
Functiones et Approximatio
49.2 (2013), 357–370
doi: 10.7169/facm/2013.49.2.13

DIFFERENCE EQUATIONS IN WEIGHTED SPACES
OF SEQUENCES

Nadir V. Ibadov, Il’dar Kh. Musin

Abstract: Let φ = {φm}∞m=1 be a family of convex functions φm on Rn with certain growth
conditions. With a help of restrictions of functions φm on Zn a weighted space of functions on Zn

denoted as Aφ is defined. Linear continuous functionals on this space in terms of their Fourier-
Laplace transform are described. This description and functional analysis methods allowed to
study surjectivity of difference operators on Aφ and spectral synthesis problem in the kernel of
such operators for a special case of a family φ.
Keywords: sequence spaces, linear difference equation, entire functions, duality.

1. Introduction

Let φ = {φm}∞m=1 be a family of convex functions φm : Rn → R such that:

1) limx→∞
φm(x)
∥x∥ = +∞ for each m ∈ N (∥ · ∥ is the Euclidean norm on Rn);

2) ∃A > 0 ∀m ∈ N ∃Bm > 0:

φm(x)− φm+1(x) > A ln(1 + ||x||)−Bm, x ∈ Rn.

For each m ∈ N let

A(φm) =

{
f : Zn → C such that pm(f) = sup

α∈Zn

|f(α)|
eφm(α)

<∞
}
.

Obviously, for each m ∈ N A(φm+1) ⊂ A(φm). Let Aφ =
∩∞
m=1A(φm). Thus,

for n = 1 elements of Aφ are two-sided sequences, for n > 1 elements of Aφ are
multiple sequences. For brevity elements of Aφ will be simply called sequences.
Sometimes we denote a sequence f as (f(α))α∈Zn .

Under usual operations of addition and multiplication by complex numbers Aφ
is a linear space. Endow Aφ with the topology of projective limit of the spaces
A(φm). Obviously, Aφ is a separable Fréchet space.
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In this article a description of the strong dual space of Aφ in terms of Fourier-
Laplace transform of linear continuous functionals on Aφ as some space of periodic
entire functions in Cn is obtained. Such a description allowed to study surjectivity
of difference operators on Aφ and spectral synthesis problem in the kernel of such
operators for a special case of a family φ.

Note that Fourier-Laplace transform of linear continuous functionals on se-
quence spaces was succesfully applied by many authors to study various analysis
problems in these spaces. For example, L.A. Rubel and B.A. Taylor [6] considered
spaces of all two-sided and one-sided sequences of complex numbers of at most ex-
ponential growth and proved some "polynomial" approximation theorems in these
spaces by dualizing a gap theorem of C. Rényi [4] for periodic entire functions.
This approach was also applied by A.A. Borichev [1] to describe the solutions of
convolution equations in certain spaces of two-sided and one-sided sequences of
exponential growth.

We shall use the following notations. For u = (u1, . . . , un) ∈ Rn (Cn), v =
(v1, . . . , vn) ∈ Rn (Cn) ⟨u, v⟩ = u1v1 + · · ·+ unvn and ∥u∥ denotes the Euclidean
norm in Rn(Cn).

For α = (α1, . . . , αn) ∈ Zn, x = (x1, . . . , xn) ∈ Rn, z = (z1, . . . , zn) ∈ Cn
|α| = α1 + . . . + αn, α′ = (α2, . . . , αn), xα = xα1

1 · · ·xαn
n , zα = zα1

1 · · · zαn
n , Dα =

∂|α|

∂z
α1
1 ···∂zαn

n
.

For multi-indices α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn+ the notation β 6 α
indicates that βj 6 αj (j = 1, 2, . . . , n).

For multi-indices α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn+ such that β 6 α let
Cβα =

∏n
j=1 C

βj
αj where Cβj

αj are the combinatorial numbers.
For r > 0 and z ∈ Cn let B(z, r) = {ζ ∈ Cn : ∥ζ − z∥ < r}.
For a locally convex spaceX letX ′ be the space of linear continuous functionals

on X and let X∗ be the strong dual space.
For a function Φ ∈ C(Rn) such that limx→∞

Φ(x)
∥x∥ = +∞ let

Φ⋆(x) := sup
α∈Zn

(⟨x, α⟩ − Φ(α)), x ∈ Rn;

Φ∗(x) := sup
y∈Rn

(⟨x, y⟩ − Φ(y)), x ∈ Rn.

Recall that Φ∗ is called the Young conjugate of the function Φ. It is well known
that if Φ is convex on Rn then (Φ∗)∗ = Φ.

Obviously, for each z ∈ Cn the sequence fz : α ∈ Zn → e−i⟨z,α⟩ belongs to Aφ
since for each m ∈ N

pm(fz) = sup
α∈Zn

|e−i⟨z,α⟩|
eφm(α)

= exp

(
sup
α∈Zn

(⟨Imz, α⟩ − φm(α))

)
= eφ

⋆
m(Imz) <∞.

(1)
Thus, for each linear continuous functional S on Aφ the function Ŝ(z) = S(fz)
is correctly defined on Cn. It is called the Fourier-Laplace transform of S. The
mapping F : S ∈ A∗

φ → Ŝ is called the Fourier-Laplace transformation.
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For each m ∈ N let

P (φ⋆m) =
{
F ∈ H(Cn) : F (z + 2πl) = F (z) for all z ∈ Cn, l ∈ Zn

and such that ∥F∥m = sup
z∈Cn

|F (z)|
eφ

⋆
m(Imz)

<∞
}
.

Let φ⋆ = {φ⋆m}∞m=1 and Pφ⋆ =
∪∞
m=1 P (φ

⋆
m). Under usual operations of

addition and multiplication by complex numbers Pφ⋆ is a linear space. Endow
Pφ⋆ with the topology of inductive limit of the spaces P (φ⋆m).

The main results of the paper are the following.

Theorem 1.1. The mapping F : S ∈ A∗
φ → Ŝ establishes an isomorphism between

the spaces A∗
φ and Pφ⋆ .

Theorem 1.1 is proved in the second section. In the third section we apply
Theorem 1.1 to study difference operators in Aφ. For f ∈ Aφ and h ∈ Zn define
a sequence fh by the rule: fh(α) = f(α + h), α ∈ Zn. Let H be a finite subset of
Zn and for h ∈ H let γh be a complex number.

Theorem 1.2. Let φ satisfies the following additional conditions:

i1) for each m ∈ N there exist numbers am > 0, bm > 0 and µm > 1 such that

φm(x) > am∥x∥µm − bm, x ∈ Rn;

i2) for each m ∈ N there exists dm > 0 such that for all x ∈ Rn and ξ =
(ξ1, . . . , ξn) ∈ Rn with |ξj | 6 1 (j = 1, . . . , n)

φm+1(x+ ξ) 6 φm(x) + dm.

Then the equation
∑
h∈H γhfh = g is solvable in Aφ for each g ∈ Aφ.

For µ ∈ Zn+ and ζ ∈ Cn define a sequence Eµ,ζ by the rule: α ∈ Zn →
αµe−i⟨α,ζ⟩. Note that in view of the second condition on φ Eµ,ζ is in Aφ.

Denote the zero element of Aφ by 0. Let W be the set of all solutions f ∈ Aφ
of the equation

∑
h∈H γhfh = 0 and E be the set of all solutions of the form Eµ,ζ .

Theorem 1.3. Let the family φ satisfies the conditions of Theorem 1.2 and E is
not empty. Then a closure of a linear envelope of E in Aφ is W .

2. Space Aφ and its dual

To note some special properties of the spaces Aφ and Pφ⋆ we need to remember
definitions of (M∗)-space and (LN∗)-space from [7], [8].

(M∗)-space is a locally convex space F which is the projective limit of a se-
quence of normed spaces Fk with linear continuous mappings gmk : Fk → Fm,
m < k, such that gk,k+1 is compact for each k ∈ N.
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(LN∗)-space is a locally convex space E which is the inductive limit of an
increasing sequence of normed spaces Ek such that the unit ball of Ek is relatively
compact in Ek+1 for each k ∈ N, i.e. such that the inclusion map from Ek into
Ek+1 is compact.

It is known that if E (the inductive limit of an increasing sequence of normed
spaces Ek) is an (LN∗)-space then a set B is bounded in E iff for some m ∈ N it
is contained in Em and bounded there ([7], Theorem 1).

It is easy to show that the inclusions Im : A(φm+1) → A(φm) are compact
for each m ∈ N. So Aφ is an (M∗)-space. Therefore, Aφ is a reflexive space ([7],
Proposition 7).

From conditions on φ it follows that limx→∞(φ⋆m+1(x)−φ⋆m(x)) = +∞. Using
this fact and Montel’s theorem it can be shown that the mappings Jm : P (φ⋆m) →
P (φ⋆m+1) are compact for each m ∈ N. Thus, the space Pφ⋆ is an (LN∗)-space.

Lemma 2.1. For each S ∈ A′
φ we have Ŝ ∈ Pφ⋆ .

Proof. First show that for S ∈ A′
φ Ŝ is an entire function. For f ∈ Aφ and

N ∈ N define the mapping fN : Zn → C by the rule: fN (α) = f(α) for |α| 6 N ,
fN (α) = 0 for |α| > N . Then for each s ∈ N

ps(f − fN ) = sup
|α|>N

|f(α)|
eφs(α)

6 ps+1(f) exp

(
sup

|α|>N
(φs+1(α)− φs(α))

)
.

Taking into account condition 2) on φ we conclude that ps(f−fN ) → 0 as N → ∞.
This means that fN → f in Aφ as N → ∞. Hence, S(fN ) → S(f) as N → ∞.
For each α ∈ Zn let eα be the mapping eα : Zn → C acting by the rule: eα(β) = 1
if α = β, eα(β) = 0 if α ̸= β. Then fN =

∑
|α|6N f(α)eα. Consequently,

S(f) = limn→∞ S(fN ) =
∑
α∈Zn γ(α)f(α), where γ(α) = S(eα). In particular,

Ŝ(z) =
∑
α∈Zn

γ(α)e−i⟨z,α⟩, z ∈ Cn. (2)

Obviously, Ŝ(z + 2πl) = Ŝ(z) for all z ∈ Cn and l ∈ Zn. Since S is a linear
continuous functional on Aφ then for some m ∈ N and c > 0

|S(f)| 6 cpm(f), f ∈ Aφ.

From this we have for each α ∈ Zn

|γ(α)| = |S(eα)| 6 cpm(eα) = ce−φm(α). (3)

Using the second condition on φ we can choose k ∈ N so that the inequality∑
α∈Zn eφm+k(α)−φm(α) <∞ holds. Now using (3) we have for each z ∈ Cn

|Ŝ(z)| =

∣∣∣∣∣ ∑
α∈Zn

γ(α)e−i⟨z,α⟩

∣∣∣∣∣ 6 c
∑
α∈Zn

e−φm(α)+⟨α,Imz⟩

6 ceφ
⋆
m+k(Imz)

∑
α∈Zn

eφm+k(α)−φm(α).
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From this it follows that the series
∑
α∈Zn γ(α)e−i⟨z,α⟩ converges uniformly on

compact subsets of Cn. Hence, Ŝ is an entire function and Ŝ is in Pφ⋆ . �

Remark 2.1. Using the representation (2), inequality (3) and the second condi-
tion on φ it is easy to see that for each S ∈ A′

φ we have

(Dν Ŝ)(z) = S((−iα)νe−i⟨z,α⟩)α∈Zn), ν ∈ Zn+, z ∈ Cn.

Proof of Theorem 1.1. By Lemma 2.1 F(S) ∈ Pφ⋆ for each S ∈ A∗
φ.

Let us show now that the linear mapping F is continuous. But first note that
the topology of A∗

φ can be described as follows. For each k ∈ N let Wk = {f ∈
Aφ : pk(f) 6 1} and W 0

k = {S ∈ A′
φ : |S(f)| 6 1, ∀f ∈ Wk} be a polar of Wk in

A′
φ. Let Tk =

∪
α>0(αW

0
k ) be a vector subspace in A′

φ generated by W 0
k (k ∈ N).

Define a topology in Tk with a help of the norm

Nk(S) = sup
f∈Wk

|S(f)|, S ∈ Tk.

Obviously, A′
φ =

∪∞
k=1 Tk. Define in A′

φ the topology λ of an inductive limit of
spaces Tk. Since Aφ is a reflexive space then the strong topology in A′

φ coincides
with the topology λ ([2], chapter 8). Now let S ∈ Tk, k ∈ N. Then |S(f)| 6
Nk(S), f ∈ Wk. Hence, |S(f)| 6 Nk(S)pk(f), f ∈ Aφ. Putting here f = fz with
z ∈ Cn and using (1) we obtain that

|Ŝ(z)| 6 Nk(S)e
φ⋆

k(Imz).

From this it follows that ∥Ŝ∥k 6 Nk(S), S ∈ Tk (k = 1, 2, . . .). Thus, F is
continuous.

Let us prove that L is injective. Let S ∈ A∗
φ and Ŝ(z) = 0 for each z ∈ Cn.

For some m ∈ N and c > 0 we have |S(f)| 6 cpm(f), f ∈ Aφ. As it was shown in
the proof of Lemma 2.1 the functional S admits the representation

S(f) =
∑
α∈Zn

γ(α)f(α), f ∈ Aφ,

where complex numbers γ(α) satisfy the inequality

|γ(α)| 6 ce−φm(α), α ∈ Zn.

From this representation we have for each x ∈ Rn

Ŝ(x) =
∑
α∈Zn

γ(α)e−i⟨x,α⟩ = 0

Therefore, coefficients γ(α) = 0 for all α ∈ Zn and S is a zero functional. Thus,
F is injective.
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Now we prove that F is surjective. Let F ∈ Pφ⋆ . Then F ∈ P (φ⋆m) for some
m ∈ N. Represent F (x) by the Fourier series

F (x) =
∑
α∈Zn

cαe
−i⟨x,α⟩, x ∈ Rn.

For each α ∈ Zn we have

cα =
1

(2π)n

∫ π

−π
· · ·
∫ π

−π
F (x)ei⟨x,α⟩ dx.

In view of periodicity of F for each α ∈ Zn and y ∈ Rn

cα =
1

(2π)n

∫ π

−π
· · ·
∫ π

−π
F (x+ iy)ei⟨x+iy,α⟩ dx.

From this we get

|cα| 6
∥F∥m
(2π)n

∫ π

−π
· · ·
∫ π

−π
eφ

⋆
m(y)−⟨y,α⟩ dx, α ∈ Zn, y ∈ Rn.

Since φ⋆m(y) 6 φ∗
m(y) for every y ∈ Rn then for each α ∈ Zn we have

|cα| 6 ∥F∥m exp

(
inf
y∈Rn

((φ∗
m(y)− ⟨y, α⟩)

)
= ∥F∥me−(φ∗

m)∗(α) = ∥F∥me−φm(α).

(4)
Define a functional S on Aφ by the formula S(f) =

∑
α∈Zn cαf(α), f ∈ Aφ. Using

the estimate (4) and the second condition on φ it is easy to see that the linear
functional S is continuous. Obviously, Ŝ(z) = F (z), z ∈ Cn. Thus, F is surjective.

By the open mapping theorem [2], [5] F−1 is continuous. Thus, F is a topo-
logical isomorphism and the proof of theorem is complete. �

3. A difference operator on Aφ

3.1. In the proof of Theorems 1.2 and 1.3 we will use Lemma 3.2. But first let us
prove the following auxiliary result.

Lemma 3.1. Let a function h : Zn → R be such that for some constants ν > 1,
C > 0 and D > 0

h(α) > C∥α∥ν −D, α ∈ Zn. (5)

Then there exists a constant Mh > 0 such that

|h⋆(ξ)− h⋆(x)| 6Mh (6)

for all x, ξ ∈ Rn satisfying the condition ∥ξ − x∥ 6 (1 + ∥x∥)−
1

ν−1 .
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Proof. For each x ∈ Rn let α(x) ∈ Zn be a point where the supremum of the
function ux : α ∈ Zn → ⟨x, α⟩ − h(α) over Zn is attained.

First prove that there exists a constant mh > 0 not depending on x such that

∥α(x)∥ 6 mh · (1 + ∥x∥
1

ν−1 ).

Using (5) we have for each α ∈ Zn

ux(α) 6 ∥α∥ · ∥x∥ − C∥α∥ν +D.

Since h⋆(x) = supα∈Zn ux(α) > −h(0) (here 0 is the zero element of Zn) then the
supremum of ux over Zn is attained on the set

Gx = {α ∈ Zn : ∥α∥ · ∥x∥ > C∥α∥ν −D − h(0)}.

Put Lh = D+h(0). By the condition on h we have Lh > 0. For each λ > 0 denote
by Tλ the set of solutions of the inequality

λt > Ctν − Lh,

belonging to R+. This set is a segment of a form [0, tλ], where tλ < ∞. Let us
estimate tλ from above. We have λtλ = Ctνλ − Lh. If tλ > 1 then

λ = Ctν−1
λ − Lh

tλ
> Ctν−1

λ − Lh.

From this tλ 6
(
λ+Lh

C

) 1
ν−1 . Taking into account a case tλ ∈ [0, 1) we have

tλ 6
(
λ+ Lh
C

) 1
ν−1

+ 1.

From this if 0 6 λ 6 1 then tλ 6
(
1+Lh

C

) 1
ν−1 + 1. Moreover if λ > 1 then

tλ 6 λ
1

ν−1
(
1+Lh

C

) 1
ν−1 + 1. Let mh :=

(
1+Lh

C

) 1
ν−1 + 1. Then

tλ 6 mh(1 + λ
1

ν−1 ).

Let dλ := mh(1 + λ
1

ν−1 ). Then Tλ ⊆ [0, dλ]. Since α ∈ Gx ⇔ ∥α∥ ∈ T∥x∥, then for
all α ∈ Gx we have

∥α∥ 6 mh · ∥x∥
1

ν−1 +mh.

In particular,
∥α(x)∥ 6 mh · ∥x∥

1
ν−1 +mh.

Further, for all x, ξ ∈ Rn such that ∥ξ − x∥ 6 (1 + ∥x∥)
1

1−ν we have

h⋆(ξ)− h⋆(x) = sup
α∈Zn

(⟨ξ, α⟩ − h(α))− sup
α∈Zn

(⟨x, α⟩ − h(α))

6 (⟨ξ, α(ξ)⟩ − h(α(ξ)))− (⟨x, α(ξ)⟩ − h(α(ξ)))

= ⟨ξ − x, α(ξ)⟩ 6 ∥ξ − x∥∥α(ξ)∥ 6 (1 + ∥x∥)
1

1−νmh(1 + ∥ξ∥
1

ν−1 )

6 2mh(1 + ∥x∥)
1

ν−1

(1 + ∥x∥)
1

ν−1

= 2mh.
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Similarly,

h⋆(x)− h⋆(ξ) 6 ⟨x− ξ, α(x)⟩ 6 ∥x− ξ∥∥α(x)∥

6 mh(1 + ∥x∥
1

ν−1 )

(1 + ∥x∥)
1

ν−1

6 2mh(1 + ∥x∥)
1

ν−1

(1 + ∥x∥)
1

ν−1

= 2mh.

From these estimates we get (6) with Mh = 2mh. �

Lemma 3.2. Let the family φ satisfies the conditions i1) and i2) of Theorem 1.2.
Then for each m ∈ N:

there exists a constant Km > 0 such that

|φ⋆m(ξ)− φ⋆m(x)| 6 Km (7)

for all x, ξ ∈ Rn satisfying the condition ∥ξ − x∥ 6 (1 + ∥x∥)−
1

µm−1 ;

φ⋆m+1(x)− φ⋆m(x) > ∥x∥ − dm, x ∈ Rn. (8)

Proof. The inequality (7) holds in view of Lemma 3.1. So let us prove the in-
equality (8). For each x ∈ Rn and m ∈ N let αm(x) ∈ Zn be a point where the
supremum of the function ux : α ∈ Zn → ⟨x, α⟩ − φm(α) over Zn is attained. Let
θ(x) be the point in Rn with coordinates θj defined as follows: θj =

xj

|xj | if xj ̸= 0

and θj = 0 if xj = 0 (j = 1, . . . , n). Then using the condition i2) we have

φ⋆m+1(x)− φ⋆m(x) > ⟨x, θ(x)⟩ − φm+1(αm(x) + θ(x)) + φm(αm(x))

> |x1|+ · · ·+ |xn| − dm > ∥x∥ − dm.

Thus, the inequality (8) is proved. �

Remark 3.1. For each m ∈ N and x ∈ Rn let ym(x) be a point where the
supremum of the function vx : y ∈ Rn → ⟨x, y⟩ − φm(y) over Rn is attained. Let
α ∈ Zn be the nearest point to ym(x). Then

φ∗
m(x) = ⟨x, ym(x)⟩ − ⟨x, α⟩+ ⟨x, α⟩ − φm+1(α) + φm+1(α)− φm(ym(x)).

From this representation using the condition i2) we have

φ∗
m(x) 6 n∥x∥+ φ⋆m+1(x) + dm.

Now by (8) we get for some dm,n > 0

φ∗
m(x) 6 φ⋆m+n+1(x) + dm,n, x ∈ Rn.

On the other hand, for each m ∈ N and x ∈ Rn φ⋆m(x) 6 φ∗
m(x).

Two last inequalities mean that the space Pφ⋆ coincides with the space Pφ∗

which is an inductive limit of the spaces

P (φ∗
m) =

{
F ∈ H(Cn) : F (z + 2πl) = F (z) for all z ∈ Cn, l ∈ Zn

and such that ∥F∥m = sup
z∈Cn

|F (z)|
eφ

∗
m(Imz)

<∞
}
.

Here φ∗ = {φ∗
m}∞m=1.
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3.2. Let the family φ satisfies the conditions of Theorem 1.2. In the first
section we defined for each f ∈ Aφ and h ∈ Zn a sequence fh by the rule: fh(α) =
f(α + h), α ∈ Zn. Using the condition i2) on φ for each m ∈ N we can find
numbers k ∈ N and d > 0 such that pm(fh) 6 dpk(f) for all f ∈ Aφ. Thus, for
each h ∈ Zn the linear operator Sh : f ∈ Aφ → fh acts from Aφ to Aφ and is
continuous. So if H is a subset of Zn consisting of finite number of elements and
for h ∈ H γh ∈ C then an operator M : Aφ → Aφ acting by the rule

M(f) =
∑
h∈H

γhSh(f), f ∈ Aφ,

is linear and continuous.
Let g(z) :=

∑
h∈H γhe

−i⟨h,z⟩ (z ∈ Cn). The function g is usually called a
characteristic function of the operator M .

3.2.1. In the proof of Theorems 1.2 and 1.3 the following lemma by L. Ehren-
preis and B. Malgrange (see, for example, Lemma A.1 in [3]) is used.

Lemma 3.3. Let P be a polynomial of degree m. Then there exists a constant
C > 0 such that for every r > 0, z ∈ Cn and every function f which is defined for
all z′ ∈ Cn with ∥z′ − z∥ < r and is such that f

P is holomorphic there, we have∣∣∣∣f(z)p(z)

∣∣∣∣ 6 Cr−m sup
z′∈B(z,r)

|f(z′)|.

Proof of Theorem 1.2. We have to prove that the operator M is surjective on
Aφ. First let us show that the image imM of the operator M is dense in Aφ. Let
Ng = {z ∈ Cn : g(z) = 0}. For z ∈ Cn \ Ng consider the equation M(f) = fz.
It has a solution f = fz

g(z) belonging to Aφ. From this and completeness of the
system {fz}z∈Cn\Ng

we conclude that imM is dense in Aφ.
Let us show now that the image of the operator M is closed in Aφ. It is known

that closedness of image of M in Aφ is equivalent to closedness of the image of
the adjoint operator M∗ in A∗

φ (see [2], Theorem 8.6.13).
Consider an operator M̂∗ on Pφ⋆ acting by the rule:

M̂∗(F ) = F(M∗(F−1(F ))), F ∈ Pφ⋆ .

Obviously, M̂∗ is a linear continuous operator on Pφ⋆ . Taking into account Theo-
rem 1.1 we see that closedness of the image of the operator M in Aφ is equivalent
to closedness of the image imM̂∗ of the operator M̂∗ in Pφ⋆ . Note that for each
F ∈ Pφ⋆ and z ∈ Cn

M̂∗(F )(z) = F−1(F )(M(fz))

= F−1(F )

(∑
h∈H

γhSh(fz)

)
= F−1(F )

(∑
h∈H

γh(e
−i⟨α+h,z⟩)α∈Zn

)
= F−1(F )(fz)

∑
h∈H

γhe
−i⟨h,z⟩ = F (z)g(z).

Thus, for each F ∈ Pφ⋆ we have M̂∗(F )(z) = F (z)g(z), z ∈ Cn.
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By Theorem 1 in [7] imM̂∗ is closed in Pφ⋆ iff imM̂∗ ∩ P (φ⋆m) is closed in
P (φ⋆m) for each m ∈ N. So let m ∈ N be arbitrary and F belongs to the closure
of imM̂∗ ∩ P (φ⋆m) in P (φ⋆m). Then there exists a sequence (Fk)

∞
k=1 of functions

Fk ∈ imM̂∗ ∩ P (φ⋆m) converging to F in Pφ⋆
m

. In particular, Fk → F uniformly
on compact subsets of Cn as k → ∞. So it is clear that the function ψ(z) = F (z)

g(z)

is holomorphic on Cn. Obviously, ψ(z + 2πl) = ψ(z) for all z ∈ Cn and l ∈ Zn.
The functions F and ψ can be represented by the series

F (z) =
∑
α∈Zn

cαe
−i⟨z,α⟩, z ∈ Cn,

ψ(z) =
∑
α∈Zn

bαe
−i⟨z,α⟩, z ∈ Cn.

As we know (see Lemma 2.1) the first series converges to F in P (φ⋆m+k) for some
k ∈ N. The second series uniformly converges to ψ on compact subsets of Cn. Let
us show that ψ ∈ Pφ⋆ . Obviously, the functions F0(ζ) =

∑
α∈Zn cαζ

α, ψ0(ζ) =∑
α∈Zn bαζ

α, g0(ζ) =
∑
h∈H γhζ

h are holomorphic in (C \ {0})n and

ψ0(ζ) =
F0(ζ)

g0(ζ)
, ζ ∈ (C \ {0})n.

Choose N = (N1, . . . , Nn) ∈ Zn+ so that P (ζ) = g0(ζ)ζ
N1
1 · · · ζNn

n is a polynomial.
Then

ψ0(ζ) =
F0(ζ)ζ

N

P (ζ)
, ζ ∈ (C \ {0})n.

Let us estimate |ψ0(ζ)| from above at points ζ = (ζ1, . . . , ζn) ∈ (C \ {0})n. Let

am(ζ) = (1 + ∥(ln |ζ1|, . . . , ln |ζn|)∥)
1

1−µm ,

r(ζ) = min

(
1,

(
1− exp

(
−am(ζ)√

n

))
min

16j6n
|ζj |
)
.

By Lemma 3.3 there exists a constant C > 0 such that for all ζ ∈ (C \ {0})n

|ψ0(ζ)| 6 C(r(ζ))−k sup
w∈B(ζ,r(ζ))

(|F0(w)|∥w∥|N |)

6 C(r(ζ))−k(1 + ∥ζ∥)|N | sup
w∈B(ζ,r(ζ))

|F0(w)|.

Since for ζ = (ζ1, . . . , ζn) ∈ (C \ {0})n

|F0(ζ)| 6 ∥F∥meφ
⋆
m(ln |ζ1|,...,ln |ζn|),

then

|ψ0(ζ)| 6 C(r(ζ))−k(1 + ∥ζ∥)|N | exp

(
sup

w∈B(ζ,r(ζ))

φ⋆m(ln |w1|, . . . , ln |wn|)

)
. (9)
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For points w = (w1, . . . , wn) ∈ B(ζ, r(ζ)) we have

exp(

(
−am(ζ)√

n

)
|ζj | 6 |wj | 6 exp

(
am(ζ)√

n

)
|ζj |(j = 1, . . . , n).

From this we get for w ∈ B(ζ, r(ζ))

| ln |wj | − ln |ζj || 6
am(ζ)√

n
, j = 1, . . . , n.

Thus, for points w = (w1, . . . , wn) ∈ B(ζ, r(ζ))

∥(ln |w1|, . . . , ln |wn|)− (ln |ζ1|, . . . , ln |ζn|)∥ 6 (1 + ∥(ln |ζ1|, . . . , ln |ζn|)∥)
1

1−µm .

Now using the inequality (7) we have

sup
w∈B(ζ,r(ζ))

φ⋆m(ln |w1|, . . . , ln |wn|) 6 φ⋆m(ln |ζ1|, . . . , ln |ζn|) +Km.

From this and (9) we get

|ψ0(ζ)| 6 CeKm(r(ζ))−k(1 + ∥ζ∥)|N |eφ
⋆
m(ln |ζ1|,...,ln |ζn|)

for all ζ = (ζ1, . . . , ζn) ∈ (C\{0})n. Taking into account that for z = (z1, . . . , zn) ∈
Cn and y = Imz

am(e−iz1 , . . . , e−izn) = (1 + ∥y∥)
1

1−µm

it is easy to show that z ∈ Cn

|ψ(z)| 6 CeKm

(
1 +

1

(1− e
− 1√

n )e−∥y∥

)k
(1 + ∥(eImz1 , . . . , eImzn)∥)|N |eφ

⋆
m(Imz).

From this we have

|ψ(z)| 6 CeKm

(
2

1− e
− 1√

n

)k
e(|N |+k)∥Imz∥(1 + n)|N |eφ

⋆
m(Imz).

Using the inequality (8) we obtain

|ψ(z)| 6 Keφ
⋆
m+k+|N|(Imz), z ∈ Cn,

where K is some constant depending on k,m, |N |, n. Hence, ψ ∈ P (φ⋆m+k+|N |).

Thus, ψ ∈ Pφ⋆ . This means that F ∈ imM̂∗. Hence, imM̂∗ ∩ P (φ⋆m) is closed
in P (φ⋆m) for each m ∈ N. Thus, the image of the operator M̂∗ is closed in Pφ⋆ .
Therefore, the image of the operator M is closed in Aφ.

Thus, the image of the operator M is dense and closed in Aφ. Therefore,
imM = Aφ. The proof is complete. �
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3.2.2. Consider the equation M(f) = 0 in Aφ. Note that if f belongs to the
kernel W of the operator M then for each β ∈ Zn Sβ(f) ∈W .

Recall that for µ ∈ Zn+ and ζ ∈ Cn we defined the sequence Eµ,ζ by the rule:
α ∈ Zn → αµe−i⟨α,ζ⟩.

Lemma 3.4. The sequence Eµ,ζ is in W iff (Dβg)(ζ) = 0 for all β ∈ Zn+ such
that β 6 µ.

Proof. Consider more complicated case n > 2. Let µ ∈ Zn+ and ζ ∈ Cn be such
that (Dβg)(ζ) = 0 for all β ∈ Zn+ such that β 6 µ. Then for each α ∈ Zn

M(Eµ,ζ)(α) =
∑
h∈H

γh(α+ h)µe−i⟨α+h,ζ⟩

= e−i⟨α,ζ⟩
∑
h∈H

γh(α+ h)µe−i⟨h,ζ⟩

= e−i⟨α,ζ⟩
∑

β∈Zn
+:β6µ

Cβµα
µ−β

∑
h∈H

γhh
βe−i⟨h,ζ⟩

= e−i⟨α,ζ⟩
∑

β∈Zn
+:β6µ

Cβµα
µ−βi|β|(Dβg)(ζ) = 0.

Thus, Eµ,ζ ∈W .
Now let for some µ ∈ Zn+ and ζ ∈ Cn Eµ,ζ ∈W . Then for each α ∈ Zn∑

h∈H

γh(α+ h)µe−i⟨α+h,ζ⟩ = 0

Hence, for each α ∈ Zn ∑
h∈H

γh(α+ h)µe−i⟨h,ζ⟩ = 0. (10)

In particular,
∑
h∈H γhh

µe−i⟨h,ζ⟩ = 0. This means that (Dµg)(ζ) = 0. Further,
let ν = (ν1, . . . , νn) ∈ Zn+ be such that (Dβg)(ζ) = 0 for all β ∈ Zn+ such that
ν 6 β 6 µ. If ν = (0, . . . , 0) then Lemma holds. If ν ̸= (0, . . . , 0) then there
exists j ∈ {1, . . . , n} such that νj > 1. For simplicity suppose j = 1 and show that
(D(β1,ν2,...,νn)g)(ζ) = 0 for all β1 = 0, . . . , ν1 − 1. For each α ∈ Zn∑

h∈H

γh(α+ h)µe−i⟨h,ζ⟩ =
∑
h∈H

γh
∑

(0,...,0)6β6µ
Cβµα

µ−βhβe−i⟨h,ζ⟩

=
∑

(0,...,0)6β6µ
Cβµα

µ−β
∑
h∈H

γhh
βe−i⟨h,ζ⟩

=
∑

(0,...,0)6β6µ
Cβµα

µ−βi|β|(Dβg)(ζ)

=
∑

(0,...,0)6β6ν,β ̸=ν
Cβµα

µ−βi|β|(Dβg)(ζ).
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In view of (10) ∑
(0,...,0)6β6ν,β ̸=ν

Cβµα
µ−βi|β|(Dβg)(ζ) = 0, α ∈ Zn.

From this we have for all α ∈ Zn

ν1∑
β1=0

Cβ1
µ1
αν1−β1

1 iβ1

∑
(0,...,0)6β′6ν′

α′ν′−β′

i|β
′|(Dβg)(ζ) = 0.

Putting here α2 = · · · = αn = 0 we get for all α1 ∈ Z

ν1−1∑
β1=0

Cβ1
µ1
αν1−β1

1 iβ1(D(β1,ν2,...,νn)g)(ζ) = 0.

From this it follows that (D(β1,ν2,...,νn)g)(ζ) = 0 for all β1 = 0, . . . , ν1 − 1. Ob-
viously, applying these arguments so on we will obtain that (Dβg)(ζ) = 0 for all
β ∈ Zn+ such that β 6 µ.

The proof of Lemma is complete. �

Let A = {(µ, ζ) ∈ Zn+ × Cn : Eµ,ζ ∈W}. Recall that E is a set of all solutions
of the form Eµ,ζ of the equation

∑
h∈H γhfh = 0.

Proof of Theorem 1.3. Let S be a linear continuous functional on Aφ such that
S(f) = 0 for each f ∈ E . If we will show that S(f) = 0 for each f ∈ W then
a closure of a linear envelope of E will coincide with W . Using Lemma 3.4 and
taking account that for all (µ, ζ) ∈ A (DβŜ)(ζ) = 0 for β ∈ Zn+ such that β 6 µ it
is easy to check that the function ψ := Ŝ

g is entire. From the proof of Theorem 1.2
it follows that ψ ∈ Pφ⋆ . Hence, by Theorem 1.1 there exists a functional Ψ ∈ A′

φ

such that Ψ̂ = ψ. Obviously, the functional Ψ ◦M is in A′
φ too. And for each

z ∈ Cn we have F(Ψ ◦M)(z) = Ψ(M(fz)) = Ψ(g(z)fz) = ψ(z)g(z) = Ŝ(z). By
theorem 1 Ψ ◦M = S. Now for each f ∈W we have

S(f) = (Ψ ◦M)(f) = Ψ(M(f)) = 0.

Thus, a linear envelope of E is dense in W . �
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