DIFFERENCE EQUATIONS IN WEIGHTED SPACES OF SEQUENCES

NADIR V. IBADOV, IL'DAR KH. MUSIN

Abstract: Let $\varphi = \{\varphi_m\}_{m=1}^{\infty}$ be a family of convex functions φ_m on \mathbb{R}^n with certain growth conditions. With a help of restrictions of functions φ_m on \mathbb{Z}^n a weighted space of functions on \mathbb{Z}^n denoted as A_{φ} is defined. Linear continuous functionals on this space in terms of their Fourier-Laplace transform are described. This description and functional analysis methods allowed to study surjectivity of difference operators on A_{φ} and spectral synthesis problem in the kernel of such operators for a special case of a family φ .

Keywords: sequence spaces, linear difference equation, entire functions, duality.

1. Introduction

Let $\varphi = \{\varphi_m\}_{m=1}^{\infty}$ be a family of convex functions $\varphi_m : \mathbb{R}^n \to \mathbb{R}$ such that:

1) $\lim_{x\to\infty} \frac{\varphi_m(x)}{\|x\|} = +\infty$ for each $m \in \mathbb{N}$ ($\|\cdot\|$ is the Euclidean norm on \mathbb{R}^n); 2) $\exists A > 0 \ \forall m \in \mathbb{N} \ \exists B_m \ge 0$:

$$\varphi_m(x) - \varphi_{m+1}(x) \ge A \ln(1 + ||x||) - B_m, \qquad x \in \mathbb{R}^n.$$

For each $m \in \mathbb{N}$ let

$$A(\varphi_m) = \left\{ f : \mathbb{Z}^n \to \mathbb{C} \text{ such that } p_m(f) = \sup_{\alpha \in \mathbb{Z}^n} \frac{|f(\alpha)|}{e^{\varphi_m(\alpha)}} < \infty \right\}.$$

Obviously, for each $m \in \mathbb{N}$ $A(\varphi_{m+1}) \subset A(\varphi_m)$. Let $A_{\varphi} = \bigcap_{m=1}^{\infty} A(\varphi_m)$. Thus, for n = 1 elements of A_{φ} are two-sided sequences, for n > 1 elements of A_{φ} are multiple sequences. For brevity elements of A_{φ} will be simply called sequences. Sometimes we denote a sequence f as $(f(\alpha))_{\alpha \in \mathbb{Z}^n}$.

Under usual operations of addition and multiplication by complex numbers A_{φ} is a linear space. Endow A_{φ} with the topology of projective limit of the spaces $A(\varphi_m)$. Obviously, A_{φ} is a separable Fréchet space.

2010 Mathematics Subject Classification: primary: 39A10; secondary: 47B39, 40B05

The research of the second author was supported by grants from RFBR (11-01-00572, 11-01-97019, 12-01-97004).

In this article a description of the strong dual space of A_{φ} in terms of Fourier-Laplace transform of linear continuous functionals on A_{φ} as some space of periodic entire functions in \mathbb{C}^n is obtained. Such a description allowed to study surjectivity of difference operators on A_{φ} and spectral synthesis problem in the kernel of such operators for a special case of a family φ .

Note that Fourier-Laplace transform of linear continuous functionals on sequence spaces was succesfully applied by many authors to study various analysis problems in these spaces. For example, L.A. Rubel and B.A. Taylor [6] considered spaces of all two-sided and one-sided sequences of complex numbers of at most exponential growth and proved some "polynomial" approximation theorems in these spaces by dualizing a gap theorem of C. Rényi [4] for periodic entire functions. This approach was also applied by A.A. Borichev [1] to describe the solutions of convolution equations in certain spaces of two-sided and one-sided sequences of exponential growth.

We shall use the following notations. For $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$ (\mathbb{C}^n), v = $(v_1,\ldots,v_n)\in\mathbb{R}^n$ (\mathbb{C}^n) $\langle u,v\rangle=u_1v_1+\cdots+u_nv_n$ and ||u|| denotes the Euclidean norm in $\mathbb{R}^n(\mathbb{C}^n)$.

For $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}^n$, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ $|\alpha| = \alpha_1 + \dots + \alpha_n$, $\alpha' = (\alpha_2, \dots, \alpha_n)$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, $z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$, $D^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ $\frac{\partial^{|\alpha|}}{\partial z_1^{\alpha_1}\cdots\partial z_n^{\alpha_n}} \ .$

For multi-indices $\alpha = (\alpha_1, \ldots, \alpha_n), \beta = (\beta_1, \ldots, \beta_n) \in \mathbb{Z}_+^n$ the notation $\beta \leq \alpha$ indicates that $\beta_j \leq \alpha_j \ (j = 1, 2, \dots, n).$

For multi-indices $\alpha = (\alpha_1, \ldots, \alpha_n), \beta = (\beta_1, \ldots, \beta_n) \in \mathbb{Z}_+^n$ such that $\beta \leq \alpha$ let $\begin{aligned} C_{\alpha}^{\beta} &= \prod_{j=1}^{n} C_{\alpha_{j}}^{\beta_{j}} \text{ where } C_{\alpha_{j}}^{\beta_{j}} \text{ are the combinatorial numbers.} \\ \text{For } r > 0 \text{ and } z \in \mathbb{C}^{n} \text{ let } B(z,r) = \{\zeta \in \mathbb{C}^{n} : \|\zeta - z\| < r\}. \end{aligned}$

For a locally convex space X let X' be the space of linear continuous functionals on X and let X^* be the strong dual space.

For a function $\Phi \in C(\mathbb{R}^n)$ such that $\lim_{x\to\infty} \frac{\Phi(x)}{\|x\|} = +\infty$ let

$$\begin{split} \Phi^{\star}(x) &:= \sup_{\alpha \in \mathbb{Z}^n} (\langle x, \alpha \rangle - \Phi(\alpha)), \qquad x \in \mathbb{R}^n; \\ \Phi^{\star}(x) &:= \sup_{y \in \mathbb{R}^n} (\langle x, y \rangle - \Phi(y)), \qquad x \in \mathbb{R}^n. \end{split}$$

Recall that Φ^* is called the Young conjugate of the function Φ . It is well known that if Φ is convex on \mathbb{R}^n then $(\Phi^*)^* = \Phi$.

Obviously, for each $z \in \mathbb{C}^n$ the sequence $f_z : \alpha \in \mathbb{Z}^n \to e^{-i\langle z, \alpha \rangle}$ belongs to A_{φ} since for each $m \in \mathbb{N}$

$$p_m(f_z) = \sup_{\alpha \in \mathbb{Z}^n} \frac{|e^{-i\langle z, \alpha \rangle}|}{e^{\varphi_m(\alpha)}} = \exp\left(\sup_{\alpha \in \mathbb{Z}^n} (\langle Imz, \alpha \rangle - \varphi_m(\alpha))\right) = e^{\varphi_m^{\star}(Imz)} < \infty.$$
(1)

Thus, for each linear continuous functional S on A_{φ} the function $S(z) = S(f_z)$ is correctly defined on \mathbb{C}^n . It is called the Fourier-Laplace transform of S. The mapping $\mathcal{F}: S \in A^*_{\varphi} \to \hat{S}$ is called the Fourier-Laplace transformation.

For each $m \in \mathbb{N}$ let

$$P(\varphi_m^{\star}) = \Big\{ F \in H(\mathbb{C}^n) : F(z+2\pi l) = F(z) \text{ for all } z \in \mathbb{C}^n, \ l \in \mathbb{Z}^n \\ \text{and such that } \|F\|_m = \sup_{z \in \mathbb{C}^n} \frac{|F(z)|}{e^{\varphi_m^{\star}(Imz)}} < \infty \Big\}.$$

Let $\varphi^{\star} = \{\varphi_m^{\star}\}_{m=1}^{\infty}$ and $P_{\varphi^{\star}} = \bigcup_{m=1}^{\infty} P(\varphi_m^{\star})$. Under usual operations of addition and multiplication by complex numbers $P_{\varphi^{\star}}$ is a linear space. Endow $P_{\varphi^{\star}}$ with the topology of inductive limit of the spaces $P(\varphi_m^{\star})$.

The main results of the paper are the following.

Theorem 1.1. The mapping $\mathcal{F} : S \in A^*_{\varphi} \to \hat{S}$ establishes an isomorphism between the spaces A^*_{φ} and P_{φ^*} .

Theorem 1.1 is proved in the second section. In the third section we apply Theorem 1.1 to study difference operators in A_{φ} . For $f \in A_{\varphi}$ and $h \in \mathbb{Z}^n$ define a sequence f_h by the rule: $f_h(\alpha) = f(\alpha + h), \alpha \in \mathbb{Z}^n$. Let H be a finite subset of \mathbb{Z}^n and for $h \in H$ let γ_h be a complex number.

Theorem 1.2. Let φ satisfies the following additional conditions:

i₁) for each $m \in \mathbb{N}$ there exist numbers $a_m > 0$, $b_m > 0$ and $\mu_m > 1$ such that

 $\varphi_m(x) \ge a_m \|x\|^{\mu_m} - b_m, \qquad x \in \mathbb{R}^n;$

i₂) for each $m \in \mathbb{N}$ there exists $d_m > 0$ such that for all $x \in \mathbb{R}^n$ and $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$ with $|\xi_j| \leq 1$ $(j = 1, \ldots, n)$

$$\varphi_{m+1}(x+\xi) \leqslant \varphi_m(x) + d_m$$

Then the equation $\sum_{h \in H} \gamma_h f_h = g$ is solvable in A_{φ} for each $g \in A_{\varphi}$.

For $\mu \in \mathbb{Z}_+^n$ and $\zeta \in \mathbb{C}^n$ define a sequence $E_{\mu,\zeta}$ by the rule: $\alpha \in \mathbb{Z}^n \to \alpha^{\mu} e^{-i\langle \alpha,\zeta \rangle}$. Note that in view of the second condition on $\varphi \ E_{\mu,\zeta}$ is in A_{φ} .

Denote the zero element of A_{φ} by **0**. Let W be the set of all solutions $f \in A_{\varphi}$ of the equation $\sum_{h \in H} \gamma_h f_h = \mathbf{0}$ and \mathcal{E} be the set of all solutions of the form $E_{\mu,\zeta}$.

Theorem 1.3. Let the family φ satisfies the conditions of Theorem 1.2 and \mathcal{E} is not empty. Then a closure of a linear envelope of \mathcal{E} in A_{φ} is W.

2. Space A_{φ} and its dual

To note some special properties of the spaces A_{φ} and P_{φ^*} we need to remember definitions of (M^*) -space and (LN^*) -space from [7], [8].

 (M^*) -space is a locally convex space F which is the projective limit of a sequence of normed spaces F_k with linear continuous mappings $g_{mk} : F_k \to F_m$, m < k, such that $g_{k,k+1}$ is compact for each $k \in \mathbb{N}$.

 (LN^*) -space is a locally convex space E which is the inductive limit of an increasing sequence of normed spaces E_k such that the unit ball of E_k is relatively compact in E_{k+1} for each $k \in \mathbb{N}$, i.e. such that the inclusion map from E_k into E_{k+1} is compact.

It is known that if E (the inductive limit of an increasing sequence of normed spaces E_k) is an (LN^*) -space then a set B is bounded in E iff for some $m \in \mathbb{N}$ it is contained in E_m and bounded there ([7], Theorem 1).

It is easy to show that the inclusions $I_m : A(\varphi_{m+1}) \to A(\varphi_m)$ are compact for each $m \in \mathbb{N}$. So A_{φ} is an (M^*) -space. Therefore, A_{φ} is a reflexive space ([7], Proposition 7).

From conditions on φ it follows that $\lim_{x\to\infty}(\varphi_{m+1}^{\star}(x)-\varphi_m^{\star}(x))=+\infty$. Using this fact and Montel's theorem it can be shown that the mappings $J_m: P(\varphi_m^{\star}) \to P(\varphi_{m+1}^{\star})$ are compact for each $m \in \mathbb{N}$. Thus, the space $P_{\varphi^{\star}}$ is an (LN^*) -space.

Lemma 2.1. For each $S \in A'_{\varphi}$ we have $\hat{S} \in P_{\varphi^{\star}}$.

Proof. First show that for $S \in A'_{\varphi}$ \hat{S} is an entire function. For $f \in A_{\varphi}$ and $N \in \mathbb{N}$ define the mapping $f_N : \mathbb{Z}^n \to \mathbb{C}$ by the rule: $f_N(\alpha) = f(\alpha)$ for $|\alpha| \leq N$, $f_N(\alpha) = 0$ for $|\alpha| > N$. Then for each $s \in \mathbb{N}$

$$p_s(f - f_N) = \sup_{|\alpha| > N} \frac{|f(\alpha)|}{e^{\varphi_s(\alpha)}} \leqslant p_{s+1}(f) \exp\left(\sup_{|\alpha| > N} (\varphi_{s+1}(\alpha) - \varphi_s(\alpha))\right).$$

Taking into account condition 2) on φ we conclude that $p_s(f-f_N) \to 0$ as $N \to \infty$. This means that $f_N \to f$ in A_{φ} as $N \to \infty$. Hence, $S(f_N) \to S(f)$ as $N \to \infty$. For each $\alpha \in \mathbb{Z}^n$ let e_{α} be the mapping $e_{\alpha} : \mathbb{Z}^n \to \mathbb{C}$ acting by the rule: $e_{\alpha}(\beta) = 1$ if $\alpha = \beta$, $e_{\alpha}(\beta) = 0$ if $\alpha \neq \beta$. Then $f_N = \sum_{|\alpha| \leq N} f(\alpha) e_{\alpha}$. Consequently, $S(f) = \lim_{n \to \infty} S(f_N) = \sum_{\alpha \in \mathbb{Z}^n} \gamma(\alpha) f(\alpha)$, where $\gamma(\alpha) = S(e_{\alpha})$. In particular,

$$\hat{S}(z) = \sum_{\alpha \in \mathbb{Z}^n} \gamma(\alpha) e^{-i\langle z, \alpha \rangle}, \qquad z \in \mathbb{C}^n.$$
⁽²⁾

Obviously, $\hat{S}(z + 2\pi l) = \hat{S}(z)$ for all $z \in \mathbb{C}^n$ and $l \in \mathbb{Z}^n$. Since S is a linear continuous functional on A_{φ} then for some $m \in \mathbb{N}$ and c > 0

$$|S(f)| \leqslant cp_m(f), \qquad f \in A_{\varphi}.$$

From this we have for each $\alpha \in \mathbb{Z}^n$

$$|\gamma(\alpha)| = |S(e_{\alpha})| \leqslant cp_m(e_{\alpha}) = ce^{-\varphi_m(\alpha)}.$$
(3)

Using the second condition on φ we can choose $k \in \mathbb{N}$ so that the inequality $\sum_{\alpha \in \mathbb{Z}^n} e^{\varphi_{m+k}(\alpha) - \varphi_m(\alpha)} < \infty$ holds. Now using (3) we have for each $z \in \mathbb{C}^n$

$$\begin{aligned} |\hat{S}(z)| &= \left| \sum_{\alpha \in \mathbb{Z}^n} \gamma(\alpha) e^{-i\langle z, \alpha \rangle} \right| \leqslant c \sum_{\alpha \in \mathbb{Z}^n} e^{-\varphi_m(\alpha) + \langle \alpha, Imz \rangle} \\ &\leqslant c e^{\varphi_{m+k}^*(Imz)} \sum_{\alpha \in \mathbb{Z}^n} e^{\varphi_{m+k}(\alpha) - \varphi_m(\alpha)}. \end{aligned}$$

From this it follows that the series $\sum_{\alpha \in \mathbb{Z}^n} \gamma(\alpha) e^{-i\langle z, \alpha \rangle}$ converges uniformly on compact subsets of \mathbb{C}^n . Hence, \hat{S} is an entire function and \hat{S} is in P_{φ^*} .

Remark 2.1. Using the representation (2), inequality (3) and the second condition on φ it is easy to see that for each $S \in A'_{\varphi}$ we have

$$(D^{\nu}\hat{S})(z) = S((-i\alpha)^{\nu}e^{-i\langle z,\alpha\rangle})_{\alpha\in\mathbb{Z}^n}, \qquad \nu\in\mathbb{Z}^n_+, \ z\in\mathbb{C}^n.$$

Proof of Theorem 1.1. By Lemma 2.1 $\mathcal{F}(S) \in P_{\varphi^*}$ for each $S \in A^*_{\varphi}$.

Let us show now that the linear mapping \mathcal{F} is continuous. But first note that the topology of A_{φ}^* can be described as follows. For each $k \in \mathbb{N}$ let $W_k = \{f \in A_{\varphi} : p_k(f) \leq 1\}$ and $W_k^0 = \{S \in A_{\varphi}' : |S(f)| \leq 1, \forall f \in W_k\}$ be a polar of W_k in A_{φ}' . Let $T_k = \bigcup_{\alpha > 0} (\alpha W_k^0)$ be a vector subspace in A_{φ}' generated by W_k^0 $(k \in \mathbb{N})$. Define a topology in T_k with a help of the norm

$$N_k(S) = \sup_{f \in W_k} |S(f)|, \qquad S \in T_k.$$

Obviously, $A'_{\varphi} = \bigcup_{k=1}^{\infty} T_k$. Define in A'_{φ} the topology λ of an inductive limit of spaces T_k . Since A_{φ} is a reflexive space then the strong topology in A'_{φ} coincides with the topology λ ([2], chapter 8). Now let $S \in T_k$, $k \in \mathbb{N}$. Then $|S(f)| \leq N_k(S)$, $f \in W_k$. Hence, $|S(f)| \leq N_k(S)p_k(f)$, $f \in A_{\varphi}$. Putting here $f = f_z$ with $z \in \mathbb{C}^n$ and using (1) we obtain that

$$|\hat{S}(z)| \leqslant N_k(S)e^{\varphi_k^{\star}(Imz)}.$$

From this it follows that $\|\hat{S}\|_k \leq N_k(S)$, $S \in T_k$ (k = 1, 2, ...). Thus, \mathcal{F} is continuous.

Let us prove that L is injective. Let $S \in A_{\varphi}^*$ and $\hat{S}(z) = 0$ for each $z \in \mathbb{C}^n$. For some $m \in \mathbb{N}$ and c > 0 we have $|S(f)| \leq cp_m(f)$, $f \in A_{\varphi}$. As it was shown in the proof of Lemma 2.1 the functional S admits the representation

$$S(f) = \sum_{\alpha \in \mathbb{Z}^n} \gamma(\alpha) f(\alpha), \qquad f \in A_{\varphi},$$

where complex numbers $\gamma(\alpha)$ satisfy the inequality

$$|\gamma(\alpha)| \leqslant c e^{-\varphi_m(\alpha)}, \qquad \alpha \in \mathbb{Z}^n.$$

From this representation we have for each $x \in \mathbb{R}^n$

$$\hat{S}(x) = \sum_{\alpha \in \mathbb{Z}^n} \gamma(\alpha) e^{-i \langle x, \alpha \rangle} = 0$$

Therefore, coefficients $\gamma(\alpha) = 0$ for all $\alpha \in \mathbb{Z}^n$ and S is a zero functional. Thus, \mathcal{F} is injective.

Now we prove that \mathcal{F} is surjective. Let $F \in P_{\varphi^*}$. Then $F \in P(\varphi_m^*)$ for some $m \in \mathbb{N}$. Represent F(x) by the Fourier series

$$F(x) = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} e^{-i \langle x, \alpha \rangle}, \qquad x \in \mathbb{R}^n.$$

For each $\alpha \in \mathbb{Z}^n$ we have

$$c_{\alpha} = \frac{1}{(2\pi)^n} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F(x) e^{i\langle x, \alpha \rangle} dx$$

In view of periodicity of F for each $\alpha \in \mathbb{Z}^n$ and $y \in \mathbb{R}^n$

$$c_{\alpha} = \frac{1}{(2\pi)^n} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} F(x+iy) e^{i\langle x+iy,\alpha\rangle} \, dx.$$

From this we get

$$|c_{\alpha}| \leqslant \frac{\|F\|_{m}}{(2\pi)^{n}} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} e^{\varphi_{m}^{\star}(y) - \langle y, \alpha \rangle} \, dx, \qquad \alpha \in \mathbb{Z}^{n}, \ y \in \mathbb{R}^{n}.$$

Since $\varphi_m^{\star}(y) \leqslant \varphi_m^{\star}(y)$ for every $y \in \mathbb{R}^n$ then for each $\alpha \in \mathbb{Z}^n$ we have

$$|c_{\alpha}| \leqslant \|F\|_{m} \exp\left(\inf_{y \in \mathbb{R}^{n}} \left(\left(\varphi_{m}^{*}(y) - \langle y, \alpha \rangle\right)\right) = \|F\|_{m} e^{-\left(\varphi_{m}^{*}\right)^{*}(\alpha)} = \|F\|_{m} e^{-\varphi_{m}(\alpha)}.$$

$$(4)$$

Define a functional S on A_{φ} by the formula $S(f) = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} f(\alpha), f \in A_{\varphi}$. Using the estimate (4) and the second condition on φ it is easy to see that the linear functional S is continuous. Obviously, $\hat{S}(z) = F(z), z \in \mathbb{C}^n$. Thus, \mathcal{F} is surjective.

By the open mapping theorem [2], [5] \mathcal{F}^{-1} is continuous. Thus, \mathcal{F} is a topological isomorphism and the proof of theorem is complete.

3. A difference operator on A_{φ}

3.1. In the proof of Theorems 1.2 and 1.3 we will use Lemma 3.2. But first let us prove the following auxiliary result.

Lemma 3.1. Let a function $h : \mathbb{Z}^n \to \mathbb{R}$ be such that for some constants $\nu > 1$, C > 0 and D > 0

$$h(\alpha) \ge C \|\alpha\|^{\nu} - D, \qquad \alpha \in \mathbb{Z}^n.$$
 (5)

Then there exists a constant $M_h > 0$ such that

$$|h^{\star}(\xi) - h^{\star}(x)| \leqslant M_h \tag{6}$$

for all $x, \xi \in \mathbb{R}^n$ satisfying the condition $\|\xi - x\| \leq (1 + \|x\|)^{-\frac{1}{\nu-1}}$.

Proof. For each $x \in \mathbb{R}^n$ let $\alpha(x) \in \mathbb{Z}^n$ be a point where the supremum of the function $u_x : \alpha \in \mathbb{Z}^n \to \langle x, \alpha \rangle - h(\alpha)$ over \mathbb{Z}^n is attained.

First prove that there exists a constant $m_h > 0$ not depending on x such that

$$\|\alpha(x)\| \leq m_h \cdot (1 + \|x\|^{\frac{1}{\nu-1}}).$$

Using (5) we have for each $\alpha \in \mathbb{Z}^n$

$$u_x(\alpha) \leq \|\alpha\| \cdot \|x\| - C\|\alpha\|^{\nu} + D.$$

Since $h^{\star}(x) = \sup_{\alpha \in \mathbb{Z}^n} u_x(\alpha) \ge -h(0)$ (here 0 is the zero element of \mathbb{Z}^n) then the supremum of u_x over \mathbb{Z}^n is attained on the set

$$G_x = \{ \alpha \in \mathbb{Z}^n : \|\alpha\| \cdot \|x\| \ge C \|\alpha\|^{\nu} - D - h(0) \}.$$

Put $L_h = D + h(0)$. By the condition on h we have $L_h \ge 0$. For each $\lambda \ge 0$ denote by T_{λ} the set of solutions of the inequality

$$\lambda t \ge Ct^{\nu} - L_h$$

belonging to \mathbb{R}_+ . This set is a segment of a form $[0, t_{\lambda}]$, where $t_{\lambda} < \infty$. Let us estimate t_{λ} from above. We have $\lambda t_{\lambda} = Ct_{\lambda}^{\nu} - L_h$. If $t_{\lambda} \ge 1$ then

$$\lambda = Ct_{\lambda}^{\nu-1} - \frac{L_h}{t_{\lambda}} \ge Ct_{\lambda}^{\nu-1} - L_h.$$

From this $t_{\lambda} \leqslant \left(\frac{\lambda+L_{h}}{C}\right)^{\frac{1}{\nu-1}}$. Taking into account a case $t_{\lambda} \in [0,1)$ we have

$$t_{\lambda} \leqslant \left(\frac{\lambda + L_h}{C}\right)^{\frac{1}{\nu - 1}} + 1$$

From this if $0 \leq \lambda \leq 1$ then $t_{\lambda} \leq \left(\frac{1+L_h}{C}\right)^{\frac{1}{\nu-1}} + 1$. Moreover if $\lambda > 1$ then $t_{\lambda} \leq \lambda^{\frac{1}{\nu-1}} \left(\frac{1+L_h}{C}\right)^{\frac{1}{\nu-1}} + 1$. Let $m_h := \left(\frac{1+L_h}{C}\right)^{\frac{1}{\nu-1}} + 1$. Then $t_{\lambda} \leq m_h (1+\lambda^{\frac{1}{\nu-1}})$.

 $t_{\lambda} \leqslant m_h(1+\lambda^{\overline{\nu-1}}).$

Let $d_{\lambda} := m_h(1 + \lambda^{\frac{1}{\nu-1}})$. Then $T_{\lambda} \subseteq [0, d_{\lambda}]$. Since $\alpha \in G_x \Leftrightarrow \|\alpha\| \in T_{\|x\|}$, then for all $\alpha \in G_x$ we have

$$\|\alpha\| \leqslant m_h \cdot \|x\|^{\frac{1}{\nu-1}} + m_h.$$

In particular,

$$\|\alpha(x)\| \leqslant m_h \cdot \|x\|^{\frac{1}{\nu-1}} + m_h$$

Further, for all $x, \xi \in \mathbb{R}^n$ such that $\|\xi - x\| \leq (1 + \|x\|)^{\frac{1}{1-\nu}}$ we have

$$h^{\star}(\xi) - h^{\star}(x) = \sup_{\alpha \in \mathbb{Z}^{n}} \left(\langle \xi, \alpha \rangle - h(\alpha) \right) - \sup_{\alpha \in \mathbb{Z}^{n}} \left(\langle x, \alpha \rangle - h(\alpha) \right)$$

$$\leq \left(\langle \xi, \alpha(\xi) \rangle - h(\alpha(\xi)) \right) - \left(\langle x, \alpha(\xi) \rangle - h(\alpha(\xi)) \right)$$

$$= \left\langle \xi - x, \alpha(\xi) \right\rangle \leq \|\xi - x\| \|\alpha(\xi)\| \leq (1 + \|x\|)^{\frac{1}{1-\nu}} m_{h}(1 + \|\xi\|^{\frac{1}{\nu-1}})$$

$$\leq \frac{2m_{h}(1 + \|x\|)^{\frac{1}{\nu-1}}}{(1 + \|x\|)^{\frac{1}{\nu-1}}} = 2m_{h}.$$

Similarly,

$$h^{\star}(x) - h^{\star}(\xi) \leq \langle x - \xi, \alpha(x) \rangle \leq ||x - \xi|| ||\alpha(x)||$$

$$\leq \frac{m_h (1 + ||x||)^{\frac{1}{\nu - 1}}}{(1 + ||x||)^{\frac{1}{\nu - 1}}} \leq \frac{2m_h (1 + ||x||)^{\frac{1}{\nu - 1}}}{(1 + ||x||)^{\frac{1}{\nu - 1}}} = 2m_h.$$

From these estimates we get (6) with $M_h = 2m_h$.

Lemma 3.2. Let the family φ satisfies the conditions i_1) and i_2) of Theorem 1.2. Then for each $m \in \mathbb{N}$:

there exists a constant $K_m > 0$ such that

$$|\varphi_m^{\star}(\xi) - \varphi_m^{\star}(x)| \leqslant K_m \tag{7}$$

for all $x, \xi \in \mathbb{R}^n$ satisfying the condition $\|\xi - x\| \leq (1 + \|x\|)^{-\frac{1}{\mu_m - 1}}$;

$$\varphi_{m+1}^{\star}(x) - \varphi_m^{\star}(x) \ge ||x|| - d_m, \qquad x \in \mathbb{R}^n.$$
(8)

Proof. The inequality (7) holds in view of Lemma 3.1. So let us prove the inequality (8). For each $x \in \mathbb{R}^n$ and $m \in \mathbb{N}$ let $\alpha_m(x) \in \mathbb{Z}^n$ be a point where the supremum of the function $u_x : \alpha \in \mathbb{Z}^n \to \langle x, \alpha \rangle - \varphi_m(\alpha)$ over \mathbb{Z}^n is attained. Let $\theta(x)$ be the point in \mathbb{R}^n with coordinates θ_j defined as follows: $\theta_j = \frac{x_j}{|x_j|}$ if $x_j \neq 0$ and $\theta_j = 0$ if $x_j = 0$ (j = 1, ..., n). Then using the condition i_2) we have

$$\varphi_{m+1}^{\star}(x) - \varphi_m^{\star}(x) \ge \langle x, \theta(x) \rangle - \varphi_{m+1}(\alpha_m(x) + \theta(x)) + \varphi_m(\alpha_m(x))$$
$$\ge |x_1| + \dots + |x_n| - d_m \ge ||x|| - d_m.$$

Thus, the inequality (8) is proved.

Remark 3.1. For each $m \in \mathbb{N}$ and $x \in \mathbb{R}^n$ let $y_m(x)$ be a point where the supremum of the function $v_x : y \in \mathbb{R}^n \to \langle x, y \rangle - \varphi_m(y)$ over \mathbb{R}^n is attained. Let $\alpha \in \mathbb{Z}^n$ be the nearest point to $y_m(x)$. Then

$$\varphi_m^*(x) = \langle x, y_m(x) \rangle - \langle x, \alpha \rangle + \langle x, \alpha \rangle - \varphi_{m+1}(\alpha) + \varphi_{m+1}(\alpha) - \varphi_m(y_m(x)).$$

From this representation using the condition i_2) we have

$$\varphi_m^*(x) \leqslant n \|x\| + \varphi_{m+1}^*(x) + d_m$$

Now by (8) we get for some $d_{m,n} > 0$

$$\varphi_m^*(x) \leqslant \varphi_{m+n+1}^*(x) + d_{m,n}, \qquad x \in \mathbb{R}^n$$

On the other hand, for each $m \in \mathbb{N}$ and $x \in \mathbb{R}^n$ $\varphi_m^{\star}(x) \leq \varphi_m^{\star}(x)$.

Two last inequalities mean that the space P_{φ^*} coincides with the space P_{φ^*} which is an inductive limit of the spaces

$$P(\varphi_m^*) = \Big\{ F \in H(\mathbb{C}^n) : F(z+2\pi l) = F(z) \text{ for all } z \in \mathbb{C}^n, \ l \in \mathbb{Z}^n \\ \text{and such that } \|F\|_m = \sup_{z \in \mathbb{C}^n} \frac{|F(z)|}{e^{\varphi_m^*(Imz)}} < \infty \Big\}.$$

Here $\varphi^* = \{\varphi_m^*\}_{m=1}^{\infty}$.

3.2. Let the family φ satisfies the conditions of Theorem 1.2. In the first section we defined for each $f \in A_{\varphi}$ and $h \in \mathbb{Z}^n$ a sequence f_h by the rule: $f_h(\alpha) = f(\alpha + h), \ \alpha \in \mathbb{Z}^n$. Using the condition i_2) on φ for each $m \in \mathbb{N}$ we can find numbers $k \in \mathbb{N}$ and d > 0 such that $p_m(f_h) \leq dp_k(f)$ for all $f \in A_{\varphi}$. Thus, for each $h \in \mathbb{Z}^n$ the linear operator $S_h : f \in A_{\varphi} \to f_h$ acts from A_{φ} to A_{φ} and is continuous. So if H is a subset of \mathbb{Z}^n consisting of finite number of elements and for $h \in H$ $\gamma_h \in \mathbb{C}$ then an operator $M : A_{\varphi} \to A_{\varphi}$ acting by the rule

$$M(f) = \sum_{h \in H} \gamma_h S_h(f), \qquad f \in A_{\varphi},$$

is linear and continuous.

Let $g(z) := \sum_{h \in H} \gamma_h e^{-i\langle h, z \rangle}$ $(z \in \mathbb{C}^n)$. The function g is usually called a characteristic function of the operator M.

3.2.1. In the proof of Theorems 1.2 and 1.3 the following lemma by L. Ehrenpreis and B. Malgrange (see, for example, Lemma A.1 in [3]) is used.

Lemma 3.3. Let P be a polynomial of degree m. Then there exists a constant C > 0 such that for every $r > 0, z \in \mathbb{C}^n$ and every function f which is defined for all $z' \in \mathbb{C}^n$ with ||z' - z|| < r and is such that $\frac{f}{P}$ is holomorphic there, we have

$$\left|\frac{f(z)}{p(z)}\right| \leqslant Cr^{-m} \sup_{z' \in B(z,r)} |f(z')|.$$

Proof of Theorem 1.2. We have to prove that the operator M is surjective on A_{φ} . First let us show that the image imM of the operator M is dense in A_{φ} . Let $N_g = \{z \in \mathbb{C}^n : g(z) = 0\}$. For $z \in \mathbb{C}^n \setminus N_g$ consider the equation $M(f) = f_z$. It has a solution $f = \frac{f_z}{g(z)}$ belonging to A_{φ} . From this and completeness of the system $\{f_z\}_{z \in \mathbb{C}^n \setminus N_g}$ we conclude that imM is dense in A_{φ} .

Let us show now that the image of the operator M is closed in A_{φ} . It is known that closedness of image of M in A_{φ} is equivalent to closedness of the image of the adjoint operator M^* in A_{φ}^* (see [2], Theorem 8.6.13).

Consider an operator \widehat{M}^* on P_{φ^*} acting by the rule:

$$\widehat{M}^*(F) = \mathcal{F}(M^*(\mathcal{F}^{-1}(F))), \qquad F \in P_{\varphi^*}.$$

Obviously, \widehat{M}^* is a linear continuous operator on P_{φ^*} . Taking into account Theorem 1.1 we see that closedness of the image of the operator M in A_{φ} is equivalent to closedness of the image $im\widehat{M}^*$ of the operator \widehat{M}^* in P_{φ^*} . Note that for each $F \in P_{\varphi^*}$ and $z \in \mathbb{C}^n$

$$\begin{split} \widehat{M}^*(F)(z) &= \mathcal{F}^{-1}(F)(M(f_z)) \\ &= \mathcal{F}^{-1}(F)\left(\sum_{h\in H} \gamma_h S_h(f_z)\right) = \mathcal{F}^{-1}(F)\left(\sum_{h\in H} \gamma_h(e^{-i\langle \alpha+h,z\rangle})_{\alpha\in\mathbb{Z}^n}\right) \\ &= \mathcal{F}^{-1}(F)(f_z) \sum_{h\in H} \gamma_h e^{-i\langle h,z\rangle} = F(z)g(z). \end{split}$$

Thus, for each $F \in P_{\varphi^*}$ we have $\widehat{M}^*(F)(z) = F(z)g(z), \ z \in \mathbb{C}^n$.

By Theorem 1 in [7] $im\widehat{M}^*$ is closed in P_{φ^*} iff $im\widehat{M}^* \cap P(\varphi_m^*)$ is closed in $P(\varphi_m^*)$ for each $m \in \mathbb{N}$. So let $m \in \mathbb{N}$ be arbitrary and F belongs to the closure of $im\widehat{M}^* \cap P(\varphi_m^*)$ in $P(\varphi_m^*)$. Then there exists a sequence $(F_k)_{k=1}^{\infty}$ of functions $F_k \in im\widehat{M}^* \cap P(\varphi_m^*)$ converging to F in $P_{\varphi_m^*}$. In particular, $F_k \to F$ uniformly on compact subsets of \mathbb{C}^n as $k \to \infty$. So it is clear that the function $\psi(z) = \frac{F(z)}{g(z)}$ is holomorphic on \mathbb{C}^n . Obviously, $\psi(z + 2\pi l) = \psi(z)$ for all $z \in \mathbb{C}^n$ and $l \in \mathbb{Z}^n$. The functions F and ψ can be represented by the series

$$F(z) = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} e^{-i\langle z, \alpha \rangle}, \qquad z \in \mathbb{C}^n,$$

$$\psi(z) = \sum_{\alpha \in \mathbb{Z}^n} b_{\alpha} e^{-i\langle z, \alpha \rangle}, \qquad z \in \mathbb{C}^n.$$

As we know (see Lemma 2.1) the first series converges to F in $P(\varphi_{m+k}^{\star})$ for some $k \in \mathbb{N}$. The second series uniformly converges to ψ on compact subsets of \mathbb{C}^n . Let us show that $\psi \in P_{\varphi^{\star}}$. Obviously, the functions $F_0(\zeta) = \sum_{\alpha \in \mathbb{Z}^n} c_\alpha \zeta^\alpha$, $\psi_0(\zeta) = \sum_{\alpha \in \mathbb{Z}^n} b_\alpha \zeta^\alpha$, $g_0(\zeta) = \sum_{h \in H} \gamma_h \zeta^h$ are holomorphic in $(\mathbb{C} \setminus \{0\})^n$ and

$$\psi_0(\zeta) = \frac{F_0(\zeta)}{g_0(\zeta)}, \qquad \zeta \in (\mathbb{C} \setminus \{0\})^n.$$

Choose $N = (N_1, \ldots, N_n) \in \mathbb{Z}_+^n$ so that $P(\zeta) = g_0(\zeta)\zeta_1^{N_1}\cdots \zeta_n^{N_n}$ is a polynomial. Then

$$\psi_0(\zeta) = \frac{F_0(\zeta)\zeta^N}{P(\zeta)}, \qquad \zeta \in (\mathbb{C} \setminus \{0\})^n.$$

Let us estimate $|\psi_0(\zeta)|$ from above at points $\zeta = (\zeta_1, \ldots, \zeta_n) \in (\mathbb{C} \setminus \{0\})^n$. Let

$$a_m(\zeta) = (1 + \|(\ln |\zeta_1|, \dots, \ln |\zeta_n|)\|)^{\frac{1}{1-\mu_m}},$$

$$r(\zeta) = \min\left(1, \left(1 - \exp\left(-\frac{a_m(\zeta)}{\sqrt{n}}\right)\right) \min_{1 \le j \le n} |\zeta_j|\right).$$

By Lemma 3.3 there exists a constant C > 0 such that for all $\zeta \in (\mathbb{C} \setminus \{0\})^n$

$$\begin{aligned} |\psi_0(\zeta)| &\leq C(r(\zeta))^{-k} \sup_{w \in B(\zeta, r(\zeta))} (|F_0(w)| ||w||^{|N|}) \\ &\leq C(r(\zeta))^{-k} (1 + ||\zeta||)^{|N|} \sup_{w \in B(\zeta, r(\zeta))} |F_0(w)|. \end{aligned}$$

Since for $\zeta = (\zeta_1, \dots, \zeta_n) \in (\mathbb{C} \setminus \{0\})^n$

$$|F_0(\zeta)| \leqslant ||F||_m e^{\varphi_m^{\star}(\ln|\zeta_1|,\dots,\ln|\zeta_n|)},$$

then

$$|\psi_0(\zeta)| \leqslant C(r(\zeta))^{-k} (1 + \|\zeta\|)^{|N|} \exp\left(\sup_{w \in B(\zeta, r(\zeta))} \varphi_m^*(\ln|w_1|, \dots, \ln|w_n|)\right).$$
(9)

For points $w = (w_1, \ldots, w_n) \in B(\zeta, r(\zeta))$ we have

$$\exp\left(\left(-\frac{a_m(\zeta)}{\sqrt{n}}\right)|\zeta_j| \leqslant |w_j| \leqslant \exp\left(\frac{a_m(\zeta)}{\sqrt{n}}\right)|\zeta_j|(j=1,\ldots,n).$$

From this we get for $w \in B(\zeta, r(\zeta))$

$$|\ln|w_j| - \ln|\zeta_j|| \leqslant \frac{a_m(\zeta)}{\sqrt{n}}, \ j = 1, \dots, n.$$

Thus, for points $w = (w_1, \ldots, w_n) \in B(\zeta, r(\zeta))$

$$\|(\ln |w_1|, \dots, \ln |w_n|) - (\ln |\zeta_1|, \dots, \ln |\zeta_n|)\| \le (1 + \|(\ln |\zeta_1|, \dots, \ln |\zeta_n|)\|)^{\frac{1}{1-\mu_m}}.$$

Now using the inequality (7) we have

$$\sup_{w\in B(\zeta,r(\zeta))}\varphi_m^{\star}(\ln|w_1|,\ldots,\ln|w_n|)\leqslant \varphi_m^{\star}(\ln|\zeta_1|,\ldots,\ln|\zeta_n|)+K_m.$$

From this and (9) we get

$$|\psi_0(\zeta)| \leq C e^{K_m} (r(\zeta))^{-k} (1 + ||\zeta||)^{|N|} e^{\varphi_m^*(\ln|\zeta_1|, \dots, \ln|\zeta_n|)}$$

for all $\zeta = (\zeta_1, \ldots, \zeta_n) \in (\mathbb{C} \setminus \{0\})^n$. Taking into account that for $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and y = Imz

$$a_m(e^{-iz_1},\ldots,e^{-iz_n}) = (1+||y||)^{\frac{1}{1-\mu_m}}$$

it is easy to show that $z \in \mathbb{C}^n$

$$|\psi(z)| \leq C e^{K_m} \left(1 + \frac{1}{(1 - e^{-\frac{1}{\sqrt{n}}})e^{-||y||}} \right)^k \left(1 + ||(e^{Imz_1}, \dots, e^{Imz_n})||)^{|N|} e^{\varphi_m^*(Imz)}.$$

From this we have

$$|\psi(z)| \leq C e^{K_m} \left(\frac{2}{1 - e^{-\frac{1}{\sqrt{n}}}}\right)^k e^{(|N| + k) \|Imz\|} (1 + n)^{|N|} e^{\varphi_m^*(Imz)}.$$

Using the inequality (8) we obtain

$$|\psi(z)| \leqslant K e^{\varphi_{m+k+|N|}^{\star}(Imz)}, \qquad z \in \mathbb{C}^n,$$

where K is some constant depending on k, m, |N|, n. Hence, $\psi \in P(\varphi_{m+k+|N|}^{\star})$. Thus, $\psi \in P_{\varphi^{\star}}$. This means that $F \in im\widehat{M}^{\star}$. Hence, $im\widehat{M}^{\star} \cap P(\varphi_m^{\star})$ is closed in $P(\varphi_m^{\star})$ for each $m \in \mathbb{N}$. Thus, the image of the operator \widehat{M}^{\star} is closed in $P_{\varphi^{\star}}$. Therefore, the image of the operator M is closed in A_{φ} .

Thus, the image of the operator M is dense and closed in A_{φ} . Therefore, $imM = A_{\varphi}$. The proof is complete.

3.2.2. Consider the equation $M(f) = \mathbf{0}$ in A_{φ} . Note that if f belongs to the kernel W of the operator M then for each $\beta \in \mathbb{Z}^n$ $S_{\beta}(f) \in W$.

Recall that for $\mu \in \mathbb{Z}^n_+$ and $\zeta \in \mathbb{C}^n$ we defined the sequence $E_{\mu,\zeta}$ by the rule: $\alpha \in \mathbb{Z}^n \to \alpha^{\mu} e^{-i\langle \alpha,\zeta \rangle}.$

Lemma 3.4. The sequence $E_{\mu,\zeta}$ is in W iff $(D^{\beta}g)(\zeta) = 0$ for all $\beta \in \mathbb{Z}^{n}_{+}$ such that $\beta \leq \mu$.

Proof. Consider more complicated case $n \ge 2$. Let $\mu \in \mathbb{Z}^n_+$ and $\zeta \in \mathbb{C}^n$ be such that $(D^{\beta}g)(\zeta) = 0$ for all $\beta \in \mathbb{Z}^n_+$ such that $\beta \le \mu$. Then for each $\alpha \in \mathbb{Z}^n$

$$M(E_{\mu,\zeta})(\alpha) = \sum_{h \in H} \gamma_h(\alpha + h)^{\mu} e^{-i\langle \alpha + h, \zeta \rangle}$$

= $e^{-i\langle \alpha, \zeta \rangle} \sum_{h \in H} \gamma_h(\alpha + h)^{\mu} e^{-i\langle h, \zeta \rangle}$
= $e^{-i\langle \alpha, \zeta \rangle} \sum_{\beta \in \mathbb{Z}^n_+ : \beta \leqslant \mu} C^{\beta}_{\mu} \alpha^{\mu - \beta} \sum_{h \in H} \gamma_h h^{\beta} e^{-i\langle h, \zeta \rangle}$
= $e^{-i\langle \alpha, \zeta \rangle} \sum_{\beta \in \mathbb{Z}^n_+ : \beta \leqslant \mu} C^{\beta}_{\mu} \alpha^{\mu - \beta} i^{|\beta|} (D^{\beta}g)(\zeta) = 0.$

Thus, $E_{\mu,\zeta} \in W$.

Now let for some $\mu \in \mathbb{Z}^n_+$ and $\zeta \in \mathbb{C}^n$ $E_{\mu,\zeta} \in W$. Then for each $\alpha \in \mathbb{Z}^n$

$$\sum_{h \in H} \gamma_h(\alpha + h)^{\mu} e^{-i\langle \alpha + h, \zeta \rangle} = 0$$

Hence, for each $\alpha \in \mathbb{Z}^n$

$$\sum_{h \in H} \gamma_h(\alpha + h)^{\mu} e^{-i\langle h, \zeta \rangle} = 0.$$
(10)

In particular, $\sum_{h\in H} \gamma_h h^\mu e^{-i\langle h,\zeta \rangle} = 0$. This means that $(D^\mu g)(\zeta) = 0$. Further, let $\nu = (\nu_1, \ldots, \nu_n) \in \mathbb{Z}_+^n$ be such that $(D^\beta g)(\zeta) = 0$ for all $\beta \in \mathbb{Z}_+^n$ such that $\nu \leq \beta \leq \mu$. If $\nu = (0, \ldots, 0)$ then Lemma holds. If $\nu \neq (0, \ldots, 0)$ then there exists $j \in \{1, \ldots, n\}$ such that $\nu_j \geq 1$. For simplicity suppose j = 1 and show that $(D^{(\beta_1, \nu_2, \ldots, \nu_n)}g)(\zeta) = 0$ for all $\beta_1 = 0, \ldots, \nu_1 - 1$. For each $\alpha \in \mathbb{Z}^n$

$$\begin{split} \sum_{h\in H} \gamma_h(\alpha+h)^{\mu} e^{-i\langle h,\zeta\rangle} &= \sum_{h\in H} \gamma_h \sum_{(0,\dots,0)\leqslant\beta\leqslant\mu} C^{\beta}_{\mu} \alpha^{\mu-\beta} h^{\beta} e^{-i\langle h,\zeta\rangle} \\ &= \sum_{(0,\dots,0)\leqslant\beta\leqslant\mu} C^{\beta}_{\mu} \alpha^{\mu-\beta} \sum_{h\in H} \gamma_h h^{\beta} e^{-i\langle h,\zeta\rangle} \\ &= \sum_{(0,\dots,0)\leqslant\beta\leqslant\mu} C^{\beta}_{\mu} \alpha^{\mu-\beta} i^{|\beta|} (D^{\beta}g)(\zeta) \\ &= \sum_{(0,\dots,0)\leqslant\beta\leqslant\nu,\beta\neq\nu} C^{\beta}_{\mu} \alpha^{\mu-\beta} i^{|\beta|} (D^{\beta}g)(\zeta). \end{split}$$

In view of (10)

$$\sum_{(0,...,0)\leqslant\beta\leqslant\nu,\beta\neq\nu}C_{\mu}^{\beta}\alpha^{\mu-\beta}i^{|\beta|}(D^{\beta}g)(\zeta)=0,\qquad\alpha\in\mathbb{Z}^{n}$$

From this we have for all $\alpha \in \mathbb{Z}^n$

$$\sum_{\beta_1=0}^{\nu_1} C_{\mu_1}^{\beta_1} \alpha_1^{\nu_1-\beta_1} i^{\beta_1} \sum_{(0,...,0)\leqslant\beta'\leqslant\nu'} \alpha'^{\nu'-\beta'} i^{|\beta'|} (D^{\beta}g)(\zeta) = 0.$$

Putting here $\alpha_2 = \cdots = \alpha_n = 0$ we get for all $\alpha_1 \in \mathbb{Z}$

$$\sum_{\beta_1=0}^{\nu_1-1} C_{\mu_1}^{\beta_1} \alpha_1^{\nu_1-\beta_1} i^{\beta_1} (D^{(\beta_1,\nu_2,\dots,\nu_n)}g)(\zeta) = 0.$$

From this it follows that $(D^{(\beta_1,\nu_2,\ldots,\nu_n)}g)(\zeta) = 0$ for all $\beta_1 = 0,\ldots,\nu_1 - 1$. Obviously, applying these arguments so on we will obtain that $(D^{\beta}g)(\zeta) = 0$ for all $\beta \in \mathbb{Z}^n_+$ such that $\beta \leq \mu$.

The proof of Lemma is complete.

Let $\mathcal{A} = \{(\mu, \zeta) \in \mathbb{Z}^n_+ \times \mathbb{C}^n : E_{\mu, \zeta} \in W\}$. Recall that \mathcal{E} is a set of all solutions of the form $E_{\mu, \zeta}$ of the equation $\sum_{h \in H} \gamma_h f_h = \mathbf{0}$.

Proof of Theorem 1.3. Let S be a linear continuous functional on A_{φ} such that S(f) = 0 for each $f \in \mathcal{E}$. If we will show that S(f) = 0 for each $f \in W$ then a closure of a linear envelope of \mathcal{E} will coincide with W. Using Lemma 3.4 and taking account that for all $(\mu, \zeta) \in \mathcal{A}$ $(D^{\beta}\hat{S})(\zeta) = 0$ for $\beta \in \mathbb{Z}^{n}_{+}$ such that $\beta \leq \mu$ it is easy to check that the function $\psi := \frac{\hat{S}}{g}$ is entire. From the proof of Theorem 1.2 it follows that $\psi \in P_{\varphi^{\star}}$. Hence, by Theorem 1.1 there exists a functional $\Psi \in A'_{\varphi}$ such that $\hat{\Psi} = \psi$. Obviously, the functional $\Psi \circ M$ is in A'_{φ} too. And for each $z \in \mathbb{C}^{n}$ we have $\mathcal{F}(\Psi \circ M)(z) = \Psi(M(f_{z})) = \Psi(g(z)f_{z}) = \psi(z)g(z) = \hat{S}(z)$. By theorem 1 $\Psi \circ M = S$. Now for each $f \in W$ we have

$$S(f) = (\Psi \circ M)(f) = \Psi(M(f)) = 0.$$

Thus, a linear envelope of \mathcal{E} is dense in W.

References

- A.A. Borichev, Convolution equations in spaces of sequences of exponential growth, Journal of Soviet Mathematics 42 (1988), no. 2, 1614–1620; translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V.A. Steklova AN SSSP, 149 (1986), 107–115.
- [2] R.E. Edwards, *Functional Analysis*, Holt, Pineart and Winston, 1965.

- 370 Nadir V. Ibadov, Il'dar Kh. Musin
 - [3] S. Hansen, On the "Fundamental Principle" of L. Ehrenpreis, Partial differential equations, Banach center publications, Warsaw, PWN-Polish Scientific Publishers, 10 (1983), 185–203.
 - [4] C. Rényi, On periodic entire functions, Acta Math. Acad. Sci. Hungar. 7 (1956), 145–149.
 - [5] A.P. Robertson, W. Robertson, *Topological Vector Spaces*, Cambridge Univ. Press, Cambridge, 1980.
 - [6] L.A. Rubel, B.A. Taylor, Weighted polynomial approximation on integers, Archiv der Mathematik 19 (1968), no. 5, 511–515.
 - [7] J. Sebastiào e Silva, Su certe classi di spazi localmente convessi importanti per le applicazioni, Rend. Mat. e Appl. 14 (1955), 388–410.
 - [8] V.V. Zharinov, Compact families of locally convex topological vector spaces, Fréchet-Schwartz and dual Fréchet-Schwartz spaces, Uspekhi Mat. Nauk 34 (1979), no. 4, 97–131.
- Addresses: Nadir V. Ibadov: Vice-Rector for Scientific and Technical Affairs, Ganja State University, 187, Heydar Aliyev Avenue, Ganja, AZ-2000, Azerbaijan; Il'dar Kh. Musin: Institute of Mathematics, Russian Academy of Sciences, 112 Chernyshevsky str., 450008, Ufa, Russia.

E-mail: nadir.ibadov@gmail.com, musin@matem.anrb.ru

Received: 9 November 2012; revised: 18 March 2013