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ON SOME COMPLEX EXPLICIT FORMULÆ CONNECTED
WITH DIRICHLET COEFFICIENTS OF INVERSES OF SPECIAL
TYPE L-FUNCTIONS FROM THE SELBERG CLASS

Karol Gierszewski

Abstract: We obtain, by means of the technique introduced in by J. Kaczorowski, a mero-
morphic continuation and the functional equation for the function m(F, ·), where F is from the
Selberg class with a functional equation expressible with exactly one Γ function.

Keywords: coefficients of L-functions, Selberg class.

1. Introduction

Let SΓ denote the subset of the Selberg class [9] consisting of the functions with
a functional equation expressible with exactly one Γ function. That is a function
F ∈ SΓ satisfies the following five axioms (s = σ + it here and futher on)

1. (Dirichlet series) For σ > 1, F is an absolutely convergent Dirichlet series

F (s) =
∞∑
n=1

aF (n)

ns
.

2. (Analytic continuation) For some m > 0, (s− 1)mF (s) is an entire function
of finite order.

3. (Functional equation) F satisfies a functional equation of the form

ΦF (s) = ωΦF (1− s)

where
ΦF (s) = QsΓ (λs+ µ)F (s)

with Q > 0, λ > 0, ℜµ > 0 and |ω| = 1.
4. (Ramanujan hypothesis) For every ε > 0, aF (n) ≪ε n

ε.
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5. (Euler product) For σ > 1

F (s) =
∏
p

Fp(s)

where

logFp(s) :=

∞∑
m=1

b(pm)

pms
(1.1)

and b(n) ≪ nθ for some θ < 1
2 .

The known invariants of functions from the Selberg class S, the degree, the
ξ-invariant, the parity and the shift, may be written as

dF = 2λ, ξF + 1 = 2µ, ηF + 1 = 2ℜµ and θF = 2ℑµ

for such F .
We note that, although the data in the functional equation in S are, in gen-

eral, not unique, see for example Section 4 of Vignéras [14], Section 2 of Conrey-
-Ghosh [4], Section 3 of Kaczorowski [9] and Kaczorowski-Perelli [12], they are
unique in the special case of the functional equation from SΓ as a immediate con-
sequence of a simple form of invariants given above. Throughout this paper we fix
F ∈ SΓ and data Q, λ, µ, ω.

We denote by µF (n) the Dirichlet convolution inverse of aF (n), i.e. we formally
have

1

F (σ + it)
=

∞∑
n=1

µF (n)

nσ+it
. (1.2)

From [11, Lemma 1] it follows that for every ε > 0 there exists M =M(ε) such
that µF (n) ≪ε n

ε for (n,M) = 1. By this estimation it follows that

∏
(p,M)>1

Fp(s)
1

F (s)
=

∞∑
n=1

(n,M)=1

µF (n)

ns
(1.3)

converges absolutely and uniformly for σ > 1+ ε for every ε > 0. Using axiom (5)
one obtains

µF (p
m) ≪ pmθ

m∑
k=1

1

k!

(
m− 1

k − 1

)
≪ pmθe2

√
m, m > 1.

Hence the Dirichlet series

1

Fp(s)
=

∞∑
m=0

µF (p
m)p−ms

converges absolutely and uniformly on compact sets for σ > θ. As a consequence
we obtain the absolute and uniform convergence of the whole series (1.2) in the
half-plane σ > 1 + ε for every ε > 0.
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For brevity of notation we put

κF :=

{
−ηF+1

2dF
if ηF > −1

− 1
dF

if ηF = −1 .

Then, for z from the upper half-plane H := {z ∈ C | ℑ(z) > 0}, the function
m(F, z) is defined as follows:

m(F, z) =
1

2πi

∫
C

esz

F (s)
ds, (1.4)

where F ∈ SΓ . The path of integration consists of the half-line s = κF + it,
∞ > t > 0, the smooth arc A on the upper half-plane joining points κF and 3/2
separating possible real zeros of FF from the zeros above the real line, and the
half-line s = 3/2+ it, 0 6 t <∞. Since from axiom (3) and the Stirling formula it
easily follows that 1/F (s) is bounded on C, the integral converges absolutely and
uniformly on compact subsets of H, and hence represents a holomorphic function
on this half-plane. To formulate the main result of this paper we need two auxiliary
functions

R(F, z) =
∑

F (β)=0
06β61

Res
s=β

esz

F (s)
, (1.5)

Jν(z) =
∞∑
k=0

(−1)k(z/2)2k+ν

k!Γ (k + ν + 1)
, (1.6)

where Jν(z) denotes the familiar Bessel function of the first kind of order ν ∈ R
[8, formula (2), p. 4] that we only use for z ̸= 0, choosing the standard real branch
on the positive part of the real axis. As usual, δba denotes the Kronecker delta. We
also use the notation m(F, z) := m(F, z).

Theorem 1. Let F ∈ SΓ . Then m(F, ·) has a meromorphic continuation to C
with simple poles at the points z = log n, µF (n) ̸= 0, n ∈ N, and residues

Res
z=logn

m(F, z) = −µF (n)
2πi

.

Moreover, it satisfies the following functional equation

m(F, z) +m(F, z) = − 2ω

dFQ
1+2i

θF
dF

e
−i θFdF z

∞∑
n=1

µF (n)

n
1+i

θF
dF

(1.7)

×

((
Q2nez

) 1
2−

1
dF J 1

2dF+ηF

(
2
(
Q2nez

)− 1
dF

)
− δηF−1

1

Γ
(
1
2dF

))
−R(F, z).
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This theorem generalises a result of K. Bartz [2] since the Riemann zeta
function belongs to SΓ . It also generalises a result of A. Łydka [13, Theorem 1.3]
since by the results contained in [3, 5, 6] the function L(s+ 1

2 , E) belongs to SΓ ,
where L(s,E) denotes the global L-function of an elliptic curve over Q.

In fact the class SΓ contains many more functions. Let χ be a primitive,
non principal Dirichlet character. Then for every θ ∈ R the Dirichlet L-function
L(s + iθ, χ) belongs to SΓ . Let f be a normalised newform of weight k and level
N , i.e. f ∈ Snewk (N), such that f is a common eigenvector for all Hecke operators
Tp. Then the associated L-function L(f, s+ k−1

2 ) belongs to SΓ [5, 6, 9].
Neither the complete structure of the Selberg class S, nor even the structure

of SΓ is known, although many conjectures are formulated [9, 12]. We note here
that our result is completely independent of those conjectures.

Let us explicitly state here that the function m(F, ·) is just a tool aimed at
proving Ω and Ω± results for the summatory functions of the function µF . So
far this aim was achieved for the summatory function of the function µζ i.e. the
classical arithmetic Möbius function [10, Theorem 1]. Therefore our research is
primarily motivated by the arithmetical nature of the elements of the Selberg class
and the main result of this paper is just a step towards obtaining Ω results for the
summatory function of µF where F ∈ SΓ .

Acknowledgement. The author wishes to thank professors Jerzy Kaczorowski
and Kazimierz Wiertelak for their valuable comments while writing this article.

2. Auxiliary results

First we state some technical lemmas.

Lemma 1. Let F ∈ SΓ and let ρ = β + iγ run through non-trivial zeros of the
function F . Then for |t| > 1 we have the following formulæ

F ′

F
(s) =

∑
|t−γ|61

1

s− ρ
+OF (log t) (2.1)

and
logF (s) =

∑
|t−γ|61

log(s− ρ) + OF (log t), (2.2)

uniformly for −1 6 σ 6 2, where the implied constants depend only on F
(cf. [1, Lemma 2.4]) and −π < ℑ log(s− ρ) < π.

The proof of Lemma 1 follows, mutatis mutandis, by the argument in the proof
of Theorem 9.6 (B) [15]. As a corollary we have

logF (σ + it) ≪ε,F log (|t|+ 2) , as |t| → ∞ (2.3)

for every ε > 0, in the strip 1 + ε 6 σ 6 2.
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For brevity of notation we put

υF :=
|θF |
dF

+ 1 .

Then we have

Lemma 2. Let z = x + iy, y > 0, s = Reiφ, R sinφ > υF , R|cosφ| > 1
2 |κF |,

where π
2 < φ < π and let F ∈ SΓ . Then for R > R0(x, y) we have∣∣∣∣ eszF (s)

∣∣∣∣ 6 e−y
R
2 . (2.4)

Proof. Using the asymmetric form of the functional equation for F ∈ SΓ

F (s) = ω
1

hF (s)
F (1− s), (2.5)

where
hF (s) = Q2s−1 Γ (λs+ µ)

Γ (λ(1− s) + µ)
(2.6)

we obtain
log

∣∣∣∣ eszF (s)

∣∣∣∣ = ℜ(sz)− log
∣∣F (1− s)

∣∣+ log |hF (s)| .

Since ℜ(1 − s) = 1 + R| cosφ| > 1 + 1
2 |κF |, by (2.3) we have log

∣∣F (1− s)
∣∣ ≪κF

logR. Since R sinφ > υF , we have

log |sin (π(λs+ µ))| = dF
2
πR sinφ+O(1). (2.7)

Using the well-known formula

Γ (s)Γ (1− s) =
π

sin (πs)

and the Stirling formula we estimate

log |hF (s)| = (2R cosφ) logQ + (dFR cosφ) log

(
1

2
dFR

)
+ dFR

(
φ− 3

2
π

)
sinφ− dFR cosφ+O(logR).

(2.8)

Consequently

log

∣∣∣∣ eszF (s)

∣∣∣∣ = dFR log

(
dF
2
R

)
cosφ+Rf(φ, x, y) + O(logR), (2.9)

where

f(φ, x, y) := (x+ 2 logQ− dF ) cosφ+

(
−y + dF

(
φ− 3

2
π

))
sinφ.
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Since
f
(π
2
, x, y

)
= − (y + dFπ)

and
∂f

∂φ
(φ, x, y) ≪x,y 1,

π

2
< φ < π,

we have for π
2 < φ 6 π

2 + 1/
√
logR

f(φ, x, y) = − (y + dF 2π) + Ox,y

(
1√
logR

)
.

Hence, for such φ and sufficiently large R, we have

log

∣∣∣∣ eszF (s)

∣∣∣∣ 6 −yR
2
.

For π
2 + 1/

√
logR 6 φ 6 π we have | cosφ| ≫ 1/

√
logR and hence using (2.9) we

have

log

∣∣∣∣ eszF (s)

∣∣∣∣ = −dFR log

(
dF
2
R

)
|cosφ|+Ox,y(R) 6 −yR

2

for sufficiently large R, and the lemma follows. �

3. Proof of Theorem 1

We split the proof of the theorem into two parts. First we prove that function
m(F, ·) has a meromorphic continuation to the whole complex plane, then we show
the functional equation.

Using Lemma 2 we can shift the path of integration in (1.4) as follows:

m(F, z) =
1

2πi

(∫
D
+

∫
A
+

∫ 3
2+i∞

3
2

)
esz

F (s)
ds

=: mD(F, z) +mA(F, z) +mL(F, z)

(3.1)

where D consists of the half-line s = σ + iυF , −∞ < σ 6 κF and the vertical
line segment [κF + iυF , κF ], A is the arc part of C and L = [3/2, 3/2 + i∞). For
s = σ + iυF with σ 6 κF and z = x+ iy we have

|esz| = eσx−υF y

and using (2.9) ∣∣∣∣ 1

F (σ + iυF )

∣∣∣∣≪ e−c|σ| log(|σ|+2)

for a positive c depending only on F . Hence mD(F, ·) is an entire function. Since
A is compact and omits zeros of F it follows that the function mA(F, z) is also
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entire. Let ℑ(z) > 0. Since the series 1/F
(
3
2 + it

)
=
∑∞
n=1 µF (n)n

− 3
2−it con-

verges absolutely and uniformly for 0 6 t <∞, and

∞∑
n=1

∫ ∞

0

∣∣∣µF (n)e(z−logn)( 3
2+it)

∣∣∣ |dt|
6 e

3
2x

∞∑
n=1

|µF (n)|n−
3
2

∫ ∞

0

e−ytdt≪F,x
1

y
≪ 1, (3.2)

therefore in mL(F, ·) we can interchange the order of summation and integration
obtaining

mL(F, z) =
∞∑
n=1

µF (n)
1

2πi

∫ 3
2+i∞

3
2

e(z−logn)sds.

We have

mL(F, z) = −e
3
2 z

2πi
m0(F, z),

where

m0(F, z) =
∞∑
n=1

µF (n)

n3/2
1

z − logn
. (3.3)

Because (3.3) is uniformly convergent on any compact subset of
C \ {z = log n | µF (n) ̸= 0, n ∈ N} we obtain a meromorphic continuation
of mL(F, z) and, consequently, m(F, z) to the whole complex plane. The only
singularities are those generated by m0(F, z) i.e. simple poles at log n, n ∈ N,
µF (n) ̸= 0, with residues

Res
z=logn

m(F, z) = −µF (n)
2πi

.

Let us now consider m(F, z), where ℑ(z) < 0. Changing the variable s 7→ s in
(1.4), we have

m(F , z) =
1

2πi

∫
−C

esz

F (s)
ds,

where C denotes the contour conjugate to C and the minus sign indicates the
reversed orientation. As in the first part of the proof, we replace the half-line
[κF ,κF + i∞), by the contour −D consisting of the vertical line segment [κF ,κF−
iυF ] and the half line s = σ − iυF , 0 > σ > −∞. Therefore we have as in (3.1)
that

m(F, z) =
1

2πi

(∫
−D

+

∫
−A

+

∫ 3
2

3
2−i∞

)
esz

F (s)
ds

= m−D(F, z) +m−A(F, z) +
e

3
2 z

2πi
m0(F, z).

(3.4)
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and the equality extends to z ∈ C by analytic continuation. From (3.1) and (3.4)
we obtain for z ∈ C \ {log n | µF (n) ̸= 0, n ∈ N}

m(F, z) +m(F , z) =
1

2πi

∫
E

esz

F (s)
ds+

1

2πi

∫
A2

esz

F (s)
ds, (3.5)

where E is the path consisting of (−∞+ iυF ,κF + iυF ], [κF + iυF ,κF − iυF ] and
[κF − iυF ,−∞− iυF ) and A2 = A ∪ −A is a closed loop. Since A separates the
real zeros of FF from the zeros above the real line, there are no points inside
the loop A2, apart from the interval [0, 1], where ez·/F (·) could have singularity.
Computing residues and noting that the orientation of A2 is clockwise, we obtain

1

2πi

∫
A2

esz

F (s)
ds = −R(F, z).

By (2.8) we have

∫ −∞

κF

∞∑
n=1

∣∣∣∣µF (n)n1−s

∣∣∣∣ |hF (σ ± iυF )|
∣∣∣e(σ±iυF )z

∣∣∣ |dσ|
≪
∫ −∞

κF

e−c1|σ|e−|σ|x∓yυF |dσ| ≪ 1, (3.6)

where c1 > 0. By the functional equation (2.5), the expansion of 1/F (1− s) into
the absolutely and uniformly convergent Dirichlet series, and by the estimation
(3.6) we obtain

1

2πi

∫
E

esz

F (s)
ds =

ω

Q

∞∑
n=1

µF (n)

n

1

2πi

∫
E

Γ (λs+ µ)

Γ (λ(1− s) + µ)

(
Q2nez

)s
ds.

Under the substitution λs 7→ s, we have

1

2πi

∫
E

Γ (λs+ µ)

Γ (λ(1− s) + µ)

(
Q2nez

)s
ds

=
2

dF

1

2πi

∫
λE

Γ (s+ µ)

Γ (λ+ µ− s)

((
Q2nez

) 2
dF

)s
ds.

Evaluating the last integral by means of [7, formulæ (9), p. 205 & (3), p. 211] we
obtain

1

2πi

∫
E

Γ (λs+ µ)

Γ (λ(1− s) + µ)

(
Q2nez

)s
ds

= − 2

dF

(
Q2nez

)−i θFdF ((Q2nez
) 1

2−
1

dF J 1
2dF+ηF

(
2
(
Q2nez

)− 1
dF

)
− δηF−1

1

Γ
(
1
2dF

))

and the theorem follows.
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