : A → G into µ = µ1 + µ2 where µ1 is a “regular” measure (according to
Definition 5.5(ii), based on the topology of G) and µ2 is “anti-regular” in the
sense that the only regular measure ν with 0 6 ν 6 |µ2| is ν = 0? The answer
is yes if the topology of G has the Lebesgue property (i.e. order convergence
implies topological convergence); this is a particular case of Corollary 5.17. Its
proof is based on the fact that then µ and |µ| induce the same FN-topology, see
Theorem 5.4. This was known under the additional assumption (M) that G has
a 0-neighbourhood base consisting of sublattices. As mentioned after Corollary
5.9, Theorem 5.4 allows to avoid condition (M) in some theorems, the proof of
which is based on the equality of the µ-topology and the |µ|-topology.

2. Group-valued modular functions and distance functions

Throughout, let L be a lattice and G an additively written commutative group.
If a lattice has a smallest or greatest element, we denote them by 0 or 1,

respectively.

Notation 2.1. Bym(L,G) we denote the group of all G-valued modular functions
on L. For p ∈ L let m(L,G, p) be its subgroup {µ ∈ m(L,G) : µ(p) = 0}. Let
d(L,G) be the group of all functions α : L2 → G satisfying (2), (3), (4).

From (2) it follows that α(x, x) = 0 for all x ∈ L and α ∈ d(L,G).
If A is a Boolean algebra, then m(A,G, 0) is precisely the group of G-valued

measures (=finitely additive functions) on A.
It is clear that µ ∈ d(L,G) for any µ ∈ m(L,G). We will see in Theorem 2.3 -

suggested by [9, exercise 4 on p. 241] - that (1) defines a group isomorphism from
m(L,G, p) onto d(L,G).

Lemma 2.2. Let α ∈ d(L,G) and x, y, z ∈ L with x 6 y.

(a) Then α(t1, t2) = 0 for any t1, t2 ∈ L with x∨ (y∧ z) 6 t1 6 t2 6 y∧ (x∨ z).
(b) α(x, y) = α(x ∧ z, y ∧ z) + α(x ∨ z, y ∨ z).

Proof. (a) Since α(ti∧z, ti) = α(z, ti∨z), ti∧z = y∧z and ti∨z = x∨z, we have
α(y ∧ z, ti) = α(z, x ∨ z), hence α(y ∧ z, t1) = α(y ∧ z, t2) = α(y ∧ z, t1) + α(t1, t2)
and therefore α(t1, t2) = 0.

(b) By (a) we have in particular 0 = α(x∨ (y∧ z), y∧ (x∨ z)). Replacing (x, y)
in (3) by (y ∧ z, x) and (y, x ∨ z) we get α(x ∧ z, y ∧ z) = α(x, x ∨ (y ∧ z)) and
α(x∨z, y∨z) = α(y∧ (x∨z), y). Adding these three equalities and using property
(2) we obtain

α(x ∧ z, y ∧ z) + α(x ∨ z, y ∨ z) = α(x, x ∨ (y ∧ z)) + α(x ∨ (y ∧ z), y ∧ (x ∨ z))
+ α(y ∧ (x ∨ z), y)

= α(x, y). �
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Theorem 2.3.

(a) Φ : m(L,G) → d(L,G), where Φ(µ) = µ is defined by (1), is a group
epimorphism. The kernel of Φ are the G-valued constant functions on L.

(b) For p ∈ L, the restriction Φp of Φ to m(L,G, p) is an isomorphism onto
d(L,G). If α ∈ d(L,G) and µ = Φ−1

p (α), then for any x ∈ L

µ(x) = α(p, p ∨ x)− α(p ∧ x, p). (5)

In particular, if p = minL, then µ(x) = α(p, x).

Proof. We already observed that Φ is well-defined. Obviously Φ is a group ho-
momorphism.

If µ ∈ m(L,G) is constant, then Φ(µ) = 0 by (1); viceversa, if µ := Φ(µ) = 0,
then for all x, y ∈ L we have µ(x) = µ(x∧y)+µ(x∧y, x) = µ(x∧y)+µ(x∧y, y) =
µ(y). In particular, Φp is injective for any p ∈ L.

Let now α ∈ d(L,G) and µ be defined by (5). Then obviously µ(p) = 0. We
show that µ is modular and thus µ ∈ m(L,G, p). Let x, y ∈ L and a := p ∧ x ∧ y.
Then

α(a, x ∧ y) + α(a, x ∨ y) = α(a, x ∧ y) + α(a, y) + α(y, x ∨ y)

= α(a, x ∧ y) + α(a, y) + α(x ∧ y, x) = α(a, x) + α(a, y).

Subtracting from this equality 2α(a, p) one obtains the modularity law for µ ob-
serving that

α(a, t)− α(a, p) = α(a, t)− α(a, p ∧ t)− α(p ∧ t, p) = α(p ∧ t, t)− α(p ∧ t, p)
= α(p, p ∨ t)− α(p ∧ t, p) = µ(t)

for any t > a.
It remains to show that Φ(µ) = α. Using property (2) and Lemma 2.2(b) we

obtain for x 6 y
µ(y)−µ(x) = α(p, p∨ y)−α(p∧ y, p)− (α(p, p∨x)−α(p∧x, p)) = α(p∨x, p∨

y) + α(p ∧ x, p ∧ y) = α(x, y). �

The next lemma collects some rules which can be extracted from [19, 16, 17].

Lemma 2.4. Let α ∈ d(L,G) and α∗(x, y) := {α(u, v) : x ∧ y 6 u 6 v 6 x ∨ y}.
Then for all x, y, z ∈ L:

(a) α∗(x ∧ y, x) = α∗(y, x ∨ y);
(b) α∗(x ∨ z, y ∨ z) ⊆ α∗(x, y) and dually α∗(x ∧ z, y ∧ z) ⊆ α∗(x, y);
(c) α∗(x, y) ⊆ α∗(x, z) + α∗(z, y).
(d) If µ ∈ m(L,G) and α = Φ(µ), then α∗(x, y) = {µ(v) − µ(u) : x ∧ y 6 u 6

v 6 x ∨ y} ⊆ {µ(v)− µ(u) : u, v ∈ [x ∧ y, x ∨ y]} ⊆ α∗(x, y)− α∗(x, y).
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Proof. (a) ⊆ : Let x∧y 6 u 6 v 6 x. Then y 6 u∨y 6 v∨y 6 x∨y and therefore
α(u, v) = α(u ∨ y, v ∨ y) ∈ α∗(y, x ∨ y) by Lemma 2.2(b). The other inclusion ⊇
holds by duality.

(b) We prove the first inclusion. Using (x∨ z)∧ (y∨ z) > [(x∧ y)∨ z], (a) with
[(x ∧ y) ∨ z], x ∨ y instead of x, y and [(x ∧ y) ∨ z] ∧ (x ∨ y) > x ∧ y we get

α∗(x ∨ z, y ∨ z) = α∗((x ∨ z) ∧ (y ∨ z), (x ∨ z) ∨ (y ∨ z)
⊆ α∗([(x ∧ y) ∨ z], [(x ∧ y) ∨ z] ∨ (x ∨ y))

= α∗([(x ∧ y) ∨ z] ∧ (x ∨ y), x ∨ y) ⊆ α∗(x ∧ y, x ∨ y) = α∗(x, y).

(c) We essentially follow the calculation5 of [17, page 290/291]. Let x ∧ y 6
u 6 v 6 x ∨ y and set r = x ∧ z, s = x ∨ z. Using Lemma 2.2(b) we have

α(u, v) = α(u ∨ r, v ∨ r) + α(u ∧ r, v ∧ r)
= α((u ∨ r) ∧ s, (v ∨ r) ∧ s) + α((u ∨ r) ∨ s, (v ∨ r) ∨ s) + α(u ∧ r, v ∧ r).

The first term belongs to α∗(x, z). It remains to show that

α(u ∨ s, v ∨ s) + α(u ∧ r, v ∧ r) ∈ α∗(z, y).

Since y′ := y ∨ (u ∧ r) > y, we have α(u ∨ s ∨ y′, v ∨ s ∨ y′) = α(s ∨ y′, s ∨ y′) = 0
and therefore by Lemma 2.2(b)

α(u ∨ s, v ∨ s) = α((u ∨ s) ∧ y′, (v ∨ s) ∧ y′). (6)

Since y′′ := y ∧ (v ∨ s) 6 y we similarly get

α(u ∧ r, v ∧ r) = α((u ∧ r) ∨ y′′, (v ∧ r) ∨ y′′). (7)

Applying Lemma 2.2(a) we obtain

α((v∧r)∨y′′, ((v∧r)∨y)∧(v∨s)) = 0 and α((u∧r)∨y′′, ((u∧r)∨y)∧(v∨s)) = 0,

hence with (7)

α(u ∧ r, v ∧ r) = α((u ∧ r) ∨ y′′, ((v ∧ r) ∨ y) ∧ (v ∨ s))
= α(((u ∧ r) ∨ y) ∧ (v ∨ s), ((v ∧ r) ∨ y) ∧ (v ∨ s)))
= α((v ∨ s) ∧ y′, ((v ∧ r) ∨ y) ∧ (v ∨ s)).

Adding this equality to (6) we have

α(u ∨ s, v ∨ s) + α(u ∧ r, v ∧ r) = α((u ∨ s) ∧ y′, (v ∨ s) ∧ y′)
+ α((v ∨ s) ∧ y′, ((v ∧ r) ∨ y) ∧ (v ∨ s)))

= α((u ∨ s) ∧ y′, (v ∧ r) ∨ y) ∧ (v ∨ s))) ∈ α∗(z, y).

(d) Observe that for u, v ∈ [x ∧ y, x ∨ y] one has

µ(v)− µ(u) = (µ(v)− µ(u ∧ v))− (µ(v)− µ(u ∧ v)) ∈ α∗(x, y)− α∗(x, y). �

5Much simpler is the proof of α∗(x, y) ⊆ α∗(x, z) + α∗(y, z) + α∗(y, z) which is sufficient to
deduce 2.5.
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An immediate consequence of Lemma 2.2(a) and 2.4 is

Corollary 2.5 ([16, 17]). Let α ∈ d(L,G).
(a) Then N(α) := {(x, y) : α∗(x, y) = {0}} is a lattice congruence, and the

quotient L/N(α) is a modular lattice.
(b) If G is a topological group, then the sets {(x, y) ∈ L2 : α∗(x, y) ⊆ U} where

U is a 0-neighbourhood in G, form a base for a lattice uniformity6 u(α)
on L.

It is clear that the uniformity u(α) defined in the preceding lemma is the weak-
est lattice uniformity on L making α uniformly continuous. If µ ∈ m(L,G) and
α = Φ(µ), then u(α) is also the weakest lattice uniformity on L making µ uni-
formly continuous. Therefore we write u(µ) := u(α) and this uniformity is called
the µ-uniformity or the α-uniformity. The induced topology is denoted by τ(µ) or
by τ(α) and is called the µ-topology or the α-topology. By [26, Proposition 3.2]
this is the weakest locally convex lattice topology making µ (or equivalently, mak-
ing α) continuous. Recall that a lattice topology is a topology making the lattice
operations ∨ and ∧ continuous; it is called locally convex if every point has a neigh-
bourhood base consisting of sets U such that a, b ∈ U and a 6 b implies [a, b] ⊆ U .
If ρ is a locally convex lattice topology on L and µ (or α) is continuous w.r.t. ρ,
we write µ� ρ (or α� ρ). Therefore µ� ρ iff τ(µ) ⊆ ρ.

The congruence defined in Corollary 2.5 (a) can also be described with the aid
of µ:

N(µ) := {(x, y) : µ is constant on [x ∧ y, x ∨ y]} = N(α).

3. `-Group-valued modular functions and distance functions

In this section let G be a Dedekind complete `-group.
We extend + and 6 in the usual way onto G := G ∪ {+∞}. The pointwise

order on spaces of G -valued functions we denote by 6, too. Let p ∈ L; with
the aid of the isomorphism Φp one can transfer the order relation 6 of d(L,G) to
m(L,G, p) such that Φp becomes an order isomorphism (cf. Theorem 2.3). Thus,
for µ, ν ∈ m(L,G, p), we set ν � µ iff Φp(ν) 6 Φp(µ), i.e.

ν � µ iff µ− ν is increasing. (8)

In particular, µ � 0 means that µ is increasing. This order relation � was used
by Birkhoff [9, p. 240] and later by Bauer [6, 7]. If L is a Boolean algebra and
µ, ν ∈ m(L,G, 0), then ν � µ iff ν 6 µ.

Proposition 3.1. The semivariation ‖α‖ : L2 → G of α ∈ d(L,G) defined by
‖α‖(x, y) := sup{|g| : g ∈ α∗(x, y)} has the following properties:

(a) 0 = ‖α‖(x, x) 6 ‖α‖(x, y) = ‖α‖(x ∧ y, x ∨ y),
(b) ‖α‖(x ∧ z, y ∧ z) 6 ‖α‖(x, y) , ‖α‖(x ∨ z, y ∨ z) 6 ‖α‖(x, y),
(c) ‖α‖(x ∧ y, y) = ‖α‖(x, x ∨ y),
(d) ‖α‖(x, y) 6 ‖α‖(x, z) + ‖α‖(z, y).

6that is a uniformity making the lattice operations ∨ and ∧ uniformly continuous
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This can easily be verified with the aid of Lemma 2.4.
If 0 6 α ∈ d(L,G), then ‖α‖ = α and therefore by the last inequality we have

for any x, y, z ∈ L
α(x, y) 6 α(x, z) + α(z, y).

In general ‖α‖ doesn’t belong to the space d(L,G) of G-valued functions on L
satisfying (2), (3), (4). To find for α ∈ d(L,G) a positive majorant in d(L,G) we
use the following

Proposition 3.2. Let ϕ : {(x, y) ∈ L2 : x 6 y} → G be a function satisfying

ϕ(x, x) = 0, ϕ(x ∧ y, y) = ϕ(x, x ∨ y), (9)

ϕ(x, y) 6 ϕ(x ∧ z, y ∧ z) + ϕ(x ∨ z, y ∨ z) if x 6 y. (10)

Set ψ(x, y) := sup{
∑n
i=1 ϕ(xi−1, xi) : n ∈ N , x∧y = x0 6 x1 6 . . . 6 xn = x∨y}.

Then ψ ∈ d(L,G). ψ is the smallest function of d(L,G) such that ϕ(x, y) 6
ψ(x, y) for all x, y ∈ L with x 6 y.

Proof. We first show ψ(x ∧ y, y) = ψ(x, x ∨ y). Let x ∧ y = x0 6 . . . 6 xn = y.
Then x = x0 ∨x 6 . . . 6 xn ∨x = x∨ y and ϕ(xi−1 ∧x, xi ∧x) = ϕ(x∧ y, x∧ y) =
0, hence

∑n
i=1 ϕ(xi−1, xi) 6

∑n
i=1 ϕ(xi−1 ∨ x, xi ∨ x) 6 ψ(x, x ∨ y). It follows

ψ(x ∧ y, y) 6 ψ(x, x ∨ y). The other inequality ψ(x ∧ y, y) > ψ(x, x ∨ y) can be
seen analogously.

Let now x 6 y 6 z. Then obviously ψ(x, z) > ψ(x, y) + ψ(y, z). To prove
6 let x = x0 6 . . . 6 xn = z. Then x = x0 ∧ y 6 . . . 6 xn ∧ y = y and
y = x0∨y 6 . . . 6 xn∨y = z, hence

∑n
i=1 ϕ(xi−1, xi) 6

∑n
i=1 ϕ(xi−1∧y, xi∧y)+∑n

i=1 ϕ(xi−1 ∨ y, xi ∨ y) 6 ψ(x, y) +ψ(y, z). It follows ψ(x, z) 6 ψ(x, y) +ψ(y, z).
We have proved that ψ ∈ d(L,G). Obviously ϕ 6 χ ∈ d(L,G) implies

ψ 6 χ. �

Remark 3.3. If L is modular, then condition (10) in Proposition 3.2 can be
replaced by the simpler condition

ϕ(x, z) 6 ϕ(x, y) + ϕ(y, z) if x 6 y 6 z. (11)

This cannot be done if L is not modular.

Proof. Let x 6 y. Then we have for any z ∈ L by (11), modularity and (9)

ϕ(x, y) 6 ϕ(x, x ∨ (y ∧ z)) + ϕ(x ∨ (y ∧ z), y)

= ϕ(x, x ∨ (y ∧ z)) + ϕ(y ∧ (x ∨ z), y)

= ϕ(x ∧ z, y ∧ z) + ϕ(x ∨ z, y ∨ z).

For the second statement take the non-modular lattice consisting of five elements
and, if x < y, let ϕ(x, y) = 1. �
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For α ∈ d(L,G) the function ϕ(x, y) = |α(x, y)| satisfies the assumption of
Proposition 3.2 by Lemma 2.2(b). Therefore the variation var(α) defined by

(var(α))(x, y) = sup

{ n∑
i=1

|α(xi−1, xi)| : n ∈ N, x∧y = x0 6 x1 6 . . . 6 xn = x∨y
}

belongs to d(L,G).

Definition 3.4. Let µ ∈ m(L,G) and µ = Φ(µ). We say that µ and µ have finite
variation if var(µ) is G-valued. We denote by fvd(L,G), fvm(L,G), fvm(L,G, p)
the spaces of functions of finite variation belonging to d(L,G),m(L,G),m(L,G, p),
respectively.

Theorem 3.5. fvd(L,G) is a Dedekind complete `-group. For α, β ∈ fvd(L,G)
we have

(α ∨ β)(x, y) (12)

= sup

{ n∑
i=1

α(xi−1, xi) ∨ β(xi−1, xi) : n ∈ N, x ∧ y = x0 6 . . . 6 xn = x ∨ y
}

(α ∧ β)(x, y) (13)

= inf

{ n∑
i=1

α(xi−1, xi) ∧ β(xi−1, xi) : n ∈ N, x ∧ y = x0 6 . . . 6 xn = x ∨ y
}

|α| := α ∨ (−α) = var(α). (14)

If (αγ)γ∈Γ is an increasing bounded net in fvd(L,G), then its pointwise supre-
mum is its supremum in fvd(L,G).

Proof. Since var(−α) = var(α) and var(α + β) 6 var(α) + var(β), fvd(L,G)
is a subgroup of d(L,G). To prove (12) we apply Proposition 3.2 with ϕ(x, y) :=
α(x, y) ∨ β(x, y). Observe that by Lemma 2.2(b) ϕ satisfies the assumption of
Proposition 3.2 and that the right-hand side of (12) is 6 var(α) + var(β), hence
finite. Thus we have proved that fvd(L,G) is an `-group. (14) is a special case of
(12) (for β = −α) and (13) follows from (12) using α ∧ β = −(−α) ∨ (−β). The
last statement obviously holds. �

It follows that for p ∈ L also (Φ−1
p (fvd(L,G)),+,�) is a Dedekind complete

`-group.
Always we have ‖α‖ 6 var(α); but α can be bounded without having finite

variation: Take for L the real unit interval [0, 1] and α = Φ(µ) for some continuous
function µ : [0, 1]→ R which is not of finite total variation.

We now give a condition under which α has finite variation iff it has finite
semivariation.
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Proposition 3.6. Let α ∈ d(L,G) such that ‖α‖ is G-valued. Suppose that for
any chain x0 6 x1 6 . . . 6 xn in L and I ⊆ {0, . . . , n} there are x, y ∈ L such
that x0 6 x 6 y 6 xn and

∑
i∈I α(xi−1, xi) = α(x, y). Then α ∈ fvd(L,G) and

α+(x, y) = sup{α(a, b) : x ∧ y 6 a 6 b 6 x ∨ y} (15)

α−(x, y) = − inf{α(a, b) : x ∧ y 6 a 6 b 6 x ∨ y} (16)

|α|(x, y) = sup{α(a, b)−α(c, d) : x∧y 6 a 6 b 6 x∨y, x∧y 6 c 6 d 6 x∨y}. (17)

In particular, ‖α‖ 6 |α| 6 2‖α‖.

Proof. (i) In our calculation we use the following fact: If +, · are two binary
commutative and associative operations on a set X satisfying the distributive
law, then

∏n
i=1(xi,0 + xi,1) =

∑
(εi)∈{0,1}n

∏n
i=1 xi,εi . In particular, for (X,+, ·) =

(G,∨,+) we have
∑n
i=1(xi,0 ∨ xi,1) = sup(εi)∈{0,1}n

∑n
i=1 xi,εi .

(ii) Let now x ∧ y = x0 6 . . . 6 xn = x ∨ y be a chain in L. Then, using (i),
we have

n∑
i=1

α(xi−1, xi) ∨ 0 = sup{
∑
i∈I

α(xi−1, xi) : I ⊆ {1, . . . , n}}

6 sup{α(a, b) : x ∧ y 6 a 6 b 6 x ∨ y} (18)
6 ‖α‖(x, y)

and as well
n∑
i=1

(−α(xi−1, xi)) ∨ 0 6 ‖α‖(x, y).

Adding these two inequalities we get
∑n
i=1 |α(xi−1, xi))| 6 2‖α‖(x, y).

Consequently var(α) 6 2‖α‖.
(18) and (12) yield α+(x, y) 6 sup{α(a, b) : x ∧ y 6 a 6 b 6 x ∨ y} whereas >

is obviously true.
(16) and (17) now follow from (15) observing α− = (−α)+ and |α| = α− +

(−α)+. �

Remark 3.7. Let α ∈ d(L,G) be of finite semivariation. Then the assumption of
Proposition 3.6 is satisfied if L is complemented or sectionally complemented or
relatively complemented, or if L is a commutative `-group and α = Φ(µ) for some
homomorphism µ : L→ G, see [26, Proposition 2.8]

In particular, it follows the known fact that if A is a Boolean algebra the space
fvm(A, 0, G) coincides with the space b(A,G) of bounded G-valued measures on A.

Theorem 3.5 allows to use the band decomposition theorem of Riesz to obtain
decomposition theorems for functions of fvd(L,G) or equivalently for G-valued
modular functions on L of finite variation.

We need a preparatory lemma. If a net (xγ) order converges to x, we write
xγ

o−→x.
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Lemma 3.8. (xγ) be a bounded net in L and x ∈ L.
(a) Let α ∈ d(L,G). Then ‖α‖(xγ , x)

o−→ 0 iff ‖α‖(xγ ∧ x, xγ ∧ a)
o−→ 0 for any

a > x and ‖α‖(xγ ∨ x, xγ ∨ a)
o−→ 0 for any a 6 x.

(b) If α ∈ fvd(L,G), then the following conditions are equivalent:

(i) α(xγ ∧ x, xγ ∧ a)
o−→ 0 for any a > x and α(xγ ∨ x, xγ ∨ a)

o−→ 0 for
any a 6 x;

(ii) ‖α‖(xγ , x)
o−→ 0;

(iii) |α|(xγ , x)
o−→ 0.

Proof. Since (xγ) is bounded, we may assume that L is bounded.
(a) ⇒: Let a > x. Using the rules of Proposition 3.1 we get

‖α‖(xγ ∧ x, xγ ∧ a) 6 ‖α‖(xγ ∧ x, x) + ‖α‖(x, xγ ∧ a)

= ‖α‖(xγ ∧ x, x ∧ x) + ‖α‖(xγ ∧ a, x ∧ a)

6 2‖α‖(xγ , x)
o−→ 0,

hence ‖α‖(xγ ∧ x, xγ ∧ a)
o−→ 0. The second condition holds by duality.

⇐: With a = 1 we have ‖α‖(x, xγ ∨ x) = ‖α‖(xγ ∧ x, xγ) = ‖α‖(xγ ∧ x,
xγ ∧ 1)

o−→ 0 and by duality ‖α‖(xγ ∧ x, x)
o−→ 0, hence ‖α‖(xγ , x) 6 ‖α‖(xγ ∧

x, x) + ‖α‖(x, xγ ∨ x)
o−→ 0.

(b) (iii) ⇒ (ii) follows from ‖α‖ 6 |α| and (ii) ⇒ (i) from (a).
(i) ⇒ (iii): Let yγ = xγ ∨ x. Then by (2), Lemma 2.2(a) and (3) we have for

x 6 a 6 b

α(x, yγ ∧ a) = α(x, (xγ ∧ a) ∨ x) + α((xγ ∧ a) ∨ x, (xγ ∨ x) ∧ a)

= α(x, (xγ ∧ a) ∨ x) = α(xγ ∧ x, xγ ∧ a)
o−→ 0

and as well α(x, yγ ∧ b)
o−→ 0, hence

α(yγ ∧ a, yγ ∧ b) = α(x, yγ ∧ b)− α(x, yγ ∧ a)
o−→ 0. (19)

Let x = z0 6 . . . 6 zn = 1 be a chain in L. Then
n∑
i=1

|α(zi−1, zi)| 6
n∑
i=1

|α(zi−1 ∧ yγ , zi ∧ yγ)|+
n∑
i=1

|α(zi−1 ∨ yγ , zi ∨ yγ)|,

moreover
n∑
i=1

|α(zi−1 ∨ yγ , zi ∨ yγ)| 6 |α|(yγ , 1) = |α|(x, 1)− |α|(x, yγ),

hence

|α|(x, yγ) +

n∑
i=1

|α(zi−1, zi)| 6
n∑
i=1

|α(zi−1 ∧ yγ , zi ∧ yγ)|+ |α|(x, 1),
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therefore using (19)

lim sup |α|(x, yγ) +

n∑
i=1

|α(zi−1, zi)| 6 lim sup

n∑
i=1

|α(zi−1 ∧ yγ , zi ∧ yγ)|+ |α|(x, 1)

= |α|(x, 1).

It follows
lim sup |α|(x, yγ) + |α|(x, 1) 6 |α|(x, 1)

and thus |α|(x, xγ ∨ x)
o−→ 0.

Dually we have |α|(xγ ∧ x, x)
o−→ 0 and finally |α|(x, xγ) = |α|(xγ ∧ x, x) +

|α|(x, xγ ∨ x)
o−→ 0. �

Proposition 3.9. Let C be a class of bounded nets in L and Λ : C → L a “limit
operator”. Then B := {α ∈ fvd(L,G) : |α|(xγ , x)

o−→ 0 whenever (xγ)γ∈Γ ∈
C and x = Λ((xγ)γ∈Γ)} is a band in fvd(L,G). Moreover,

B = {α ∈ fvd(L,G) : ‖α‖(xγ , x)
o−→ 0 whenever (xγ)γ∈Γ ∈ C

and x = Λ((xγ)γ∈Γ)}.

Proof. Since |α−β| 6 |α|+|β| for α, β ∈ fvd(L,G), B is a subgroup of fvd(L,G).
Obviously 0 6 α 6 β ∈ B implies α ∈ B.

Let now (αι) be an increasing net in B and 0 6 αι ↑ α ∈ fvd(L,G). To
show that α ∈ B let (xγ)γ∈Γ be a net in C, x = Λ((xγ)) and a, b ∈ L such that
a 6 xγ 6 b for all γ ∈ Γ. Then

α(xγ , x) = (α− αι)(xγ , x) + αι(xγ , x) 6 (α− αι)(a, b) + αι(xγ , x) ,

hence

lim sup
γ

α(xγ , x) 6 (α− αι)(a, b) + lim sup
γ

αι(xγ , x) = (α− αι)(a, b) ,

therefore
0 6 lim sup

γ
α(xγ , x) 6 inf

ι
(α− αι)(a, b) = 0 ,

i.e. |α|(xγ , x) = α(xγ , x)
o−→ 0.

The second statement immediately follows from Proposition 3.8. �

Remark 3.10. If in Proposition 3.9 a net (xγ)γ∈Γ ∈ C is increasing or decreasing,
then it is enough to require that (xγ) is bounded from above or bounded from
below, respectively (replacing (xγ)γ∈Γ ∈ C by (xγ)γ>γ0 for some γ0 ∈ Γ).

Easy examples show that in general the boundedness assumption of Proposi-
tion 3.9 is not superfluous. (Take e.g. for L the ring R of all finite subsets of N,
let C be the class of all sequences (An) in R such that the characteristic functions
(χAn) converge pointwise to 0 and Λ((An)) = 0 for (An) ∈ C.)
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Definition 3.11. Let p ∈ L, K ⊆ L, H an upwards directed subset of L, β ∈
d(L,G) and let ℵ be a cardinal number. We call α ∈ fvd(L,G)

(i) K-smooth at p if ‖α‖(xγ , x)
o−→ 0 for any monotone net (xγ) in K with

xγ ↓ p, and K-smooth if α is K-smooth at q for every q ∈ L,
(ii) H-inner-regular if inf{‖α‖(h, x) = 0 : x > h ∈ H} for any x ∈ L,
(iii) β-continuous if α(xγ , x)

o−→ 0 for any bounded net (xγ) in L and x ∈ L
with ‖β‖(xγ , x)

o−→ 0,
(iv) ℵ-order continuous (ℵ-o.c.) if α(xγ , x)

o−→ 0 whenever (xγ)γ∈Γ is a mono-
tone net in L with xγ ↑ x or xγ ↓ x and the cardinality of Γ is 6 ℵ. If
ℵ = ℵ0 is countable, we say σ-o.c. instead of ℵ0-o.c..

Theorem 3.12. Let p, K, H, β as in Definition 3.11. Then the sets

B1 = {α ∈ fvd(L,G) : α is K-smooth (at p)},
B2 = {α ∈ fvd(L,G) : α is H-inner-regular},
B3 = {α ∈ fvd(L,G) : α is β-continuous},
B4 = {α ∈ fvd(L,G) : α is ℵ-o.c.}

are bands in fvd(L,G).

Proof. For B1 and B2 this immediately follows from Proposition 3.9 and Re-
mark 3.10. To prove that B3 is a band, it is by Proposition 3.9 enough to show
that α ∈ B3 iff |α|(xγ , x)

o−→ 0 for any bounded net (xγ) in L and x ∈ L with
‖β‖(xγ , x)

o−→ 0. We prove the non-obvious implication (⇒) using Lemma 3.8. Let
α ∈ B3, (xγ) be a bounded net in L and x ∈ L with ‖β‖(xγ , x)

o−→ 0. Then, for any
a > x, we have ‖β‖(x, (xγ∧a)∨x) = ‖β‖((x∧a)∨x, (xγ∧a)∨x) 6 ‖β‖(x, xγ)

o−→ 0

Therefore α(xγ ∧ x, xγ ∧ a) = α(x, (xγ ∧ a) ∨ x)
o−→ 0 since α ∈ B3. Analogously

α(xγ ∨ x, xγ ∨ a)
o−→ 0 if a 6 x. It follows by Lemma 3.8 that |α|(xγ , x)

o−→ 0.
Similarly one proceeds to show that B4 is a band: Let α ∈ B4, moreover

(xγ)γ∈Γ a decreasing net in L , xγ ↓ x and |Γ| 6 ℵ. Then, for a > x, we have
xγ ∧ a ↓ x, hence α(xγ ∧ a, xγ ∧ x) = α(xγ ∧ a, x)

o−→ 0; moreover α(xγ ∨ a, xγ ∨
x) = α(xγ , xγ) = 0 for a 6 x. Thus |α|(xγ , x)

o−→ 0 by Lemma 3.8. Similarly
|α|(xγ , x)

o−→ 0 if xγ ↑ x. Now Proposition 3.9 yields that B4 is a band. �

Let p, K, H, β, ℵ as in Definition 3.11 and µ ∈ fvm(L,G). We say that µ is
K-smooth (at p), H-inner-regular, β-continuous, ℵ-o.c., σ-o.c. if µ := Φ(µ) is so.
Obviously, µ is σ-o.c. iff xn ↑ x or xn ↓ x implies µ(xn)

o−→µ(x) for any sequence
(xn)n∈N in L.

Let us verify that µ is β-continuous iff µ(xγ)
o−→µ(x) whenever (xγ) is a bounded

net ‖β‖(xγ , x)
o−→ 0: (⇐) If ‖β‖(xγ , x)

o−→ 0, then ‖β‖(x ∨ xγ , x)
o−→ 0, hence

µ(x ∨ xγ)
o−→µ(x); similarly µ(x ∧ xγ)

o−→µ(x). Thus µ(xγ , x) = (µ(x ∨ xγ) −
µ(x)) − (µ(x ∧ xγ) − µ(x))

o−→ 0. (⇒) Use |µ(x) − µ(xγ)| 6 |µ(x) − µ(x ∨ xγ)| +
|µ(x ∨ xγ)− µ(xγ)| 6 2|µ|(x, xγ) and 3.12.

To obtain decomposition theorems for modular functions we will apply the
following version of the
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Band Decomposition Theorem of Riesz. Let B be a band in a Dedekind
complete `-group E. Then B⊥ = {x ∈ E : y ∈ B and 0 6 y 6 |x| imply y = 0}
is a band in E, and every x ∈ E has a unique decomposition x = x1 + x2 with
x1 ∈ B and x2 ∈ B⊥.

Moreover, if B0 is another band in E and x ∈ B0, then the components x1 and
x2 also belong to B0.

Combining the band decomposition theorem with the preceding results we get
the following decomposition theorems for modular functions.

Theorem 3.13 (Alexandroff decomposition theorem). Let K ⊆ L, p ∈ L
and µ ∈ fvm(L,G, p). Then there are unique µ1, µ2 ∈ fvm(L,G, p) with the
following properties:

(i) µ = µ1 + µ2,
(ii) µ1 is K-smooth (at p),
(iii) If λ : L→ G is a modular function K-smooth (at p) with 0 � λ � |µ2| and

λ(p) = 0, then λ = 0.

Moreover, if H is an upwards directed subset of L and µ is H-inner-regular,
then µ1 and µ2 are H-inner-regular, too.

Theorem 3.14 (Hewitt-Yosida decomposition theorem). Let ℵ be a cardinal
number, p ∈ L and µ ∈ fvm(L,G, p). Then there are unique µ1, µ2 ∈ fvm(L,G, p)
with the following properties:

(i) µ = µ1 + µ2,
(ii) µ1 is ℵ-o.c.,
(iii) If λ : L→ G is an ℵ-o.c. modular function with 0 � λ � |µ2| and λ(p) = 0,

then λ = 0.

Moreover, if H is an upwards directed subset of L and µ is H-inner-regular,
then µ1 and µ2 are H-inner-regular, too.

Theorem 3.15 (Lebesgue decomposition theorem). Let p ∈ L, µ ∈
fvm(L,G, p), ν ∈ m(L,G) and ν = Φ(ν). Then there are unique µ1, µ2 ∈
fvm(L,G, p) with the following properties:

(i) µ = µ1 + µ2,
(ii) µ1 is ν-continuous,
(iii) If λ : L → G is a ν-continuous modular function with 0 � λ � |µ2| and

λ(p) = 0, then λ = 0.

The relation 0 � λ � |µ2| appearing in the last theorems means precisely that,
with µ2 = Φ(µ2), for any x, y ∈ L with x 6 y

0 6 λ(y)− λ(x) 6 |µ2|(x, y)

= sup

{ n∑
i=1

|µ2(xi)− µ2(xi−1)| : x = x0 6 . . . 6 xn = y

}
.
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Bauer [6, 2.3.6] also proved a version of the Hewitt-Yosida decomposition the-
orem. Bauer defines µ to be σ-o.c. if |µ| is σ-o.c., whereas we prove that µ is
σ-o.c. iff |µ| is so.

`-group-valued modular measures on D-lattices are also studied in [4]. It fol-
lows from [1, Corollary 2.4] and Proposition 3.6 that the space of all G-valued
bounded modular measures on a D-lattice D is a regular embedded `-subgroup
of the Dedekind complete `-group of all G-valued modular functions of bounded
variation defined on D.

4. Measures with values in topological groups

In this section let G = (G,+, τ) be a Hausdorff topological group and A a Boolean
algebra.

The following decomposition theorem, which answers a question of Drewnowski
[14, p.47], was first proved by Traynor [22]. Another proof was given in [23]. We
here use as in [23] the singularity condition proposed by Drewnowski [14, p.47]: If
µ : A → G is a measure and ρ an FN-topology on A, then µ ⊥ ρ means that the
infimum of ρ and the µ-topology taken in the lattice of all FN-topologies on A is
the trivial topology. Recall that µ is exhaustive if µ(an) → 0 for every disjoint
sequence (an) in A.

Theorem 4.1. Let G be complete, µ : A → G an exhaustive measure and ρ an
FN-topology on A. Then µ has a unique decomposition

µ = µ1 + µ2 where µ1, µ2 : A→ G are measures with µ1 � ρ and µ2 ⊥ ρ.

Moreover µ1(A), µ2(A) ⊆ µ(A). The µ-topology is the supremum of the µ1-topology
and the µ2-topology.

It is clear (also considering the completion of G) that the assumption of G being
complete can be replaced by the assumption of the range of µ being contained in
a complete subset of G. This will be used in the proof of Corollary 5.17.

Different choices of ρ in Theorem 4.1 yield different decomposition theorems,
see [22], [23]. One obtains e.g. the Hewitt-Yosida decomposition taking for ρ the
finest ℵ-o.c. FN-topology on A.

An essential tool in the proof of Theorem 4.1 given in [23] is the fact that
an (as lattice) complete Boolean algebra admits at most one o.c. FN-topology.
A common generalization of this fact and a theorem about Lebesgue topologies on
Riesz spaces of Amemiya-Mori (see [3, Note on p. 90]) is

Theorem 4.2 ([24, Corollary 5.11]). If u and v are o.c.7 Hausdorff lattice
uniformities on a complete lattice, then u and v induce the same topology.

Following the method of [23], Theorem 4.1 was generalized for additive func-
tions on orthomodular lattices [25], on complemented lattices [28], on
MV-algebras [5] and for modular measures on D-lattices [2]. An essential tool
in the proofs is Theorem 4.2; it is also used in the proof of Theorem 5.4.

7i.e. order convergence implies topological convergence
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5. Modular functions and distance functions with values in locally solid
`-groups

In this section let G = (G,+,6, τ) be a Hausdorff locally solid Dedekind complete
`-group, where “locally solid” means that there is a 0-neighbourhood base consist-
ing of solid subsets8. The uniformity of G is then a lattice uniformity, in particular
τ is a locally convex lattice topology.

Proposition 5.1. Let α1, α2, α, β ∈ d(L,G).

(a) If 0 6 α 6 β, then u(α) 6 u(β).
(b) u(α1 + α2) 6 u(α1) ∨ u(α2)

(c) If α1 > 0 and α2 > 0, then u(α1 + α2) = u(α1) ∨ u(α2).
(d) u(α) 6 u(|α|) = u(α+) ∨ u(α−).

Proof. For (a) it is enough to observe that β∗(x, y) ⊆ U implies α∗(x, y) ⊆ U for
any solid subset U of G and x, y ∈ G with x 6 y (notation as in Lemma 2.4). For
(b) observe that α1 + α2 is uniformly continuous w.r.t. u(α1) ∨ u(α2). (c) follows
from (a) and (b). (d) follows from (b), (c) and the formulas α = α+ − α− and
|α| = α+ + α−. �

The following example9 shows that τ(α) and τ(|α|), hence u(α) and u(|α|), can
be different.

Example 5.2. Let A be the σ-algebra of Borel subsets of R, En := (Rn, ‖·‖2) and
E := {(xn) ∈

∏∞
n=1En : ‖(xn)‖∞ := sup ‖xn‖2 < +∞}. E is then a Dedekind

complete Banach lattice. Let r1, r2, r3, . . . be the Rademacher functions on [0, 1]
and νk(B) =

∫
B
rk(x)dx for a Borel set B ⊆ [0, 1]. For any A ∈ A and n ∈ N

let µn(A) = 1√
n

(νk([0, 1] ∩ (A − n))nk=1. Then µ = (µn) : A → E is a σ-additive,
hence exhaustive, measure of finite variation (according to Definition 3.4) , but |µ|
is not exhaustive.

Proof. If B is a Borel set in [0, 1], then νk(B), k ∈ N, are Fourier coefficients of the
characteristic function χB . Therefore ν(B) := (νk(B)) ∈ `2 and ‖ν(B)‖2 6 λ(B)
where λ denotes the Lebesgue measure. Consequently ‖µn(A)‖2 6 1√

n
‖ν([0, 1] ∩

(A− n))‖2 6 1√
n
, i.e. (‖µn(A)‖2)n∈N is a null sequence. Using this fact it is easy

to see that µ is σ-additive.
For a Borel set B ⊆ [0, 1] we have |νk|(B) = λ(B). Hence, for A ∈ A, |µn|(A) =

λ([0,1]∩(A−n))√
n

en where en = (1, . . . , 1) ∈ En and ‖|µn|(A)‖2 = λ([0, 1]∩ (A−n). It

follows |µ|(A) = (λ([0,1]∩(A−n))√
n

en)n∈N and ‖|µ|(]n, n+ 1[)‖∞ = 1. Thus |µ| is not
exhaustive. �

8U is solid if |x| 6 |y| and y ∈ U implies x ∈ U .
9A similar example is given in [15, 7.10].



144 Hans Weber

In view of Theorem 5.4 recall that a lattice uniformity is (locally) exhaustive
if every (bounded) monotone sequence is Cauchy. If the uniformity of (G,+, τ)
is locally exhaustive, τ is also called a pre-Lebesgue topology. Let µ ∈ m(L,G)
and µ = Φ(µ). Then µ and µ are called (locally) exhaustive if u(µ) = u(µ) is
(locally) exhaustive, or equivalently if µ(xn, xn+1)→ 0 w.r.t. τ for any (bounded)
monotone sequence in L (see [26, p.43]).

[21, Example 3] shows that a σ-additive10 (hence exhaustive) measure on a σ-
algebra need not be order bounded. On the other hand we have

Proposition 5.3. The following conditions are equivalent:

(i) For any bounded lattice L′ every α ∈ fvd(L′, G) is exhaustive.
(ii) Every G-valued bounded11 monotone modular function on a lattice is ex-

haustive.
(iii) Every G-valued monotone modular function on a lattice is locally exhaus-

tive.
(iv) Any positive measure µ : P(N) → G defined on the power set of N is

exhaustive.
(v) τ is a pre-Lebesgue topology.

Proof. (i)⇒(iv) is obvious.
(iv)⇒(v): Let (an) be sequence of positive elements of G such that {

∑n
i=1 ai :

n ∈ N} is bounded. Then µ(A) :=
∑
n∈A an := supn∈N

∑
n>i∈A ai defines

a measure on P(N) (which is even σ-o.c. in the sense of Definition 3.11). Then
an = µ({n})→ 0 w.r.t. τ . As known (see e.g. [5, Proposition 4.1.9]) and easy to
see, this implies that τ is a pre-Lebesgue topology.

(v)⇒(ii): If 0 � µ ∈ m(L,G) is bounded and (xn) is a monotone sequence in
L, then µ(xn) is a bounded monotone sequence in G, hence Cauchy. Therefore
µ(xn, xn+1)→ 0 w.r.t. τ .

(ii)⇒(iii): Apply (ii) to the restriction µ | [a, b] where a, b ∈ L with a 6 b.
(iii)⇒(i): Since α = α+ − α−, we may assume that α > 0. Then α = Φ(µ) for

some monotone modular function. Since L′ is bounded, µ is exhaustive by (iii).
Hence α is exhaustive. �

Theorem 5.4. Let α ∈ fvd(L,G) such that |α| is exhaustive. Then the α-topology
coincides with the |α|-topology.

Proof. Let β := |α| and w := u(β). Passing to the quotient L/N(β) we may
assume that w is Hausdorff. Let (L̃, w̃) be the completion of (L,w) and G̃ the
(uniform) completion of G. Then L̃ is a complete lattice, w̃ is o.c. (see e.g.
[24, Corollary 6.15]) and G̃ is a complete locally solid `-group (not necessarily
Dedekind complete). Let α̃, β̃ : L̃→ G̃ be the continuous extensions of α, β. Then
α̃, β̃ ∈ d(L̃, G̃) and |α̃(x, y)| 6 β̃(x, y) for all x, y ∈ L̃.

10using τ -convergence, not order convergence in G
11“bounded” here always means “order bounded”
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We claim that u(α̃) is Hausdorff. Let a, b ∈ N(α̃) with a 6 b. Therefore by
Lemma 2.2 (b) and Corollary 2.5 (a) we have for any x, y ∈ L̃ with x 6 y

α̃(x, y) = α̃(x ∧ a, y ∧ a) + α̃(x ∨ a, y ∨ a) = α̃(x ∧ a, y ∧ a) + α̃(x ∨ b, y ∨ b),

hence
|α̃(x, y)| 6 β̃(x ∧ a, y ∧ a) + β̃(x ∨ b, y ∨ b) =: ϕ̃(x, y).

Therefore for any chain x0 6 . . . 6 xn in L̃

n∑
i=1

|α̃(xi−1, xi)| 6
n∑
i=1

β̃(xi−1 ∧ a, xi ∧ a) +

n∑
i=1

β̃(xi−1 ∨ b, xi ∨ b) = ϕ̃(x0, xn).

In particular, for x, y ∈ L with x 6 y

β(x, y) = |α|(x, y)

= sup

{ n∑
i=1

|α(xi−1, xi)| : xi ∈ L, x = x0 6 . . . 6 xn = y

}
6 ϕ̃(x, y).

By continuity we have β̃(x, y) 6 ϕ̃(x, y) for any x, y ∈ L̃ with x 6 y. In particular

0 6 β̃(a, b) 6 ϕ̃(a, b) = β̃(a ∧ a, b ∧ a) + β̃(a ∨ b, b ∨ b) = 0,

i.e. β̃(a, b) = 0. Hence a = b since w̃ = u(β̃) is Hausdorff.
It now follows from Theorem 4.2 that α̃ and β̃ induce the same topology on L̃.

Hence α and β induce the same topology on L, i.e. τ(α) = τ(|α|). �

With the aid of Theorem 5.4 we are able to compare the concepts of order
continuity, smoothness and regularity introduced in Definition 3.11, which use
order convergence in G, with the corresponding concepts using convergence w.r.t.
τ , instead.

Definition 5.5. Let p, K, H, ℵ, α be as in Definition 3.11. We call α ∈ fvd(L,G)

(i) K-smooth at p w.r.t. τ if xγ → x w.r.t. τ(α) for any monotone net (xγ)
in K with xγ ↓ p, and K-smooth w.r.t. τ if α is K-smooth at q w.r.t. τ
for every q ∈ L,

(ii) H-inner-regular w.r.t. τ if for any 0-neighbourhood U in G and x ∈ L
there exists h ∈ H with x > h and α∗(h, x) ⊆ U ,

(iii) ℵ-o.c. w.r.t. τ if α(xγ , x) → 0 w.r.t. τ whenever (xγ)γ∈Γ is a monotone
net in L with xγ ↑ x or xγ ↓ x and the cardinality of Γ is 6 ℵ.

If µ ∈ m(L,G) such that α = µ = Φ(µ), we call µ K-smooth (at p), H-inner-
regular, ℵ-o.c. w.r.t. τ if µ is so.

Lemma 5.6. Let 0 6 α ∈ d(L,G), x ∈ L and (xγ) be a net in L. Then xγ → x
w.r.t. τ(α) iff α(xγ , x)→ 0 w.r.t. τ .
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Proof. Observe that for any solid subset U of G and x, y ∈ L we have α(x, y) ∈ U
iff α∗(x, y) ⊆ U since α > 0. �

Lemma 5.7. Let α ∈ fvd(L,G), x ∈ L and (xγ) be a monotone net in L. Suppose
that τ has the Lebesgue property. Then xγ → x w.r.t. τ(α) iff |α|(xγ , x)

o−→ 0.

Proof. Let xγ ↓. We may assume that (xγ) is bounded and therefore that L is
bounded. Since τ has the pre-Lebesgue property, it follows by Proposition 5.3 that
|τ | is exhaustive. Therefore τ(α) = τ(|α|) by Theorem 5.4 and thus, replacing α
by |α|, we may assume that α > 0. Moreover, replacing xγ by xγ ∨ x we may
assume that xγ > x. In view of Lemma 5.6 it remains to verify that α(xγ , x)→ 0

w.r.t. τ iff α(xγ , x)
o−→ 0. The implication ⇒ holds since 0 6 α(xγ , x) ↓ and τ is

Hausdorff. ⇐ holds since τ is o.c.. �

Corollary 5.8. Suppose that τ has the Lebesgue property. Let p, K, H, ℵ be as in
Definitions 3.11/5.5. Then α ∈ fvd(L,G) is K-smooth at p (K-smooth, H-inner-
regular, ℵ-o.c.) according to Definition 3.11 iff α is K-smooth at p (K-smooth,
H-inner-regular, ℵ-o.c.) w.r.t. τ according to Definition 5.5.

Proof. First observe that α is ℵ-o.c. iff α(xγ , x) → 0 w.r.t. τ whenever (xγ)γ∈Γ

is a monotone net in L with order limit x and the cardinality of Γ is 6 ℵ. Now
the assertion immediately follows from Lemma 5.7 and Theorem 3.12. �

Corollary 5.9. If G is endowed with a Hausdorff locally solid Lebesgue topology τ ,
then the conditions “K-smooth (at p)”, “H-inner-regular”, “ℵ-o.c.” can be replaced
in Theorems 3.13 and 3.14 by the corresponding conditions w.r.t. τ according to
Definition 5.5.

This generalizes the decomposition theorems [11, pp. 119, 123] in two direc-
tions: First, here we consider modular functions on lattices instead of measures
on Boolean algebras. Second, in the decomposition theorems [11, pp. 119, 123] it
is assumed that G satisfies - besides the assumption of Corollary 5.9 - additionally
condition (M), i.e. that G has a 0-neighbourhood base consisting of sublattices.
With the aid of Theorem 5.4 one also sees that in the decomposition theorems [12,
Theorem 4.4] and [20, Theorem 5.1] it is enough to assume that G satisfies only the
assumption of Corollary 5.9 (without condition (M)). Dedekind complete `-groups
endowed with a Hausdorff locally solid Lebesgue topology satisfying condition (M)
are characterized in [29].

Notation 5.10. For a locally convex lattice topology ρ on L and p ∈ L let

fvm(L,G, p, ρ) := {µ ∈ fvm(L,G, p) : µ� ρ}

and

fvd(L,G, ρ) := {α ∈ fvd(L,G) : α� ρ}.

If ρ is the topology induced by a lattice uniformity w on L, we write also
fvm(L,G, p, w) and fvd(L,G,w) instead of fvm(L,G, p, ρ) and fvd(L,G, ρ).
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Proposition 5.11. Suppose that τ has the Lebesgue property and L is bounded.
Let ρ be a locally convex lattice topology on L. Then fvd(L,G, ρ) is a band in
fvd(L,G).

Proof. If α1, α2 ∈ fvd(L,G) are continuous w.r.t. ρ, then α1 − α2 is so; i.e.
α1 − α2 � ρ.

If α, β ∈ fvd(L,G) with |α| 6 |β| and β � ρ, then τ(α) ⊆ τ(|β|) = τ(β) ⊆ ρ
by Proposition 5.1 and Theorem 5.4. Hence α� ρ.

Let αγ ∈ fvd(L,G, ρ) such that 0 6 αγ ↑ α ∈ fvd(L,G). Then 0 6 α(x, y) −
αγ(x, y) 6 α(0, 1)− αγ(0, 1) ↓ 0. Therefore αγ(x, y) → α(x, y) w.r.t. τ uniformly
on L× L. Hence α is continuous w.r.t. ρ, too. �

The following example shows that in Proposition 5.11 it is not enough to sup-
pose that τ is a pre-Lebesgue topology.

Example 5.12. Let ν : P(N) → {0, 1} be an ultrafilter measure which is not
σ-additive, τ0 the topology on `∞ induced by the seminorm f 7→

∫
|f |dν, τp the

product topology on `∞ and τ be the supremum of τ0 and τp; τ is then a locally
solid pre-Lebesgue topology on `∞. The restrictions ρ0 and ρp on {0, 1}N = P(N)
of τ0 and τp, respectively, are exhaustive FN-topologies. Define positive measures
µ, µn : P(N) → (`∞, τ) by µ(A) = χA, µn = χA∩{1,...,n}. Then µn ↑ µ, µn � ρp,
µn ⊥ ρ0, but neither µ � ρp nor µ ⊥ ρ0 holds true since the µ-topology is
the supremum of ρ0 and ρp. Therefore neither {λ ∈ b(P(N), `∞) : λ � ρp} nor
{λ ∈ b(P(N), `∞) : λ ⊥ ρ0} are bands in b(P(N), `∞). Moreover, µ ∈ {λ ∈
b(P(N), `∞) : λ� ρ0}⊥.

Theorem 5.13. Suppose that τ has the Lebesgue property and L is bounded. Let
ρ be a locally convex lattice topology on L and µ ∈ fvm(L,G, 0). Then there are
unique µ1, µ2 ∈ fvm(L,G, 0) with the following properties:

(i) µ = µ1 + µ2,
(ii) µ1 � ρ,
(iii) if λ : L → G is a modular function such that λ � ρ, 0 � λ � |µ2| and

λ(p) = 0, then λ = 0.

Proof. This immediately follows from Riesz decomposition theorem, Proposi-
tion 5.11 and the isomorphism between fvd(L,G) and fvm(L,G, 0), see Theo-
rem 2.3. �

We now ask when the singularity condition (iii) of the preceding theorem based
on the order inG can be replaced by a topological singularity condition generalizing
the one used in Theorem 4.1.

If v, w are uniformities on a set X, we write v ⊥ w if for every V ∈ v and
W ∈ w we have V ◦ W = X2, i.e. for every a, b ∈ X there exits x ∈ X such
that (a, x) ∈ V and (x, b) ∈ W .12 If L is a bounded lattice and v, w are lattice
uniformities on L, then v ⊥ w iff for every V ∈ v and W ∈ w there exits x ∈ L
such that (0, x) ∈ V and (x, 1) ∈W .

12Such uniformities are called in [18] orthogonal, and in [27] and the papers cited in [27,
Definition 4.1] independent. Conditions equivalent to v ⊥ w are given in [27, Proposition 4.3].
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If w is a lattice uniformity on L, µ ∈ m(L,G) and µ = Φ(µ), we write (com-
patible with the notation of the last section) µ ⊥ w and µ ⊥ w if u(µ) ⊥ w.

Lemma 5.14. Let v, w be uniformities on a set X such that v ⊥ w. Then the
trivial uniformity is the only uniformity on X such that its induced topology is
weaker than the v-topology (=topology induced by v) and the w-topology.

Proof. Let u be a uniformity on X such that the u-topology is weaker than the
v-topology and the w-topology, moreover a, b ∈ X and U ∈ u. We show that
(a, b) ∈ U . Choose symmetric sets U0 ∈ u, V ∈ v, W ∈ w with U0 ◦ U0 ⊆ U ,
V (a) ⊆ U0(a) and W (b) ⊆ U0(b). Since v ⊥ w, there is an x ∈ X such that
(a, x) ∈ V and (x, b) ∈ W . Therefore x ∈ V (a) ⊆ U0(a) and x ∈ W (b) ⊆ U0(b),
i.e. (a, x) ∈ U0 and (b, x) ∈ U0, and finally (a, b) ∈ U0 ◦ U0 ⊆ U . �

Corollary 5.15. Let L be a bounded lattice, w a lattice uniformity on L and τ
a pre-Lebesgue topology. If α ∈ fvd(L,G) and α ⊥ w, then α ∈ fvd(L,G,w)⊥.

Proof. Let β ∈ fvd(L,G,w) and γ = |α| ∧ |β|. By Proposition 5.3 and Theorem
5.4 we have τ(|α|) = τ(α) and τ(|β|) = τ(β). Therefore τ(γ) ⊆ τ(α) and τ(γ) ⊆
τ(β), thus τ(γ) is weaker than the w-topology. It follows with Lemma 5.14 that
u(γ) is the trivial uniformity, i.e. γ = 0. �

Example 5.12 shows that in general α ∈ fvd(L,G,w)⊥ doesn’t imply α ⊥ w.
We now give an answer to the question when a “ topological decomposition”

for measures is also a band decomposition. If w is a lattice uniformity and µ ∈
m(L,G), we write µ� w if µ is continuous w.r.t. the w-uniformity.

Theorem 5.16. Let τ be a pre-Lebesgue topology, L a bounded lattice and w
a lattice uniformity on L. Suppose that for any µ ∈ fvm(L,G, 0) there are µ1, µ2 ∈
fvm(L,G, 0) such that

µ = µ1 + µ2 with µ1 � w and µ2 ⊥ w . (20)

Then fvm(L,G, 0, w) = {µ ∈ fvm(L,G, 0) : µ ⊥ w}⊥ and {µ ∈ fvm(L,G, 0) :
µ ⊥ w} = fvm(L,G, 0, w)⊥.

In particular, the decomposition (20) is a band decomposition w.r.t. the band
fvm(L,G, 0, w).

Proof. Use the isomorphism between fvm(L,G, 0) and fvd(L,G), and apply with
H = fvd(L,G), A = fvd(L,G,w), B = {α ∈ fvd(L,G) : α ⊥ w} the following
fact: Let H be an `-group, H = A+B and B ⊆ A⊥, then A = B⊥ and B = A⊥,
in particular, A and B are bands in H.

(20) implies that H = A+B, and B ⊆ A⊥ follows from Corollary 5.15. �

Corollary 5.17. Let τ be a Lebesgue topology, A a Boolean algebra and ρ an
FN-topology on A. Then {µ ∈ b(A,G) : µ � ρ} and {µ ∈ b(A,G) : µ ⊥ ρ} are
bands in b(A,G) and b(A,G) is the direct sum of these bands.
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Proof. We verify the assumption of Theorem 5.16. Let µ ∈ b(A,G), then µ is
exhaustive by Proposition 5.3. Since by [24, Corollary 4.7] the order intervals [a, b]
of G are τ -complete, µ(A) is contained in a τ -complete subset of G. Therefore,
by Theorem 4.1 and the succeeding remark, µ has a decomposition µ = µ1 + µ2

where µi : A → G are measures with µ1 � ρ, µ2 ⊥ ρ and µi(A) ⊆ µ(A). In
particular, the measures µi are bounded. Now 5.17 immediately follows from
Theorem 5.16. �

In recent years the authors of [2] and [1] have studied modular measures on
D-lattices in several articles. One easily sees that a theorem analogous to 5.17 also
holds true in this setting - replacing the Boolean algebra by a D-lattice, measures
by modular measures and FN-topologies by D-uniformities. In the proof one has to
replace Theorem 4.1 by the decomposition theorem [2, Theorem 3.5] for modular
measures on D-lattices.
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