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SOME RESULTS ON GALOIS REPRESENTATIONS ATTACHED
TO MOTIVES OF GL2-TYPE

Chuangxun Cheng

Abstract: In this paper, we study the structure of End(M) where M is a motive of GL2-type
over a totally real field. Under some standard conjectures for motives, we then prove some results
about Galois representations attached to such motives.
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1. Introduction

In this paper, a motive always means a motive for absolute Hodge cycles. All the
terminology about motives used in this paper will be introduced in Section 2. (See
Section 2 for some basic properties and [6] for details.)

Let K be a number field. An abelian variety A over K is of GL2-type if the
Q-algebra EndK(A) ⊗Z Q is a number field of degree dim(A) over Q. In [7],
the author investigates abelian varieties of GL2-type and proves that all abelian
varieties of GL2-type over Q are modular under Serre’s conjecture on mod p Galois
representations of GQ. In [12], the author proves a similar modularity result for
motives of GL2-type over Q. In this paper, we continue the work in [12] and prove
several results on Galois representations attached to motives of GL2-type over
totally real fields. As in [12], some of the arguments in this paper are identical to
those in [7] and [8].

Let M be a motive over a number field K. We say that M is of GL2-type if (1)
M is pure of weight w with Hodge type (pσ, qσ) + (qσ, pσ) (pσ > qσ) with respect
to σ : K → C, and w is equal to the dimension of the underlying variety of M
if w is even; (2) there exists a number field E such that E ↪→ EndK(M) ⊗Z Q
and [E : Q] = 1

2 rank(M). By functoriality, E acts on HB(M) which is a Q-vector
space of dimension rank(M).

In this paper, we always assume that K is a totally real field. We have the
following theorem.
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Theorem 1.1. Let M be a motive over K of GL2-type. Then M/K is simple if
and only if E = EndK(M)⊗Q.

Let N be a motive over Q̄ which is pure of weight. We say that N has complex
multiplication if it is the product of motives Ni such that EndQ̄(Ni) ⊗Z Q is
a number field of degree rank(Ni) over Q.

We have the following theorem. The case whenK = Q is proved in Theorem 4.3
of [12].

Theorem 1.2. Let M be a simple motive over K of GL2-type such that MQ̄ =
M ×K Q̄ does not contain submotives with complex multiplication. Let E ↪→
EndK(M)⊗ZQ with [E : Q] = 1

2 rank(M). Then D := EndQ̄(M)⊗ZQ is a central
simple algebra over a totally real field L ⊂ E, the Schur index of D is 1 or 2, and
D contains E as a maximal subfield.

Let M be a simple motive of GL2-type over K which is pure of weight w.
Assume that E = EndK(M) ⊗Z Q. Since M has a polarization (see Section 6 of
[4]), we see that E is a totally real or a CM field. Let Vl = Hl(M) be the l-adic
realization of M for each prime number l and Eλ be the completion of E at a
finite place λ | l of E. By functoriality, E acts on Vl which is a Ql-vector space of
dimension rank(M). Then Vl is free of rank 2 over E ⊗Ql, Vλ := Vl ⊗E⊗Ql

Eλ is
a vector space of dimension 2 over Eλ. Therefore, we get a family of rank 2 Galois
representations:

ρλ : GK → GLE⊗Ql
(Vl) ∼= GL2(E ⊗Ql) → GL2(Eλ),

where GK = Gal(Q̄/K) is the absolute Galois group of K.
For each finite place λ of E, let δλ = det(ρλ) : GK → E×

λ . Let χl be the l-adic
cyclotomic character. Fix embeddings E ↪→ C and Eλ ↪→ C. Then we have the
following theorem. The corresponding results for motives over Q are proved in
Section 5 of [12].

Theorem 1.3.

(1) Let M be a simple motive of GL2-type over K which is pure of weight w.
Then there is a character of finite order ϵ : GK → E×

λ such that δλ = ϵχwl
for each λ. Furthermore, this character is unramified at each prime which
is a prime of good reduction for M .

(2) For each λ, δλ is totally odd in the sense that δλ(c) = −1 for any complex
conjugation c ∈ GK .

We prove the following theorem. These results in the caseK = Q are mentioned
in Section 5 of [12]. The abelian varieties analogue is proved in [7]. Note that if
K = Q, Serre’s conjecture is now a theorem, thus ρλ is modular and the following
results follow immediately from the properties of Galois representations attached
to modular forms.
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Theorem 1.4. Under Tate conjecture (see Section 2 for the statement), we have
the following results.

(1) For each prime p of good reduction of M , ap = ϵ(Frobp)āp, where Frobp
is arithmetic Frobenius, ap = Trace(ρλ(Frobp)), and ¯ means the complex
conjugation.

(2) Let S be a finite set of finite primes at which M has bad reduction. Then
E = Q(ap | p ̸∈ S).

(3) Let F be the subfield of E generated by the numbers a2p/ϵ(Frobp) with p ̸∈ S,
then F is totally real and the extension E/F is abelian.

(4) The field L in Theorem 1.2 is the same as the field F in (3). In particular,
E is an abelian extension of L.

2. Motives for absolute Hodge cycles

In this section, we review the construction of the category of motives for abso-
lute Hodge cycles. Let X be a smooth projective variety over a subfield K of C.
We consider three Weil cohomologies HdR, HB,σ, and Hl. (They are de Rham
cohomology, Betti cohomology with respect to σ : K ↪→ C, and l-adic etale coho-
mology.) These cohomologies are furnished with cycle maps:

clr : CHr(X) → H2r
? (X)(r),

where CHr(X) is the abelian group of algebraic cycles of codimension r on X
modulo rational equivalence, and ? = dR, (B, σ), or l. Define

H2r
total(X)(r) := H2r

dR(X)(r)×
∏
l

H2r
l (X)(r)×

∏
σ

H2r
B,σ(X,Z)⊗ Z(r).

Let Iσ : HB,σ(X) ⊗Q C→̃HdR(X) ⊗K,σ C and Il,σ : HB,σ(X) ⊗Q Ql→̃Hl(X) be
the comparison isomorphisms. Then write Iσ,Z (resp. Il,σ,Z) for the composition
of the natural inclusion H2r

B,σ(X,Z)⊗ Z(r) ↪→ HB,σ(X)(r) with Iσ (resp. Il,σ).

Definition 2.1. An absolute Hodge cycle x of codimension r on X is an element
of the finitely generated Z-module:

CrAH(X) := {(xdR, xl, xσ)l,σ ∈ H2r
total(X)(r) | Iσ,Z(xσ) = xdR, Il,σ,Z(xσ) = xl}.

The cup product of each cohomology theory induces the ring structure on
C

2 dim(X)
AH (X ×X) for a smooth projective variety X.

The category MAH of motives for absolute Hodge cycles is defined as follows.
The objects of MAH are triples (X, p,m), where X is a smooth projective variety,
p ∈ C

2 dim(X)
AH (X × X) ⊗ Q is a projector, and m is an integer. For two objects

M = (X, p,m) and N = (Y, q, n) of MAH , the morphism set is defined by

Hom(M,N) := p ◦ Corr−m+n
AH (X,Y ) ◦ q,

where CorrrAH(X,Y ) =
∏n
i=1 C

r+dim(Xi)
AH (Xi × Y ) ⊗ Q if X has irreducible com-

ponents X1, · · · , Xn.
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Remark 2.2. There are several advantages to work with motives for absolute
Hodge cycles. First, the category of motives for absolute Hodge cycles by ex-
tending the coefficients to Q is a semi-simple Q-linear abelian category. (See for
example [6] and Section 6 of [4].) Then we can control the decomposition of mo-
tives using their endomorphism algebras and consider the image of a morphism
between motives. See [12] for applications of this fact. Second, there is a well
defined theory of polarizations for motives for absolute Hodge cycles. (See Section
6 of [4].) Therefore, we may generalize certain arguments in the case of abelian
varieties to the case of motives.

In the rest of this section, we recall some definitions related to motives for
absolute Hodge cycles.

Dual motives. Let M = (X, p,m) be a pure motive, we define the dual
motive M∨ = (X, pt, dim(X)−m), where pt means the transpose of p.

The motive L = (P1, π2, 0), π2 = P1 × {pt}, is the so-called Lefschetz motive
and Q(1) := L∨ = (P1, π0, 1), π0 = {pt} × P1, is the so-called Tate motive. For
M = (X, p,m), we have isomorphism M ∼= (X, p, 0)⊗Q(m).

Realizations of motives. For each Weil cohomology theory H?, we define
the realizations of a motive M = (X, p, 0) by

H∗
? (M) = ⊕2 dim(X)

i=0 Hi
?(M),

where Hi
?(M) = Im(p∗ : Hi

?(X) → Hi
?(X)). Here p∗ is the composite map of the

following maps

Hi
?(X)

p∗1−→ Hi
?(X ×X)

∪γ(p)−−−−→ H
i+2dim(X)
? (X ×X)

p2∗−−→ Hi
?(X),

where pj : X ×X → X is the j-th projection, γ : Corr0(X,X) → H
2 dim(X)
? (X) is

the cycle map, and p2∗ is the Gysin homomorphism.

Definition 2.3. Let M = (X, p,m) be a motive. If H∗
? (M) ⊂ Hi

?(X)(m) for
each Weil cohomology H? = HB,σ,HdR, Het, then we say that M is pure of weight
w = i− 2m. Note that if M is pure of weight w, then M∨ =M(w).

We have Hodge decomposition Hi
B,σ(X)(m) = ⊕p+q=iHp,q

B,σ(X)(m). We say M
is of Hodge type (pσ, qσ) + (qσ, pσ) if H∗

B,σ(M) ⊂ Hpσ,qσ
B,σ (X)(m)⊕Hqσ,pσ

B,σ (X)(m).

If M = (X, p,m) is pure of weight i − 2m and M is defined over a number
field K (i.e., X and p are both defined over K), then the realizations of M can be
explicitly described. See Section 2 of [12] and Section 4 of [6] for details.

The rank of a motive. We have comparison isomorphisms between realiza-
tions of motives:

Iσ : HB,σ(M)⊗Q C ∼−→ HdR(M)⊗K,σ C

and
Il,σ : HB,σ(M)⊗Q Ql

∼−→ Hl(M).

We define the rank of M to be dimQHB,σ(M). By the comparison theorem,
rank(M) = dimQl

(Hl(M)) = dimK(HdR(M)).



Some results on Galois representations attached to motives of GL2-type 375

Field of definition of an endomorphism. As in [12], we define the field
of definition of absolute Hodge cycles as follows. For a motive M over K, we
say ϕ ∈ End(M) is defined over a field extension L of K if (ϕ)l is member of
Hl(M)Gal(K̄/L) for all prime l. We write EndL(M) for the ring consisting of
endomorphisms of M defined over L.

Tate conjecture. We recall the Tate conjecture as stated in Section 5 of [12].
For more details, see the references cited in [12].

Conjecture 2.4 (Tate conjecture). Let M and N be motives over a number
field K for absolute Hodge cycles which have same weight. Let B be a positive
number such that Het(M,Zl) and Het(N,Zl) are free Zl-modules for any prime
number l > B. Let ρl : GK → GLZl

(Het(M,Zl)) be the l-adic representation
attached to M . Then we have the following.

(1) Het(M,Zl) is a semi-simple GK-module.
(2) The natural map

αK : HomK(N,M)⊗Z Zl → HomGK
(Het(N,Zl),Het(M,Zl))

is an isomorphism.
(3) For almost all l > B, the subalgebra Zl[ρl(GK)] of EndZl

(Het(M,Zl)) is
the full commutator of the image of the natural map βK : EndK(M) →
EndZl

(Het(M,Zl)).
(4) Let ρ̄l be the reduction of ρl mod l for l > B. Then for almost all l >

B, the subalgebra Fl[ρ̄l(GK)] of EndFl
(Het(M,Zl)/lHet(M,Zl)) is the full

commutator of the image of the natural map β̄K : EndK(M) ⊗ Z/lZ →
EndFl

(Het(M,Zl)/lHet(M,Zl)).
(5) EndFl

(Het(M,Zl)/lHet(M,Zl)) is a semi-simple GK-module.

3. Endomorphisms of M

3.1. Proof of Theorem 1.1 and Theorem 1.2

We prove Theorem 1.1 and 1.2 in this subsection. The strategy is essentially the
same as in the case K = Q.

Proof of theorem 1.1. Let X = EndK(M) ⊗ Q. By assumption, we have em-
bedding E ↪→ X. Let D be the commutant of E in X. First, we show that D is
a field.

Let ϕ ∈ D\{0} and let N = ϕ(M). Certainly, E acts on N . ϕ induces an
endomorphism of HdR(M) which preserves the filtration of HdR(M). Since K
is totally real, by Lemma 5.1.1 of [5], HdR(M) (resp. HdR(N)) has a filtration
F (M) = Fil[w/2]HdR(M) (resp. F (N)) which is a free E ⊗K-module of rank one
(resp. of rank rank(N)

2 ). Since

[E : Q] 6 rankK(HdR(N))

2
6 rankK(HdR(M))

2
= [E : Q],

we have rank(M) = rank(N) and ϕ is an isogeny. D is a division algebra over Q
such that D ⊃ E.
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Because endomorphisms of M preserve the filtration of HdR(M), F (M) can be
viewed as a D-vector space. Then dimK D ⊗K | rankK(F (M)) = [E : Q][K : Q].
Therefore [D : Q] | [E : Q]. So E = D. In particular, the center F of X is a subfield
of D = E.

Assume that M ∼K
∏
iN

ni
i , where Ni is a simple motive over K. Then X =∏

iMni(Di), whereDi = EndK(Ni)⊗Q is a division algebra over F . Since E ↪→ X,
and the commutant of E in X is E itself, we may assume that M ∼K Nni

i for one
i. Let ti =

√
dimQDi, then [E : F ] = niti. As before, F (Ni) is a vector space over

Di, we have dimQDi | rankK(F (Ni)). Therefore ni · dimQDi | ni · rankK(F (Ni)).
Note that ni · dimQDi = nit

2
i [F : Q], ni · rankK(F (Ni)) = rankK(F (M)) =

[E : Q] = tini[F : Q], so ti = 1, F = Di. The theorem follows. �

Proof of theorem 1.2. Since M/K is simple, we have E = EndK(M)⊗Q. First,
we assume that M is Q̄ simple. Let D be the commutant of E in D = EndQ̄(M)⊗
Q. By the same argument as in the proof of Theorem 1.1, dimQD | [E : Q] and
D = E. Let F = Z(D) be the center of D. Assume that D has Schur index t,
then we have [E : F ] = t, [D : F ] = t2. Note that rank(M) = 2[E : Q] =
2t[F : Q]. Since HB(M) is vector space over D, we have t2[F : Q] = rankQ(D) |
rankQ(HB(M)) = 2t[F : Q]. Therefore t = 1 or 2.

We still have to prove that F is totally real. This is a statement about motives
over Q̄ (it has nothing to do with the field of definition of M). It follows from the
argument in the proof of Theorem 4.3 of [12].

Now assume that M ∼Q̄
∏
iN

ni
i , where Ni are Q̄ simple. Then

EndQ̄(M) =
∏
i

Mni(EndQ̄(Ni)).

Because E is a Q subalgebra of EndQ̄(M)⊗Q, we must have E ↪→Mni(EndQ̄(Ni))
for each i. Then

rank(M)

2
= [E : Q] | ni

2
rank(Ni) 6

∑
i

ni
2

rank(Ni) =
rank(M)

2
.

We must have M ∼Q̄ Nn. Then EndQ̄(M) = Mn(EndQ̄(N)), the statements
hold. �

3.2. K-motives

Let M be a motive over Q̄, K be a number field. We say M is a K-motive if (1) M
is pure of weight w with Hodge type (pσ, qσ) + (qσ, pσ) (pσ > qσ), and w is equal
to the dimension of the underlying variety of M if w is even; (2) EndQ̄(M) ⊗ Q
is a division algebra over a totally real field F with Schur index t =1 or 2, and
2t[F : Q] = rank(N); (3) for each σ ∈ Gal(Q̄/K), there exists a non-zero isogeny

µσ :Mσ →M,

such that µσ ◦σ(ϕ) = ϕ◦µσ for all ϕ ∈ EndQ̄(M)⊗ZQ. We then have the following
proposition.
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Proposition 3.1. Let N be a Q̄ simple factor of a motive M of GL2-type over
K which does not contain submotives with complex multiplication. Then N is
a K-motive.

Proof. From the proof of Theorem 1.2, we may assume that M ∼Q̄ N
n, where N

is a Q̄ simple motive. We have proved that the endomorphism algebra EndQ̄(N)⊗
Q is a division algebra over a totally real field F with Schur index t = 1, or 2, and
the rank of N is rank(N) = t[F : Q]. Then the result follows exactly by the same
argument as in the proof of Proposition 6.3 of [12]. �

4. Galois representations attached to M

4.1. Proof of Theorem 1.3 and Theorem 1.4

Proof of theorem 1.3. The proof is the same as the proof of Lemma 5.1 of [12].
The only difference is that, for statement (2), we have a complex conjugation for
each embedding K ↪→ C̄. But the argument in [12] still holds since the com-
plex conjugation induced from σ : K → C sends Hpσ,qσ (M) to Hqσ,pσ (M) and
pσ ̸= qσ. �

Proof of theorem 1.4. (1) Let σ : E ↪→ Q̄l be an embedding of fields. Let σ̄
be the complex conjugation of σ defined by σ̄(x) = σ(x̄). (Recall that we have
fixed an embedding E ↪→ C.) Let Vσ = Vl ⊗E⊗Ql

Q̄l, where the tensor product is
taken relative to the map E ⊗ Ql ↪→ Q̄l induced by σ. Define Vσ̄ similarly. Fix
a polarization of M defined over K. It gives us a bilinear map

ϕ : Vl × Vl → Ql(w)

with the following properties:

ϕ(ex, y) = ϕ(x, ēy) ∀e ∈ E, x, y ∈ Vl,

ϕ(gx, gy) = gϕ(x, y) ∀g ∈ GK .

Here ē = e if E is totally real, ē is the complex conjugation of e if E is CM. After
extending scalars from Ql to Q̄l, we find an isomorphism of Q̄l[GK ]-modules

Vσ̄ ∼= Hom(Vσ, Q̄l(w)).

By Theorem 1.3, the determinant of Vσ is a one-dimensional vector space over Q̄l
on which GK acts by the character ϵσχwl . Since Vσ is of dimension two over Q̄l,
this gives us another isomorphism

Hom(Vσ, Q̄l(ϵσχwl )) ∼= Vσ.

By the above two isomorphisms, we have Vσ ∼= Vσ̄(ϵ
σ). For p - l a prime of good

reduction, the trace of Frobp acting on Vσ is σ(ap), the trace of Frobp acting on
Vσ̄(ϵ

σ) is ϵσ(Frobp)σ̄(ap) = ϵσ(Frobp)σ(āp). The result follows.
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(2) By Tate conjecture, we have E ⊗ Ql = (EndKM) ⊗ Ql = EndGKVl. Let
V̄l = Vl ⊗ Q̄l. Then we have EndQ̄l[GK ]V̄l = E ⊗ Q̄l. Also, Vl is a semi-simple
GK-module by Tate conjecture, so V̄l is a semi-simple Q̄l[GK ]-module. Define Vσ
as in (1). Then Vσ are semi-simple Q̄l[GK ]-modules and they are pairwise non-
isomorphic. (In fact, they are semi-simple since V̄l is. By the same argument in the
proof of Proposition 4.2, the commutator of their product is

∏
σ Q̄l.) It follows

that their traces are pairwise distinct. Let E′ = Q(ap | p ̸∈ S) ⊂ E, we have
σ|E′ ̸= τ |E′ for any pair σ, τ : E ↪→ Q̄l. So we must have E = E′ = Q(ap | p ̸∈ S).

(3) For p ̸∈ S, by (1), we have

a2p
ϵ(Frobp)

= ā2pϵ(Frobp) =
ā2p

ϵ̄(Frobp)
,

where ¯ is complex conjugation. So F is totally real. Then E is contained in the
extension of F obtained by adjoining to F the square roots of all a2p

ϵ(Frobp)
and all

roots of unity. Therefore E is an abelian extension of F .
(4) Choose a prime number l which splits completely in E, so that every em-

bedding E ↪→ Q̄l factors as E ↪→ Ql ↪→ Q̄l. Choose a finite extension K ′ of Q
which is sufficiently large such that: (1) all endomorphisms of M are defined over
K ′; (2) H := Gal(Q̄/K ′) is contained in the kernel of ϵ. By Tate conjecture, we
have D⊗Ql = EndQl[H]Vl. The center of D⊗Ql is L⊗Ql. The space Vl = Hl(M)
which is free of rank two over E ⊗ Ql decomposes as a product

∏
σ Vσ, where σ

runs over the set Ω of injections σ : E → Ql, Vσ = Vl ⊗E⊗Ql
Ql with respect to

σ : E ↪→ Ql. By Tate conjecture, the action of H on Vl is semi-simple. So Vσ is
a simple Ql[H]-module because M has no sub motives with complex multiplica-
tion. Hence EndHVσ = Ql for all σ.

Now consider M as a motive defined over K ′. Certainly, we have a Galois
representation r : Gal(Q̄/K ′) → GLE(HB(M)) ∼= GL2(E). For each prime v of
K ′ which is not over l and at which M has good reduction, let tv ∈ E be the
number Trace(r(Frobv)). Write rl for the Galois representation

rl : Gal(Q̄/K ′) → GLE⊗Ql
(Hl(M)) ∼= GL2(E ⊗Ql) ∼=

∏
σ

GL(Vσ),

we have Trace(Frobv |Vσ ) = σ(tv) for each σ. For two different σ, τ ∈ Ω, Vσ and
Vτ are isomorphic as Ql[H]-modules if and only if they have the same trace, i.e.,
σ(tv) = τ(tv) for all v, if and only if σ|J = τ |J , where J is the field Q(tv). This
implies that the center of D⊗Ql is J ⊗Ql. Thus L⊗Ql = J ⊗Ql, which implies
that L = J .

Assume σ|J = τ |J , so that Vσ ∼= Vτ as representations of H. Therefore
IndGK

H (Vσ|H) ∼= IndGK

H (Vτ |H) as representations of GK . Since Vσ is a simple
factor of IndGK

H (Vσ|H) and Vτ is a simple factor of IndGK

H (Vτ |H), we see that
there exists a character ψ : GK → Q×

l such that Vσ ∼= Vτ ⊗ ψ as representations
of GK . (In fact, we see that ψ factors as GK → Gal(K ′/K) → Q×

l .) Since
both Vσ and Vτ are unramified at all primes p - l and at which M has good re-
duction, so is ψ. Taking the traces of the two representations Vσ ∼= Vτ ⊗ ψ, we
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have σ(ap) = ψ(Frobp)τ(ap) for all such primes. Taking the determinant, we have

ϵσ = ψ2 · ϵτ . Therefore, σ( a2p
ϵ(Frobp)

) = τ(
a2p

ϵ(Frobp)
) for all p - l and at which M has

good reduction. By Galois theory, we have a2p
ϵ(Frobp)

∈ J for all p - l at which M

has good reduction. By varying l, we see that Q(
a2p

ϵ(Frobp)
| p ̸∈ S) ⊂ J .

We have to prove J ⊂ Q(
a2p

ϵ(Frobp)
| p ̸∈ S). If σ( a2p

ϵ(Frobp)
) = τ(

a2p
ϵ(Frobp)

) for all
p ̸∈ S, by Cebotarev density theorem, we have

(TraceVσ)
2

det(Vσ)
=

(TraceVτ )
2

det(Vτ )
.

Restricting Vσ and Vτ to H, we have Trace(Vσ|H) = ±Trace(Vτ |H). We may
choose K ′ even larger, so H smaller, and get an equality Trace(Vσ|H) =
Trace(Vτ |H). (See page 324 of [11].) Therefore Vσ ∼= Vτ as Ql[H]-modules. �

We construct a map α : GK → E×/F× as follows. For any element g ∈ GK
and ϕ ∈ EndQ̄(M) ⊗Z Q, ϕ and g(ϕ) are inner by Skolem-Noether Theorem. So
there exists an element α(g) ∈ EndQ̄(M)⊗ZQ, such that g(ϕ) = α(g)◦ϕ◦α(g)−1.
Since E = EndK(M)⊗Z Q is its own centralizer in EndQ̄(M)⊗Z Q, we must have
α(g) ∈ E and α(g) is determined up to a scalar multiple of F×. We have the
following proposition.

Proposition 4.1. With the notation as above, we have α2 ≡ ϵ (mod F×). More-
over, suppose that p is a prime of good reduction for M such that ap ̸= 0, then
α(Frobp) ≡ ap (mod F×).

Proof. Fix a prime number l which splits completely in E. To prove that α2 ≡
ϵ (mod F×), it suffices to prove that σ(α

2(g)
ϵ(g) ) = τ(α

2(g)
ϵ(g) ) for any σ and τ are

embeddings E ↪→ Ql which agree on F . Let σ and τ be embeddings E ↪→ Ql
which agree on F , then from the proof of the above theorem, we have Vσ ∼= Vτ ⊗ψ
for some character ψ : GK → Q×

l . Consider the HomQl
(Vσ, Vτ ) as a Galois

module. On one hand, GK acts on it by multiplication ψ(g)−1. On the other
hand, GK acts on it by conjugation by α(g). Note that α(g) acts on Vσ and Vτ by
σ(α(g)) and τ(α(g)) respectively, α(g) acts on HomQl

(Vσ, Vτ ) as τ(α(g))/σ(α(g)).
Therefore, ψ(g)−1 = τ(α(g))/σ(α(g)) as elements in Ql. From the proof of the
above theorem, we have ϵσ = ψ2 · ϵτ . It is easy to see that σ(α

2(g)
ϵ(g) ) = τ(α

2(g)
ϵ(g) ).

From the above argument, we have the following two equations: (1) σ(ap) =
τ(ap)ψ(Frobp) because Vσ ∼= Vτ ⊗ψ; (2) ψ(g)−1 = τ(α(g))/σ(α(g)) proved above.
Therefore, we have σ(α(Frobp)

ap
) = τ(

α(Frobp)
ap

). The result follows. �

4.2. Modularity

The following two propositions generalize Proposition 5.4 and 7.1 of [12], where
the statements are about the case K = Q. The proof is the similar. We give
details here for completeness.
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Proposition 4.2. Under Tate conjecture, the Galois representation ρλ : GK →
GL2(Eλ) is absolutely irreducible for all λ. In particular, we have EndGK

(ρλ) =
Eλ.

Proof. By Tate conjecture, we have the following equality∏
λ|l

Eλ = E ⊗Q Ql = EndQl[GK ](Vl) =
∏
λ|l

EndQl[GK ](Vλ).

We must have Eλ = EndQl[GK ](Vλ). It is obvious that

EndEλ[GK ](Vλ) ⊂ EndQl[GK ](Vλ),

therefore EndEλ[GK ](Vλ) = Eλ. �

Proposition 4.3. Under Tate conjecture, ρ̄λ is absolutely irreducible for all but
finitely many λ.

Proof. Since E = EndK(M) ⊗ Q, we may assume that EndK(M) = OE , the
ring of integers of E. By Tate conjecture, the subalgebra Fl[ρ̄l(GK)] of
EndFl

(Het(M,Zl)/lHet(M,Zl)) is a semi-simple Fl-algebra. Let Φ : EndK(M)⊗
Z/Zl → EndFl

(Het(M,Zl)/lHet(M,Zl)) be the natural map. Then by bicommu-
tation theorem, we have

EndFl[GK ](Het(M,Zl)/lHet(M,Zl)) = (Fl[ρ̄l(GK)])◦Im(Φ),

where ◦ means commutator. Therefore, we have the following surjection map

EndK(M)⊗ Z/Zl = OE ⊗ Z/Zl → EndFl[GK ](Het(M,Zl)/lHet(M,Zl)).

By Tate conjecture again, the source and target have the same rank over Fl.
Therefore, the map is actually bijective. Let kλ be the residue field of OEλ

, then
we have

kλ = Endkλ[GK ](Het(M,Zl)/lHet(M,Zl)).

The statement follows. �

In [1], the authors made the following conjecture.

Conjecture 4.4 (Serre’s conjecture). Let K be a totally real field. If ρ̄ : GK →
GL2(F̄p) is a continuous, irreducible, and totally odd Galois representation, then ρ̄
is modular in the sense that ρ̄ ∼= ρ̄f , where ρ̄f is the modular Galois representation
attached to a Hilbert modular eigenform.

We immediately have that the following corollary.

Corollary 4.5. Under Tate conjecture and Serre’s conjecture, the Galois repre-
sentation ρ̄λ attached to a motive M of GL2-type is modular.
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