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MULTIPLE ZEROS OF DEDEKIND ZETA FUNCTIONS
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50-th anniversary of his death

Abstract: It is proved that there are Dedekind’s zeta functions with multiple zeros in the critical
strip of arbitrarily large multiplicity. There are given examples of such zeros of the Dedekind
zeta function of the field Q(ζ3,

3
√
5).
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1. Introduction

It is conjectured that all zeros in the critical strip 0 < Re s < 1 of Riemann’s
zeta function lie on the critical line Re s = 1

2 and are simple. The conjecture is
supported by strong numerical evidence.

On the other hand, there are known fields F such that the Dedekind zeta
function ζF (s) has a zero at s = 1

2 (see [A], [F]). From the functional equation it
follows that such a zero has an even multiplicity, so it cannot be simple.

In the present paper we prove that for some finite groups G for every Galois
extension F/E of number fields with the Galois group G the Dedekind zeta func-
tion ζF (s) has infinitely many multiple zeros in the critical strip 0 < Re s < 1.
Moreover, for an appropriate group G such a zero can have an arbitrarily large
multiplicity. In the case of G = S3 and E = Q, applying results of [W], we prove
that there are infinitely many multiple zeros of ζF (s) lying on the critical line.

We give some numerical examples.
Finally, we show, applying the Brauer-Kuroda relations, how to obtain the

Dedekind zeta functions with multiple zeros in the critical strip in the case of
some other groups G.
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2. Groups

Let G be the following group of matrices over Fq, where q > 2 is a power of prime:

G :=

{(
a b
0 1

)
: a ∈ F∗

q , b ∈ Fq
}
.

The subgroups of G :

A :=

{(
1 b
0 1

)
: b ∈ Fq

}
and H :=

{(
a 0
0 1

)
: a ∈ F∗

q

}
are isomorphic to the additive and multiplicative groups of the field Fq, respec-
tively.

There is the exact sequence

1 −−−−→ A −−−−→ G
φ−−−−→ F∗

q −−−−→ 1

where φ(
(
a b
0 1

)
) = a. Moreover, φ : H → F∗

q is an isomorphism.

By the standard arguments (it is an easy exercise) one can prove:

Claim 2.1. The commutator subgroup G′ of G is A.

Claim 2.2. For g :=

(
a b
0 1

)
the coset gA equals

{(
a x
0 1

)
: x ∈ F∗

q

}
. So there

are q − 1 cosets determined by the values of a ∈ F∗
q .

Claim 2.3. In G there are q conjugacy classes: {I}, where I is the unit matrix,{(
1 b
0 1

)
: b ∈ F∗

q

}
= A \ {I}, and q − 2 cosets gA, where g /∈ A.

3. Characters

Let λ1 be the principal character of the trivial subgroup 1 = {I}. Since the group
H is abelian of order q − 1, there are q − 1 irreducible characters φ1, φ2, . . . , φq−1

of H, which are 1-dimensional. Let φ1 be principal.
Similarly, let ψ1, ψ2, . . . , ψq be irreducible characters of the group A, where ψ1

is principal. They are 1-dimensional.
By Claim 2.1, the commutator subgroup G′ of G has index q − 1. Therefore

there are q − 1 1-dimensional irreducible characters χ1, χ2, . . . , χq−1 of G, let χ1

be principal.
By Claim 2.3, there is one more irreducible character χq of G. Its dimension

χq(1) can be determined from the equality
q∑
j=1

χj(1)
2 = #G.

We get χq(1)2 = #G −
∑q−1
j=1 χj(1)

2 = q(q − 1) − (q − 1) = (q − 1)2. Hence
χq(1) = q − 1 > 1, since q > 2, by assumption.
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Lemma 3.1. The following formulas for induced characters hold:

(i) indG1 (λ1) =
∑q
j=1 χj(1)χj =

∑q−1
j=1 χj + (q − 1)χq.

(ii) indGH(φ1) = χ1 + χq.

(iii) indGA(ψj) = χq for every j = 2, . . . , q.

Proof. The formula (i) is well known, see [H, (3.9)] or [T, (1.5.7)].
(ii) Obviously, indGH(φ1) is a summand of indG1 (λ1) and χ1 is a summand of

indGH(φ1). From

q−1∑
j=1

χj(1) = q − 1 and (indGH(φ1))(1) = (G : H)φ1(1) = (G : H) = q

we conclude that indGH(φ1) is not a summand of
∑q−1
j−1 χj . Consequently, χq is a

summand of indGH(φ1).
Comparing the dimensions

(indGH(φ1))(1) = q and (χ1 + χq)(1) = 1 + (q − 1) = q

we get (ii).
(iii) The proof is similar. Since χ1 is a summand of indGA(ψ1) and (indGA(ψ1))(1)

= (G : A) = q − 1, we conclude that χq is not a summand of indGA(ψ1). Conse-
quently, comparing dimensions we get

indGA(ψ1) =

q−1∑
j=1

χj ,

and hence indGA(ψj) = χq for every j = 1, 2, . . . , q − 1. �

4. Artin’s L-functions

Let the group G defined above be the Galois group of some Galois extension F/E
of number fields. Let K and M be subfields corresponding to the subgroups H
and A, respectively, i.e. K = FH , M = FA.

Applying the well known properties of Artin’s L-functions (see [H]) correspond-
ing to characters defined above we get the following lemmas.

Lemma 4.1. In the above notation we have

L(s, λ1, F/F ) = ζF (s), L(s, φ1, F/K) = ζK(s),

L(s, ψ1, F/M) = ζM (s), L(s, χ1, F/E) = ζE(s).

Proof. The Artin L-function corresponding to a principal character is the Dedekind
zeta function of an appropriate field. �
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Lemma 4.2. The following Artin’s L-functions are classical abelian L-series of
corresponding fields:

L(s, φj , F/K), 2 6 j 6 q − 1,

L(s, ψj , F/M), 2 6 j 6 q,

L(s, χj , F/E), 2 6 j 6 q − 1.

Proof. The Artin L-function corresponding to a non-principal 1-dimensional char-
acter is the classical abelian L-series of the appropriate field. �

Lemma 4.3.
(i) ζF (s) = ζE(s)

∏q−1
j=2 L(s, χj , F/E) · L(s, χq, F/E)q−1.

(ii) ζK(s) = ζE(s) · L(s, χq, F/E).
(iii) L(s, ψj , F/M) = L(s, χq, F/E) for j = 2, . . . , q.

Proof. In the proof we apply several times the multiplicativity of Artin’s L-func-
tions:

L(s, ν1 + ν2, R/S) = L(s, ν1, R/S) · L(s, ν2, R/S),
where ν1, ν2 are characters of the Galois group of the Galois extension R/S of
number fields.

Moreover, we apply the invariance of Artin’s L-functions with respect to the
inducing of characters:

L(s, indVU (ν), R/S) = L(s, ν,R/T ),

where R ⊃ T ⊃ S, R/S is a Galois extension, U = Gal(R/T ), V = Gal(R/S)
and ν is a character of U.

The Lemma follows from Lemma 3.1 (i), (ii) and (iii), respectively, and
Lemma 4.1. �

5. Multiple zeros of Dedekind zeta functions

Theorem 5.1. The Dedekind zeta function ζF (s) of the field F defined above has
infinitely many zeros of multiplicities > q − 1 in the critical strip.

Proof. It is known that a classical abelian L-series corresponding to a non-
principal 1-dimensional character is an entire function (it does not have poles).
It is also known that it has infinitely many zeros in the critical strip.

By Lemma 4.3(iii) and Lemma 4.2, L(s, χq, F/E) is a classical abelian L-series
corresponding to a non-principal 1-dimensional character ψj , j ̸= 1.

Similarly, by Lemma 4.2, L(s, χj , F/E) for j = 2, . . . , q−1, are classical abelian
L-series corresponding to the non-principal 1-dimensional characters χj .

Therefore on the r.h.s. of the formula in Lemma 4.3(i) the only pole is the pole
of ζE(s) at s = 1.

It follows, by Lemma 4.3(i), that every zero of L(s, χq, F/E) is a zero of multi-
plicity at least q− 1 of ζF (s). In particular, the same holds for zeros in the critical
strip. �
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Theorem 5.2. Let F be a Galois extension of Q with the Galois group S3. Then
infinitely many multiple zeros of ζF (s) lie on the critical line.

Proof. In the above notation assume that q = 3. Then G = S3 and K = F ⟨(12)⟩

is a cubic subfield of F, which is not Galois.
The irreducible character χ3 of S3 is 2-dimensional, and from Lemma 4.3(i),(ii)

we get

ζF (s) = ζ(s) · L(s, χ2, F/Q) · L(s, χ3, F/Q)2, (1)
ζK(s) = ζ(s) · L(s, χ3, F/Q).

In [W] it is proved that the number N0(T ) of zeros s = 1
2 + it with 0 6 t 6 T

(counted with their multiplicities) of ζK(s)/ζ(s) = L(s, χ3, F/Q) satisfies

N0(T ) >
T 1/2

(log T )2/3(log log T )(1/3)+ε
for T > T0(ε).

By (1), such zeros are multiple zeros of ζF (s), hence the theorem follows. �

Other numerical examples which lead to multiple zeros in the critical strip of
Dedekind zeta functions are given in [To]. There are considered fields of degrees
up to 6.

6. The functional equation

In general it is difficult to write explicitly the functional equation for an Artin
L-function. In the case of L(s, χq, F/E) it is easy due to Lemma 4.3(ii). Namely,
it is sufficient to divide side by side the functional equations for ζK(s) and for
ζE(s).

For

ξK(s) :=

(
|d(K)|
π(K:Q)

)s/2
Γ
(s
2

)r1(K)+r2(K)

Γ

(
s+ 1

2

)r2(K)

ζK(s)

and

ξE(s) :=

(
|d(E)|
π(E:Q)

)s/2
Γ
(s
2

)r1(E)+r2(E)

Γ

(
s+ 1

2

)r2(E)

ζE(s)

we have the functional equations

ξK(s) = ξK(1− s) and ξE(s) = ξE(1− s)

Dividing these equations side by side we get, by Lemma 4.3(ii),

ξK/E(s) :=
ξK(s)

ξE(s)
=

(
|d(K)|

|d(E)|π(K:E)

)s/2
Γ
(s
2

)r1(K)+r2(K)−r1(E)−r2(E)

× Γ

(
s+ 1

2

)r2(K)−r2(E)

L(s, χq, F/E).
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Therefore the functional equation for L(s, χq, F/E) is

ξK/E(s) = ξK/E(1− s).

It follows that the function L(s, χq, F/E) belongs to the Selberg class, and its
degree is

(r1(K) + r2(K)− r1(E)− r2(E)) + (r2(K)− r2(E)) = (K : Q)− (E : Q)

= (E : Q)((K : E)− 1) = (q − 1)(E : Q) = χq(1)(E : Q).

7. Conjectures

All observations made above concern fields with very special Galois groups G.
One may expect that analogous results hold for Galois fields with an arbitrary
nonabelian Galois group. We state corresponding conjectures in a more precise
form.

Let F/E be a Galois extension of number fields with the Galois group G,
which is not abelian, and let L(s, χ, F/E) be the Artin L-function where χ is an
irreducible character of G of dimension χ(1) > 1.

Conjectures. 1. The Dedekind zeta function ζF (s) has infinitely many multiple
zeros in the critical strip (and even on the critical line).

2. L(s, χ, F/E) belongs to the Selberg class, and is of degree χ(1) · (E : Q).

8. Numerical examples

We choose the group G and the field F as simple as possible. Namely, let q = 3.
There is a unique non-abelian group of order q(q − 1) = 6, the symmetric group
G = S3.

Let E = Q and F = Q(ζ3,
3
√
d), for some cubefree d > 1. Then Gal(F/Q) = S3.

We are looking for zeros on the critical line of the Artin L-function L(s, χ3, F/Q),
where χ3 is the unique irreducible character of dimension 2 of the group S3.

We have K = Q( 3
√
d). Therefore, by Lemma 4.3(ii), it is sufficient to look for

zeros of ζK(s) which are not zeros of the Riemann zeta function ζQ(s) = ζ(s).

In the cases of d = 2, 3, 6 and 12 some such zeros have been computed by
Lagarias and Odlyzko in [LO, Table 1].

Using the package GP/PARI one can easily give (numerically) much more such
zeros also for other values of d. E.g. we give zeros s = 1

2 + it of ζK(s) in the case
d = 5, i.e. F = Q(ζ3,

3
√
5), which belong to the critical line and lie below the first

zero of the Riemann zeta function s = 1
2 + 14.134725 i. From the above it follows

that they are zeros of ζF (s) of the multiplicities at least 2.
Multiple zeros s = 1

2 + it of ζF (s) are given by the following values of t <
14.134725:
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1.690758517 3.117579654 5.605049571 6.378094679 6.924439738
8.156647047 8.913454288 10.021397746 10.804860136 11.340000786

12.400920955 13.020090963 13.786318772

9. Brauer-Kuroda relations

For a Galois extension F/E of number fields with the non-exceptional Galois group
G there are known multiplicative relations between ζF (s) and the Dedekind zeta
functions of some intermediate fields FH , for cyclic subgroups H of G, see [BBX].

If in such a relation some zeta functions appear with exponents > 1, one may
expect that ζF (s) has multiple zeros in the critical strip.

We illustrate this by the following example. For simplicity, we denote by ζτ (s)
the Dedekind zeta function of the subfield of F fixed by the automorphism τ ∈ G.

Example. For the following groups G we have the corresponding Brauer-Kuroda
relations:

(i) G = S3, ζF (s) · ζE(s)2 = ζ(123)(s)ζ(12)(s)
2,

(ii) G = A4, ζF (s) · ζE(s)2 = ζ(12)(34)(s)ζ(234)(s)
2,

(iii) G = S5, ζF (s) · ζE(s)4 = ζ(123)(45)(s)
2 · ζ(1234)(s)2 · ζ(12345)(s),

(iv) G = D2p, ζF (s) · ζE(s)2 = ζσp(s) · ζσ2(s)
2.

Here σ2 and σp are elements of orders 2 and p, respectively, in the dihedral group
D2p, where p is an odd prime.

Since in these equations some zeta functions on the r.h.s. appear with the
exponent 2, it follows that a zero of such zeta function is a multiple zero of ζF (s),
provided it is not a zero of ζE(s).

To exclude the last possibility, we apply the well known asymptotic formula:
For a number fieldM the numberNM (T ) of zeros (counting their multiplicities)

of ζM (s) in the set {s ∈ C : 0 < Re s < 1, 0 < Im s < T} equals

NM (T ) =
(M : Q)

2π
· T log T +O(T ). (2)

In the case (i) E is a proper subfield of F ⟨(12)⟩, then, by (2), there are infinitely
many zeros of ζ(12)(s) in the critical strip, which are also zeros of ζF (s). Hence
they have multiplicities at least 2. In the cases (ii)-(iv) the argument is similar.

Remark. For the group G = S4 the Brauer-Kuroda relation is

ζF (s) · ζE(s)2 = ζ(12)(s) · ζ(123)(s) · ζ(1234)(s),

and we cannot apply the same argument as above.
On the other hand for this group we have

ζF (s) = ζK(s) · L(s, χ1, F/E)2 · L(s, χ2, F/E)3 · L(s, χ3, F/E)3,

whereK = FA4 , and χ1, χ2, χ3 are irreducible characters ofG satisfying χ1(1) = 2,
χ2(1) = χ3(1) = 3. Consequently, every zero of ζF (s), which is not a zero of ζK(s)
is a multiple zero of ζF (s). There are infinitely many such zeros, by (2).
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