Functiones et Approximatio 49.2 (2013), 221–227 doi: 10.7169/facm/2013.49.2.2

THE CRITICAL VALUES OF *L*-FUNCTIONS OF CM-BASE CHANGE FOR HILBERT MODULAR FORMS

CRISTIAN VIRDOL

Abstract: In this paper we generalize some results, obtained by Shimura, on the critical values of L-functions of l-adic representations attached to quadratic CM-base change of Hilbert modular forms twisted by finite order characters, to the case of the critical values of L-functions of arbitrary base change to CM-number fields of l-adic representations attached to Hilbert modular forms twisted by some finite-dimensional representations.

Keywords: critical values, CM-fields, Hilbert modular forms.

1. Introduction

For F a totally real number field, let J_F be the set of infinite places of F, and let $\Gamma_F := \operatorname{Gal}(\overline{\mathbb{Q}}/F)$. Let f be a normalized Hecke eigenform of $\operatorname{GL}(2)/F$ of weight $k = (k(\tau))_{\tau \in J_F}$, where all $k(\tau)$ have the same parity and $k(\tau) \ge 2$. We denote by Π the cuspidal automorphic representation of $\operatorname{GL}(2)/F$ generated by f. In this paper we assume that Π is non-CM. We denote by ρ_{Π} the l-adic representation attached to Π , for some prime number l (by fixing an isomorphism $\iota : \overline{\mathbb{Q}}_l \xrightarrow{\sim} \mathbb{C}$ one can regard ρ_{Π} as a complex-valued representation). Define $k_0 = \max\{k(\tau) | \tau \in J_F\}$ and $k^0 = \min\{k(\tau) | \tau \in J_F\}$. Any integer $m \in \mathbb{Z}$ such that $(k_0 - k^0)/2 < m < (k_0 + k^0)/2$ is called a critical point for f or Π . Throughout this paper we write $a \sim b$ for $a, b \in \mathbb{C}$ if $b \neq 0$ and $a/b \in \overline{\mathbb{Q}}$.

In this article we prove the following result.

Theorem 1.1. Assume $k(\tau) \ge 3$ for all $\tau \in J_F$, and $k(\tau) \mod 2$ is independent of τ . Let M be a finite CM-extension of F, and let $\Gamma_M := Gal(\overline{\mathbb{Q}}/M)$. Assume that χ is a continuous complex-valued abelian representation of Γ_M , and that ϕ is a continuous complex-valued representation of Γ_M satisfying the following property: $K := \overline{\mathbb{Q}}^{ker\phi}$ is a $(\mathbb{Z}/2\mathbb{Z})^r$ -extension of a CM-number field for some non-negative

²⁰¹⁰ Mathematics Subject Classification: primary: 11F41; secondary: 11F80, 11R42, 11R80

integer r. Let $\psi = \phi \otimes \chi$. Then

$$L\left(m,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi\right)\sim\pi^{(m+1-k_{0})[M:\mathbb{Q}]\dim\psi}\langle f,f\rangle^{\frac{[M:F]}{2}\dim\psi},$$

for any integer m satisfying

$$(k_0+1)/2 \leq m < (k_0+k^0)/2$$

Theorem 1.1 is a generalization of Theorem 5.7 of [S1] (i.e. Proposition 2.1 below; the inner product $\langle f, f \rangle$ is normalized as in §2 below).

2. Known results

Consider F a totally real number field and let J_F be the set of infinite places of F. If Π is a cuspidal automorphic representation (discrete series at infinity) of weight $k = (k(\tau))_{\tau \in J_F}$ of $\operatorname{GL}(2)/F$, where all $k(\tau)$ have the same parity and all $k(\tau) \ge 2$, let $k_0 = \max\{k(\tau) | \tau \in J_F\}$ and $k^0 = \min\{k(\tau) | \tau \in J_F\}$. Let O be the coefficient ring of Π (i.e. O is the ring of integers of the field generated over \mathbb{Q} by the eigenvalues a_{\wp} defined by $T_{\wp}f = a_{\wp}f$, where T_{\wp} is the Hecke operator at \wp , and \wp runs over the prime ideals of F), and let λ be a prime ideal of O above some rational prime l. Then there exists ([T]) a λ -adic representation

$$\rho_{\Pi} := \rho_{\Pi,\lambda} : \Gamma_F \to \mathrm{GL}_2(O_{\lambda}) \hookrightarrow \mathrm{GL}_2(\mathbb{Q}_l),$$

which satisfies $L(s, \iota \rho_{\Pi, \lambda}) = L\left(s - \frac{(k_0 - 1)}{2}, \Pi\right) = L\left(s - \frac{(k_0 - 1)}{2}, f\right)$, where $\iota : \overline{\mathbb{Q}}_l \xrightarrow{\sim} \mathbb{C}$ is a specific isomorphism (the above equality of *L*-functions is up to finitely many Euler factors), and the representation ρ_{Π} is unramified outside the primes dividing $\mathbf{n}l$. Because the line of convergence of $L(s, \Pi)$ is $\operatorname{Re}(s)=1$, we get that the line of convergence of $L(s, \rho_{\Pi, \lambda})$ is $\operatorname{Re}(s) = (k_0 + 1)/2$. Here *f* is the normalized Hecke eigenform of $\operatorname{GL}(2)/F$ of weight *k* corresponding to Π , \mathbf{n} is the level of Π . We define

$$\langle f, f \rangle = \pi^{\sum_{\tau \in J_F} k(\tau)} \int_{Z_{\infty +} \operatorname{GL}_2(F) \backslash \operatorname{GL}_2(\mathbb{A}_F)} f(x) \overline{f(x)} dx$$

where $Z_{\infty+} \simeq \mathbb{R}_+^{\times}$ is the connected component of the center of $\operatorname{GL}_2(\mathbb{R})$, and the measure is normalized such that $\operatorname{vol}(Z_{\infty+}\operatorname{GL}_2(F)\backslash\operatorname{GL}_2(\mathbb{A}_F)) = 1$.

We know (by Proposition 5.2 and Theorem 5.7 of [S1]; we actually use the fact that $L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi) = L(s, \iota\rho_{\Pi} \otimes \operatorname{Ind}_{\Gamma_{M}}^{\Gamma_{F}} \psi))$ in order to reduce Proposition 2.1 below to a particular case of Theorem 5.7 of [S1] where a convolution of two cuspidal automorphic representations (one non-CM, and the other CM) of $\operatorname{GL}(2)/F$ was considered; we remark that $\operatorname{Ind}_{\Gamma_{M}}^{\Gamma_{F}} \psi$ corresponds to a CM cuspidal automorphic representation of $\operatorname{GL}(2)/F$ of weight 1).

Proposition 2.1. Assume $k(\tau) \ge 2$ for all $\tau \in J_F$ and $k(\tau) \mod 2$ is independent of τ . Let M be a quadratic CM-extension of F, and let ψ be a continuous one-dimensional representation of Γ_M . Then

$$L\left(m,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi\right)\sim\pi^{(m+1-k_{0})[M:\mathbb{Q}]}\langle f,f\rangle$$

for any integer m satisfying

$$(k_0 + 1)/2 \leq m < (k_0 + k^0)/2.$$

3. The proof of Theorem 1.1 for ψ a character

We fix a non-CM cuspidal automorphic representation Π of GL(2)/F as in Theorem 1.1, and let M/F be a finite CM-extension. In this section we assume that ψ is an arbitrary one-dimensional continuous representation of Γ_M and prove Theorem 1.1 in this case.

We know the following result (Theorem 1.1 of [V1], or Theorem 2.1 of [V2], or Theorem A of [BGGT]):

Theorem 3.1. Let Π be a cuspidal automorphic representation of weight $k = (k(\tau))_{\tau \in J_F}$ of GL(2)/F, where all $k(\tau)$ have the same parity and all $k(\tau) \ge 2$. Let F' be a totally real extension of F. Then there exists a totally real Galois extension F'' of F', such that $\rho_{\Pi}|_{\Gamma_{F''}}$ is cuspidal automorphic i.e. there exists a cuspidal automorphic representation Π'' of weight k'' of GL(2)/F'' such that $\rho_{\Pi}|_{\Gamma_{F''}} \cong \rho_{\Pi''}$.

We denote by F' the maximal totally real subfield of M; hence M is a quadratic CM-extension of F'. Then from Theorem 3.1 we know that we can find a totally real Galois extension F'' of F', and a cuspidal automorphic representation Π'' of GL(2)/F'' such that $\rho_{\Pi}|_{\Gamma_{F''}} \cong \rho_{\Pi''}$. Because Π is non-CM, we get that Π'' is non-CM.

From Theorem 15.10 of [CR] we know that there exist some subfields $M_i \subseteq MF''$ such that $M \subseteq M_i$ and $\operatorname{Gal}(MF''/M_i)$ are solvable, and some integers n_i , such that the trivial representation

$$1_M : \operatorname{Gal}(MF''/M) \to \mathbb{C}^{\times},$$

can be written as

$$1_M = \sum_{i=1}^{u} n_i \operatorname{Ind}_{\operatorname{Gal}(MF''/M)}^{\operatorname{Gal}(MF''/M)} 1_{M_i},$$

(an equality in the character ring of $\operatorname{Gal}(MF''/M)$), where $1_{M_i} : \operatorname{Gal}(MF''/M_i) \to \mathbb{C}^{\times}$ is the trivial representation. In particular we have $1 = \sum_{i=1}^{u} n_i [M_i : M]$. Then

$$L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi) = \prod_{i=1}^{u} L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \operatorname{Ind}_{\Gamma_{M_{i}}}^{\Gamma_{M}} 1_{M_{i}} \otimes \psi)^{n_{i}}$$
$$= \prod_{i=1}^{u} L(s, \operatorname{Ind}_{\Gamma_{M_{i}}}^{\Gamma_{M}} (\iota\rho_{\Pi}|_{\Gamma_{M_{i}}}) \otimes \psi)^{n_{i}}$$
$$= \prod_{i=1}^{u} L(s, \iota\rho_{\Pi}|_{\Gamma_{M_{i}}} \otimes \psi|_{\Gamma_{M_{i}}})^{n_{i}}.$$

224 Cristian Virdol

Since $\rho_{\Pi}|_{\Gamma_{F''}}$ is cuspidal automorphic and MF'' is a quadratic extension of F'' we get that $\rho_{\Pi}|_{\Gamma_{MF''}}$ is cuspidal automorphic, and because $\operatorname{Gal}(MF''/M_i)$ is solvable, one gets easily (see §4 of [V4]) that $\rho_{\Pi}|_{\Gamma_{M_i}}$ is cuspidal automorphic.

Hence the function $L(s, \iota\rho_{\Pi}|_{\Gamma_M} \otimes \psi)$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation because each function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M_i}} \otimes \psi|_{\Gamma_{M_i}})$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation. Moreover, since each function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M_i}} \otimes \psi|_{\Gamma_{M_i}})$ has no poles or zeros for $\operatorname{Re}(s) \ge (k_0 + 1)/2$ (see Proposition 5.2 of [S1] and Proposition 4.16 of [S2]), we get that the function $L(s, \iota\rho_{\Pi}|_{\Gamma_M} \otimes \psi)$ has no poles or zeros for $\operatorname{Re}(s) \ge (k_0 + 1)/2$. Thus for any integer m satisfying

$$k_0 + 1 \leqslant m$$

we get the identity

$$L\Big(m,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi\Big)=\prod_{i=1}^{u}L\Big(m,\iota\rho_{\Pi}|_{\Gamma_{M_{i}}}\otimes\psi|_{\Gamma_{M_{i}}}\Big)^{n_{i}}.$$

Let F_i be the maximal totally real subfield of M_i . Since $\rho_{\Pi}|_{\Gamma_{M_i}}$ is cuspidal automorphic and M_i/F_i is quadratic, one can prove easily that $\rho_{\Pi}|_{\Gamma_{F_i}}$ is cuspidal automorphic (see Lemma 1.3 of [BGHT]), so $\rho_{\Pi}|_{\Gamma_{F_i}} \cong \rho_{\Pi_i}$ for some cuspidal automorphic representation Π_i of $GL(2)/F_i$. We denote by f_i the normalized Hecke eigenform of $GL(2)/F_i$ associated to Π_i . Then f_i has weight $k_i = (k_i(\tau))_{\tau \in J_{F_i}}$, where J_{F_i} is the set of infinite places of F_i , and $k_i(\tau) = k(\tau|F)$ for any $\tau \in J_{F_i}$.

Now from Proposition 2.1 we get that

$$L\Big(m,\iota\rho_{\Pi}|_{\Gamma_{M_{i}}}\otimes\psi|_{\Gamma_{M_{i}}}\Big)\sim\pi^{(m+1-k_{0})[M_{i}:\mathbb{Q}]}\langle f_{i},f_{i}\rangle,$$

for any integer m satisfying

$$(k_0 + 1)/2 \leq m < (k_0 + k^0)/2.$$

But we know that (see the paragraph just before Remark 5.1 of [V3])

$$\langle f_i, f_i \rangle \sim \langle f, f \rangle^{[F_i:F]},$$

and using the fact that $1 = \sum_{i=1}^{u} n_i [M_i : M]$, we obtain

$$L\left(m, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi\right) \sim \pi^{\sum_{i=1}^{u}(m+1-k_{0})[M_{i}:\mathbb{Q}]n_{i}} \prod_{i=1}^{u} \langle f_{i}, f_{i} \rangle^{n_{i}}$$
$$\sim \pi^{\sum_{i=1}^{u}(m+1-k_{0})[M_{i}:\mathbb{Q}]n_{i}} \langle f, f \rangle^{\sum_{i=1}^{u}[F_{i}:F]n_{i}}$$
$$\sim \pi^{(m+1-k_{0})[M:\mathbb{Q}]} \langle f, f \rangle^{\frac{[M:F]}{2}},$$

for any integer m satisfying

$$(k_0+1)/2 \le m < (k_0+k^0)/2$$

which proves Theorem 1.1 for ψ a one-dimensional representation.

4. The proof of Theorem 1.1 for general ψ

Let $\psi = \phi \otimes \chi$ be a finite-dimensional representation of Γ_M as in Theorem 1.1. We denote by M' the maximal CM-subfield of $K := \overline{\mathbb{Q}}^{\ker \phi}$ which contains M. Applying the conditions in Theorem 1.1, we see that K is a $(\mathbb{Z}/2\mathbb{Z})^r$ -extension of M' for some r, and χ is a direct sum of one-dimensional representations.

From the beginning of §15 of [CR] we know that there exist some subfields $E_j \subseteq K$ such that $M \subseteq E_j$ and $\operatorname{Gal}(K/E_j)$ are solvable (actually we don't use this solvability), and some integers m_j , such that the representation

$$\phi : \operatorname{Gal}(K/M) \to \operatorname{GL}_N(\mathbb{C}),$$

can be written as

$$[K:M]\phi = \sum_{j=1}^{v} m_j \operatorname{Ind}_{\operatorname{Gal}(K/M)}^{\operatorname{Gal}(K/M)} 1_{E_j},$$

where 1_{E_j} : $\operatorname{Gal}(K/E_j) \to \mathbb{C}^{\times}$ is the trivial representation. In particular we have $[K:M] \dim \phi = \sum_{j=1}^{v} m_j [E_j:M]$. Then

$$L(s, \iota \rho_{\Pi}|_{\Gamma_{M}} \otimes \phi)^{[K:M]} = \prod_{j=1}^{v} L(s, \iota \rho_{\Pi}|_{\Gamma_{M}} \otimes \operatorname{Ind}_{\Gamma_{E_{j}}}^{\Gamma_{M}} 1_{E_{j}})^{m_{j}}$$
$$= \prod_{j=1}^{v} L(s, \operatorname{Ind}_{\Gamma_{E_{j}}}^{\Gamma_{M}} (\iota \rho_{\Pi}|_{\Gamma_{E_{j}}}))^{m_{j}}$$
$$= \prod_{j=1}^{v} L(s, \iota \rho_{\Pi}|_{\Gamma_{E_{j}}})^{m_{j}}.$$

Let $M_j := E_j \cap M'$. Then E_j is a $(\mathbb{Z}/2\mathbb{Z})^{r_j}$ -extension of M_j for some r_j (this is true because from the fact that K is a $(\mathbb{Z}/2\mathbb{Z})^r$ -extension of M', we get that E_jM' is a $(\mathbb{Z}/2\mathbb{Z})^{r_j}$ -extension of M' for some r_j , and hence E_j is a $(\mathbb{Z}/2\mathbb{Z})^{r_j}$ -extension of $M_j = E_j \cap M'$). Thus

$$\begin{split} L(s,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\phi)^{[K:M]} &= \prod_{j=1}^{v} L(s,\iota\rho_{\Pi}|_{\Gamma_{E_{j}}})^{m_{j}} \\ &= \prod_{j=1}^{v} \prod_{\phi_{j}:\operatorname{Gal}(E_{j}/M_{j})\to\mathbb{C}^{\times}} L(s,\iota\rho_{\Pi}|_{\Gamma_{M_{j}}}\otimes\phi_{j})^{m_{j}}. \end{split}$$

Also one has

$$L(s,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi)^{[K:M]} = L(s,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\phi\otimes\chi)$$

=
$$\prod_{j=1}^{v}\prod_{\phi_{j}:\operatorname{Gal}(E_{j}/M_{j})\to\mathbb{C}^{\times}}L(s,\iota\rho_{\Pi}|_{\Gamma_{M_{j}}}\otimes\phi_{j}\otimes\chi|_{\Gamma_{M_{j}}})^{m_{j}}.$$

226 Cristian Virdol

Hence the function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi)^{[K:M]}$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation because from §3 we know that each function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M_{j}}} \otimes \phi_{j} \otimes \chi|_{\Gamma_{M_{j}}})$ has a meromorphic continuation to the entire complex plane and satisfies a functional equation. Also, since each function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M_{j}}} \otimes \phi_{j} \otimes \chi|_{\Gamma_{M_{j}}})$ has no poles or zeros for $\operatorname{Re}(s) \ge (k_{0}+1)/2$, we get that the function $L(s, \iota\rho_{\Pi}|_{\Gamma_{M}} \otimes \psi)$ has no poles or zeros for $\operatorname{Re}(s) \ge (k_{0}+1)/2$. Thus for any integer m satisfying

$$k_0 + 1 \leqslant m,$$

we get the identity

$$L\left(m,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi\right)^{[K:M]}=\prod_{j=1}^{v}\prod_{\phi_{j}:\operatorname{Gal}(E_{j}/M_{j})\to\mathbb{C}^{\times}}L\left(m,\iota\rho_{\Pi}|_{\Gamma_{M_{j}}}\otimes\phi_{j}\otimes\chi|_{\Gamma_{M_{j}}}\right)^{m_{j}}.$$

From §3 we know that

$$L\left(m,\iota\rho_{\Pi}|_{\Gamma_{M_{j}}}\otimes\phi_{j}\otimes\chi|_{\Gamma_{M_{j}}}\right)\sim\pi^{(m+1-k_{0})[M_{j}:\mathbb{Q}]\dim\chi}\langle f,f\rangle^{\frac{[M_{j}:F]}{2}\dim\chi},$$

for any integer m satisfying

$$(k_0+1)/2 \le m < (k_0+k^0)/2.$$

Hence from $[K:M] \dim \phi = \sum_{j=1}^{v} m_j [E_j:M]$ we get that

$$L\left(m,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi\right)^{[K:M]} = \prod_{j=1}^{v}\prod_{\phi_{j}:\operatorname{Gal}(E_{j}/M_{j})\to\mathbb{C}^{\times}}L\left(m,\iota\rho_{\Pi}|_{\Gamma_{M_{j}}}\otimes\phi_{j}\otimes\chi|_{\Gamma_{M_{j}}}\right)^{m_{j}}$$
$$\sim \pi^{\sum_{j=1}^{v}(m+1-k_{0})[E_{j}:\mathbb{Q}]m_{j}\dim\chi}\langle f,f\rangle^{\sum_{j=1}^{v}\frac{[E_{j}:F]}{2}m_{j}\dim\chi}$$
$$\sim \pi^{(m+1-k_{0})[K:\mathbb{Q}]\dim\psi}\langle f,f\rangle^{\frac{[K:F]}{2}\dim\psi},$$

and thus

$$L\left(m,\iota\rho_{\Pi}|_{\Gamma_{M}}\otimes\psi\right)\sim\pi^{(m+1-k_{0})[M:\mathbb{Q}]\dim\psi}\langle f,f\rangle^{\frac{[M:F]}{2}\dim\psi},$$

for any integer m satisfying

$$(k_0 + 1)/2 \le m < (k_0 + k^0)/2.$$

This concludes the proof of Theorem 1.1.

References

- [BGGT] T. Barnet-Lamb, T. Gee, D. Geraghty, R. Taylor, *Potential automorphy* and change of weight, preprint.
- [BGHT] T. Barnet-Lamb, D. Geraghty, M. Harris, R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, P.R.I.M.S. 47 (2011), 29–98.

The critical values of L-functions of CM-base change for Hilbert modular forms 227

- [CR] C.W. Curtis, I. Reiner, Methods of Representation Theory, Vol. I, Wiley, New York, 1981.
- [S1] G. Shimura, Algebraic relations between critical values of zeta functions and inner products, Amer. J. Math. 104 (1983), 253–285.
- [S2] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637–679.
- [T] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265–280.
- [V1] C. Virdol, Non-solvable base change for Hilbert modular forms and zeta functions of twisted quaternionic Shimura varieties, Annales de la Faculte des Sciences de Toulouse 19 (2010), no. 3-4, 831–848.
- [V2] C. Virdol, On the Birch and Swinnerton-Dyer conjecture for abelian varieties attached to Hilbert modular forms, Journal of Number Theory 131 (2011), no. 4, 681–684.
- [V3] C. Virdol, On the critical values of L-functions of tensor product of base change for Hilbert modular forms, Journal of Mathematics of Kyoto University 49 (2009), no. 2, 347–357.
- [V4] C. Virdol, Tate classes and poles of L-functions of twisted quaternionic Shimura surfaces, Journal of Number Theory 123 (2007), no. 2, 315–328.

Address: Cristian Virdol: Department of Mathematics, Yonsei University, South Korea. E-mail: virdol@yonsei.ac.kr

Received: 17 August 2011; revised: 2 October 2012