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CONSTRUCTION OF NORMAL NUMBERS BY CLASSIFIED
PRIME DIVISORS OF INTEGERS II

Jean-Marie De Koninck, Imre Kátai

Abstract: Given an integer q > 2, a q-normal number is an irrational number η such that any
preassigned sequence of k digits occurs in the q-ary expansion of η at the expected frequency,
namely 1/qk. In a series of recent papers, using the complexity of the multiplicative structure
of integers along with a method we developed in 1995 regarding the distribution of subsets of
primes in the prime factorization of integers, we initiated new methods allowing for the creation
of large families of normal numbers. Here, we further expand on this initiative.

Keywords: normal numbers, primes, arithmetic function.

1. Introduction

Given an integer q > 2, a q-normal number, or simply a normal number, is an
irrational number whose q-ary expansion is such that any preassigned sequence,
of length k > 1, of base q digits from this expansion, occurs at the expected
frequency, namely 1/qk.

Let Aq = {0, 1, . . . , q − 1} be the set of digits in base q. An expression of the
form i1i2 . . . ik, where each ij ∈ Aq, is said to be a word of length k. Given a word
α, we shall write λ(α) = t to indicate that α is a word of length t. We shall also
use the symbol Λ to denote the empty word and write λ(Λ) = 0. Also, we let Ak

q

stand for the set of all words of length k and A∗
q stand for the set of all the words

regardless of their length.
In 1995 (see [1]), we introduced the notion of a disjoint classification of primes,

that is a collection of q+1 disjoint sets of primesR, ℘0, ℘1, . . . , ℘q−1, whose union is
℘, the set of all primes, whereR is a finite set (perhaps empty) and where the other
q sets are of positive densities δ0, δ1, . . . , δq−1 (with clearly

∑q−1
i=0 δi = 1). We then

introduced the function H : N→ A∗
q defined by H(n) = H(pa1

1 · · · par
r ) = ℓ1 . . . ℓr,
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where each ℓj is such that pj ∈ ℘ℓj , and investigated the size of the set of positive
integers n 6 x for which H(n) = α for a given word α ∈ Ak

q . More precisely,
letting ω(n) stand for the number of distinct prime factors of n, and letting P (n)
and p(n) stand respectively for the largest and smallest prime factor of n, writing
π(B) for the number of primes belonging to the set B and writing x1 = log x,
x2 = log x1 and so on, we proved the following result.

Theorem A. Let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint classification of primes such
that

π([u, u+ v] ∩ ℘i) = δiπ([u, u+ v]) +O

(
u

logc1 u

)
(1.1)

holds uniformly for 2 6 v 6 u, i = 0, 1, . . . , q − 1, where c1 > 5 is a constant,
δ0, δ1, . . . , δq−1 are positive constants such that

∑q−1
i=0 δi = 1. Let limx→∞ wx =

+∞, wx = O(x3),
√
x 6 Y 6 x and 1 6 k 6 c2x2, where c2 is an arbitrary

constant. Let A be a positive integer such that A 6 x2 and P (A) 6 wx. Then,

#{n = An1 6 Y : p(n1) > wx, ω(n1) = k, H(n1) = i1 . . . ik}

= (1 + o(1))δi1 · · · δik
Y

A log Y
tk(Y )φwx

(
k − 1

x2

)
F

(
k − 1

x2

)
,

where tk(x) =
xk−1
2

(k − 1)!
,

φw(z) :=
∏
p6w

(
1 +

z

p

)−1

and F (z) :=
1

Γ(z + 1)

∏
p

(
1 +

z

p

)(
1− 1

p

)z

.

In 2011 (see [2]), we used Theorem A to construct large families of normal
numbers, namely by establishing the following result.

Theorem B. Let q > 2 be an integer and let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint
classification of primes. Assume that, for a certain constant c1 > 5,

π([u, u+ v] ∩ ℘i) =
1

q
π([u, u+ v]) +O

(
u

logc1 u

)
(1.2)

uniformly for 2 6 v 6 u, i = 0, 1, . . . , q − 1, as u→∞. Furthermore, let H : ℘→
A∗

q be defined by

H(p) =

{
Λ if p ∈ R,
ℓ if p ∈ ℘ℓ for some ℓ ∈ Aq

(1.3)

and further let T : N→ A∗
q be defined by T (1) = Λ and for n > 2 by

T (n) = T (pa1
1 · · · par

r ) = H(p1) . . . H(pr). (1.4)

Then, the number 0.T (1)T (2)T (3)T (4) . . . is a q-normal number.
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As one will notice, Theorem B does not use the full power of Theorem A.
Indeed, it is clear that condition (1.2) is much more restrictive than condition
(1.1) since it does not allow for subsets of primes ℘j of distinct densities. In this
paper, we will first weaken condition (1.2) to allow for the construction of even
larger families of normal numbers. Then, we will extend our method in order to
construct normal numbers using the sequence of shifted primes, and thereafter
using the sequence n2 + 1, n = 1, 2, . . .

Finally, let us mention some notations we shall be using. As usual, φ will stand

for the Euler function and li(x) for the logarithmic integral, that is li(x) =
∫ x

0

dt

log t
.

Throughout this text, the letters p, p1, p2, . . ., q1, q2, . . ., π0, π1, π2, . . . will always
denote primes, while the letter c will stand for a positive constant, but not neces-
sarily the same at each occurrence.

2. Main results

Theorem 1. Assume that R, ℘0, . . . , ℘q−1 are disjoint sets of primes, whose union
is ℘, and assume that there exists a positive number δ < 1 and a real number c1 > 5
such that

π([u, u+ v] ∩ ℘i) = δπ([u, u+ v]) +O

(
u

logc1 u

)
(2.1)

holds uniformly for 2 6 v 6 u, i = 0, 1, . . . , q − 1, and similarly

π([u, u+ v] ∩R) = (1− qδ)π([u, u+ v]) +O

(
u

logc1 u

)
.

Let H and T be defined as in (1.3) and (1.4). Then,

ξ = 0.T (1)T (2)T (3) . . .

is a q-normal number.

Examples

1. Let ℘0 = {p : p ≡ 1 (mod 8)}, ℘1 = {p : p ≡ 7 (mod 8)} and R = {2} ∪ {p :
p ≡ 3, 5 (mod 8)}. With H, T and ξ as in the statement of Theorem 1, we
may conclude that the number ξ is a binary normal number.

2. Let P (x) = ekx
k+· · ·+e1x ∈ R[x] be a polynomial with at least one irrational

coefficient. Let I0 and I1 be two disjoint intervals in [0, 1) of equal length.
Consider the set of primes ℘0 = {p : {P (p)} ∈ I0}, ℘1 = {p : {P (p)} ∈ I1}
and R = ℘ \ (℘0 ∪℘1). (Here, {P (p)} stands for the fractional part of P (p).)
With H, T and ξ as in Theorem 1, we may conclude that ξ is a binary normal
number.

3. It is well known that, given a prime p ≡ 1 (mod 4), there exists a prime
ρ ∈ Z[i] (the set of Gaussian integers) such that

arg ρ
π/2

∈ [0, 1) and p = ρ · ρ.
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So, let the subsets of primes ℘0, . . . , ℘q−1 be defined in such a way that p ∈ ℘j

if the corresponding Gaussian prime ρ satisfies

arg ρ
π/2

∈
[
j

q
,
j + 1

q

)
(j = 0, 1, . . . , q − 1)

and let R = {2} ∪ {p : p ≡ 3 (mod 4)}. Then, letting H, T and ξ be defined
as in Theorem 1, we get that ξ is a normal number in base q.

Theorem 2. Let R, ℘0, . . . , ℘q−1, H and T be as in the statement of Theorem 1.
Then the number

η = 0.T (1)T (2)T (4)T (6)T (10) . . . T (p− 1) . . . ,

where p runs through the sequence of primes, is a q-normal number.

Theorem 3. Let f : N → N be defined by f(n) = n2 + 1. Consider the subset of
primes ℘̃ := {p ∈ ℘ : p ≡ 1 (mod 4)}. Assume that the sets ℘0, ℘1, . . . , ℘q−1 ⊆ ℘̃
satisfy (2.1) and let

R = ℘ \

q−1∪
j=0

℘j

 .

Let also H and T be defined as in (1.3) and (1.4). Then

τ = 0.T (f(1))T (f(2))T (f(3))T (f(4)) . . .

is a q-normal number.

3. Preliminary results

Lemma 1. Let f(n) be a real valued non negative arithmetic function. Let an,
n = 1, . . . , N , be a sequence of integers. Let r be a positive real number, and let
p1 < p2 < · · · < ps 6 r be prime numbers. Set Q = p1 · · · ps. If d|Q, then let

N∑
n=1

an≡0 (mod d)

f(n) = κ(d)X +R(N, d),

where X and R are real numbers, X > 0, and κ(d1d2) = κ(d1)κ(d2) whenever d1
and d2 are co-prime divisors of Q.

Assume that for each prime p, 0 6 κ(p) < 1. Setting

I(N,Q) :=
N∑

n=1
(an,Q)=1

f(n),
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then the estimate

I(N,Q) = {1 + 2θ1H}X
∏
p|Q

(1− κ(p)) + 2θ2
∑
d|Q

d6z3

3ω(d)|R(N, d)|

holds uniformly for r > 2, max(log r, S) 6 1
8 log z, where |θ1| 6 1, |θ2| 6 1, and

H = exp

(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})
and

S =
∑
p|Q

κ(p)

1− κ(p)
log p.

When these conditions are satisfied, there exists an absolute positive constant c
such that 2H 6 c < 1.

Proof. This result is Lemma 2.1 in the book of Elliott [3]. �

Lemma 2 (Brun-Titchmarsh inequality). There exists a positive constant c
such that

π(x; k, ℓ) < c
x

φ(k) log(x/k)
for all k < x.

Proof. For a proof, see the book of Halberstam and Richert [4]. �

Lemma 3 (Bombieri-Vinogradov theorem). Given any fixed number C > 0,
there exists a number B = B(C) > 0 such that∑

k6√
x/(logB x)

max
(k,ℓ)=1

max
y6x

∣∣∣∣π(y; k, ℓ)− li(y)
φ(k)

∣∣∣∣ = O

(
x

logC x

)
.

Proof. For a proof, see the book of Iwaniec and Kowalski [5]. �

For the statement of the next results, we shall need the following notations.
Let Zx be a function tending to infinity but with the condition logZx

log x → 0 as

x→∞. Furthermore, let Kx →∞ as x→∞, but also satisfying
Kx logZx

log x
→ 0

as x→∞.
Let Q =

∏
p6Zx

p. Given an integer m > 2 such that P (m) 6 Zx, we set

A(x|m) = #{p 6 x : p ≡ 1 (mod m), gcd
(
p− 1

m
,Q

)
= 1}.

Further set ν(Q) =
∏
p|Q
p>2

(
1− 1

p− 1

)
.
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We now introduce the strongly multiplicative function κ(n) defined on primes
p by

κ(p) =

{
1 if p = 2,
p−1
p−2 if p > 2.

(3.1)

Lemma 4. Let Zx and Kx be defined by logZx = (log x)/x22 and Kx = Bx2,
where B is a large constant. Then, given any arbitrarily large constant C,∑

m6Z
Kx
x

P (m)6Zx

∣∣∣∣A(x|m)− ν(Q)κ(m)

m
li(x)

∣∣∣∣≪ x

logC x
.

Proof. For now, we fix an integer m 6 ZKx
x such that P (m) 6 Zx. We plan

to use Lemma 1. For this, we set r = π(Zx) and we let q1 < · · · < qT be the
sequence of those primes qj 6 x satisfying qj − 1 ≡ 0 (mod m) for j = 1, . . . , T
(so that T = π(x;m, 1)); and also we let an = (qn − 1)/m for n = 1, 2, . . . , T and
set f(n) = 1. Now, define R(m, d) implicitly by

π(x; dm, 1) =
∑
p6x

p−1
m

≡0 (mod d)

1 = η(d)π(x;m, 1) +R(m, d), (3.2)

where η(d) is the strongly multiplicative function defined on primes p by

η(p) =

{
1
p if p|m,
1

p−1 if (p,m) = 1.

Hence, as a consequence of Lemma 1, we obtain

A(x|m) = {1 + 2θ1H}π(x;m, 1)
∏
p|Q

(1− η(p)) + 2θ2
∑
d|Q

d6z3

3ω(d)|R(m, d)|. (3.3)

Now, since

S =
∑
p|Q
p>2

log p

p− 2
= (1 + o(1)) logZx (x→∞)

and
r = π(Zx) and log r = logZx +O(log log x),

and since

log z = Kx logZx,
log z

log r
∼ Kx, log

(
log z

S

)
= logKx (x→∞),

we have, for x large,

H = exp {−Kx(logKx − log logKx − z/Kx)} 6 exp

{
−Kx

2
logKx

}
.
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Hence, it follows from (3.3) that∣∣∣∣A(x|m)− π(x;m, 1)φ(m)

m
κ(m)ν(Q)

∣∣∣∣
6 2Hπ(x;m, 1)ν(Q)κ(m) + 2

∑
d|Q

d6z3

3ω(d)|R(m, d)|, (3.4)

where R(m, d) satisfies, in light of (3.2),

|R(m, d)| 6 E(dm) +
E(m)

φ(d)
, (3.5)

where
E(r) :=

∣∣∣∣π(x; r, 1)− li(x)
φ(r)

∣∣∣∣ .
Using (3.5), we have that∑

d|Q
d6z3

3ω(d)|R(m, d)| 6
∑
d|Q

d6z3

3ω(d)

(
E(dm) +

E(m)

φ(d)

)

=
∑
d|Q

d6z3

3ω(d)E(dm) +
∑
d|Q

d6z3

3ω(d)E(m)

φ(d)

=
∑

1
+
∑

2
, (3.6)

say. Now, on the one hand,∑
1
=
∑
k6z4

E(k)
∏
p|k

(1 + 3) =
∑
k6z4

E(k)22ω(k). (3.7)

On the other hand, we have∑
2
6 E(m)

∑
d|Q

3ω(d)

φ(d)
6 E(m)

∏
p|Q

(
1 +

3

p− 1

)
6 cE(m)(logZx)

3. (3.8)

Thus, using (3.7) and (3.8) in (3.6), we obtain that∑
d|Q

d6z3

3ω(d)|R(m, d)| 6 c(logZx)
3E(m) +

∑
k6z4

E(k)22ω(k)

= T1 + T2, (3.9)

say. Now, because of Lemma 3, we have that, given any fixed constant C,

T1 ≪
x

logC x
. (3.10)
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On the other hand, observe that since a 6 b+ 1
ba

2 for all a, b ∈ R+, we have

T2 6 22Bx2

∑
k6z4

E(k) + 2−2Bx2

∑
k6z4

E(k)24ω(k) = U1 + U2, (3.11)

say. Using Lemmas 3 and 2 in order to estimate U1 and U2, respectively, it follows
that (3.11) can be replaced by

T2 6 x

(log x)(A′)(2B log 2)
+

x

log x
(log x)−2B log 2

∑
k6z4

24ω(k)

φ(k)
, (3.12)

where B and A′ are arbitrary positive constants. Hence, by an appropriate choice
of B and A′, it follows from (3.12) that

T2 ≪
x

logC x
. (3.13)

Then, using (3.10) and (3.13) in (3.9), placing the result in (3.4) and then summing
the first term on the right hand side of (3.4) over m, we obtain from Lemma 2
that it is ≪ x/(logC x), thus completing the proof of Lemma 4. �

Lemma 5. Given positive integers k and A, set

Bk(x,A) =
∑

m16Z
Kx
x

ω(m1)=k
p(m1)>wx, P (m1)6Zx

A(x|Am1).

Let ℘0, . . . , ℘q−1 be a disjoint classification of primes with corresponding densities
δ0, . . . , δq−1. Then, given an arbitrary constant C > 0,

∑
A6w

wx
x

P (A)6wx

∑
k6Bx2

∑
i1...ik∈Ak

q

∣∣∣∣∣∣∣∣∣∣
∑

m16Z
Kx
x

H(m1)=i1...ik
p(m1)>wx, P (m1)6Zx

A(x|Am1)− δi1 · · · δikBk(x,A)

∣∣∣∣∣∣∣∣∣∣
≪ x

logC x
.

Moreover,

∑
A6w

wx
x

P (A)6wx

∑
k6Bx2

∣∣∣∣∣∣∣∣∣∣
Bk(x,A)− ν(Q) li(x)

κ(A)

A

∑
m16Z

Kx
x

ω(m1)=k
p(m1)>wx, P (m1)6Zx

κ(m1)

m1

∣∣∣∣∣∣∣∣∣∣
≪ x

logC x
.
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Proof. The result is a direct consequence of Theorem A and Lemma 4. �

Lemma 6. Given positive integers h > 2k,∑
α∈Ah

q

(
Fβ(α)−

h

qk

)2

6 c
hkqh

qk
, (3.14)

where c is some absolute constant.

Proof. On the one hand, we have

∑
1
:=

∑
α∈Ah

q

Fβ(α) = #{(γ1, γ2) : α = γ1βγ2} =
h−k∑
ℓ=0

qℓqh−ℓ−k = qh−k(h− k + 1),

(3.15)
while on the other hand∑

2
:=

∑
α∈Ah

q

F 2
β (α) = #{(γ1, γ2, γ3, γ4) : α = γ1βγ2 = γ3βγ4}. (3.16)

Now, write ∑
2
=
∑

2,0
+
∑

2,1
+
∑

2,2
,

where in
∑

2,0, we impose the condition λ(γ1) = λ(γ3), in
∑

2,1, we impose the
condition λ(γ1) > λ(γ3), and finally in

∑
2,2, we are restricted to λ(γ1) < λ(γ3).

In
∑

2,0, we have γ1 = γ3, so that
∑

2,0 =
∑

1.
Let

∑
2,1,1 be the number of those γ1, γ3 for which λ(γ3) 6 λ(γ1) + k, and∑

2,1,2 be the number of those γ1, γ3 for which λ(γ3) > λ(γ1) + k. Since γ3 is a
prefix of γ1β, it follows that it has no more than k distinct values for a fixed γ1,
and therefore that

∑
2,1,1 6 k

∑
1. Assume now that λ(γ3) > λ(γ1) + k. Thus

← ℓ1 →← k → ← ℓ2 → ←− ℓ3 −→
(A) γ1 β γ2

(B) γ3 β γ4
←− ℓ1 + k + ℓ2 −→ ← k → ← ℓ3 − k = ℓ4 →

Let us fix the position of β in (A) and in (B), that is the lengths ℓ1 and ℓ2.
Then ℓ1 + ℓ2 + ℓ4 digits can be distributed freely, which yields qℓ1+ℓ2+ℓ4 = qh−2k

integers. Hence the number of those nonnegative integers ℓ1, ℓ2, ℓ4 for which
ℓ1 + ℓ2 + ℓ4 = h− 2k is therefore equal to

h−2k∑
ℓ4=0

(h− 2k − ℓ4 + 1) =

h−2k∑
ν=1

ν =
(h− 2k)(h− 2k + 1)

2
.

Thus ∑
2,1,2

=
(h− 2k)(h− 2k + 1)

2q2k
qh =

h2qh

2q2k
+O

(
khqh

q2k

)
,
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so that (3.16) can be written as

∑
2
=
h2qh

q2k
+O

(
khqh

q2k

)
, (3.17)

Therefore, using (3.15) and (3.17), inequality (3.14) follows, thus completing the
proof of Lemma 6. �

4. Proof of Theorem 1

Let ℘∗ =

q−1∪
j=0

℘j and define

ω℘∗(n) :=
∑
p|n

p∈℘∗

1.

For each real number u > 2, let us set

ρu := T ([u] + 1) . . . T ([2u]).

It is clear that

λ(ρu) = u
∑
p62u
p∈℘∗

1

p
+O(u) = qδu log log u+O(u). (4.1)

Now let k be a fixed positive integer and consider the word β = i1 . . . ik ∈ Ak
q . We

now let Fβ(α) stand for the number of occurrences of the word β within the word
α, that is we set

Fβ(α) := #{(γ1, γ2) : α = γ1βγ2, γ1, γ2 ∈ A∗
q}.

We shall prove that

max
β∈Ak

q

∣∣∣∣Fβ(ρu)−
λ(ρu)

qk

∣∣∣∣ 6 ε(u)λ(ρu), (4.2)

where ε(u) tends to 0 monotonically as u→∞.
Once we will have proven (4.2), Theorem 1 will follow. Indeed, let ξN stand

for the q-ary expansion of ξ up to the N -th digit. Now, given N , let u be a real
number which satisfies the inequalities

N1 :=
∑
j62u

ω℘∗(j) 6 N <
∑

j62u+1

ω℘∗(j).

Let us further set ξN1 := T (1)T (2) . . . T ([2u]). With this definition, we have
that

0 6 λ(ξN )− λ(ξN1) = O(logN). (4.3)
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Now, given an arbitrary positive integer ℓ satisfying 2ℓ < u, let us write

ξN1 = χ(ℓ) ρu/2ℓ ρu/2ℓ−1 . . . ρu,

where
ρv := T ([v] + 1) . . . T ([2v]).

It follows that

Fβ(ξN1) = Fβ(χ
(ℓ)) + Fβ(ρu/2ℓ) + · · ·+ Fβ(ρu) +O(ℓ+ 1).

Hence, using (4.2) and (4.3), we obtain that

Fβ(ξN ) = Fβ(ξN1) +O(logN) =
λ(ξN )

qk
+O

(
ε(u/2ℓ)N + λ(χ(ℓ))

)
. (4.4)

Now, choosing ℓ to be the unique integer satisfying 2ℓ 6 √u < 2ℓ+1 and using the
fact that λ(χ(ℓ))/N → 0 as N →∞, we then obtain from (4.4) that

Fβ(ξN )

N
→ 1

qk
as N →∞, (4.5)

thus proving that ξ is a q-normal number.
Thus, it remains to prove (4.2). Doing so, we will make repetitive use of (4.1).

First we set wu = log log log u and Zu = exp{(log u)1−εu}, where εu → 0 as
u→∞, and write each integer n > 2 as

n =
∏
pa∥n
p6wu

pa ·
∏
pa∥n

wu<p6Zu

pa ·
∏
pa∥n
p>Zu

pa = A(n) ·B(n) · C(n),

say. Since ∑
u6n62u

ω(A(n)) +
∑

u6n62u

ω(C(n)) = o(u log log u) (u→∞),

it follows that

Fβ(ρu) =
∑

u6n62u

Fβ(T (B(n))) + o(u log log u) (u→∞). (4.6)

Let Mu be the set of those positive integers m for which there exists at least
one integer n ∈ [u, 2u] such that B(n) = m, in which case we let

D(m) = #{n ∈ [u, 2u] : B(n) = m}.

Then, from (4.6), we have

Fβ(ρu) =
∑

m∈Mu

Fβ(T (m))D(m) + o(u log log u) (u→∞). (4.7)
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Further define M(1)
u as the set of those m ∈ Mu for which at least one of the

following conditions holds:

(1) m is not squarefree,
(2) m > ZKu

u , Ku = (log u)εu/2,
(3) there exist p1|m and p2|m such that p1 < p2 < 2p1,
(4) |ω(m)− log log u| > (log log u)3/4.

LetM(0)
u =Mu \M(1)

u . Observing that Fβ(T (m)) 6 ω(m), we easily obtain that∑
m∈M(1)

u

Fβ(T (m))D(m) = o(u log log u) (u→∞). (4.8)

By a standard sieve argument, we easily get that, as u→∞,

D(m) = (1 + o(1))
u

m

∏
wu6p6Zu

(
1− 1

p

)
= (1 + o(1))

u

m

logwu

logZu
(m ∈M(0)

u ).

(4.9)
Thus, using (4.8) and (4.9) in (4.7), we obtain

Fβ(ρu) = (1 + o(1))u
logwu

logZu

∑
m∈M(0)

u

Fβ(T (m))

m
+ o(u log log u) (u→∞).

Hence, it remains to prove that, given arbitrary words β1 and β2 belonging to Ak
q ,

∑
m∈M(0)

u

Fβ1(T (m))

m
= (1 + o(1))

∑
m∈M(0)

u

Fβ2(T (m))

m
(u→∞). (4.10)

We shall now use a technique we have already used to prove Theorem 1 of our
1995 paper [1]. We define the sequence t0 < t1 < · · · as follows:

t0 = wu, tj+1 = tj +
tj

(log tj)5
for j = 0, 1, . . . .

Let r be defined implicitly by tr 6 Zu < tr+1 and set Ij = [tj , tj+1) for each
integer j > 0.

Let h be fixed, |h − log log u| 6 (log log u)3/4, 0 6 j1 < j2 < · · · < jh 6 r − 1

with jℓ+1 > 2jℓ. Further defineM(0)
u (j1, . . . , jh) as the set of thosem = π1π2 · · ·πh

for which πj ∈ Iℓj for j = 1, . . . , h.

Observe that any m ∈M(0)
u (j1, . . . , jh) satisfies

ℓj1+1 · ℓj2+1 · · · ℓjh+1 > m > ℓj1 · ℓj2 · · · ℓjh
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and that

1 6 ℓj1+1 · ℓj2+1 · · · ℓjh+1

ℓj1 · ℓj2 · · · ℓjh
6

h∏
j=1

(
1 +

1

(log ℓj)5

)

6 exp


h∑

j=1

1

(log ℓj)5

 6 exp


h−1∑
j=0

1

(logwu + j log 2)5


= 1 + o(1) (u→∞).

This means that instead of proving (4.10), we only need to prove∑
m∈M(0)

u (ℓj1 ,...,ℓjh )

Fβ1(T (m))

m
= (1+o(1))

∑
m∈M(0)

u (ℓj1 ,...,ℓjh )

Fβ2(T (m))

m
(u→∞).

(4.11)
Now let M(0)

u (ℓj1 , . . . , ℓjh |℘ν1 , . . . , ℘νh
) be the set of those m = π1π2 · · ·πh ∈

M(0)
u (ℓj1 , . . . , ℓjh) for which πℓ ∈ ℘νℓ

.
Then, repeating the computation done in [1], we obtain that

#M(0)
u (ℓj1 , . . . , ℓjh |℘ν1 , . . . , ℘νh

)

#M(0)
u (ℓj1 , . . . , ℓjh)

= (1+o(1))τ(ν1) · · · τ(νh) (u→∞), (4.12)

where τ(ν) = δ if ν ∈ {0, 1, . . . , q − 1} and τ(q) = 1 − qδ. Assume that among
ν1, . . . , νh, the value q occurs t1 times. Then, on the right hand side of (4.12),
τ(ν1) · · · τ(νh) = (1− qδ)t1 · δh−t1 , which does depend only on t1. It is clear that
Fβ(T (m)) is constant in every M(0)

u (ℓj1 , . . . , ℓjh |℘ν1 , . . . , ℘νh
). So, let e1 < · · · <

et1 6 h be arbitrary integers and consider those ℘ν1 , . . . , ℘νh
for which νej = q for

j = 1, . . . , t1 and νℓ ̸= q if ℓ ̸= ej . Let v0 < v1 < · · · < vh−t1−1 be the sequence of
integers defined by

{v0, . . . , vh−t1−1} = {1, . . . , h} \ {e1, . . . , et1}.

Moreover, let νvj ∈ {0, 1, . . . , q− 1} for j = 0, 1, . . . , h− t1 − 1 be arbitrary digits.
If m ∈M(0)

u (ℓj1 , . . . , ℓjh |℘ν1 , . . . , ℘νh
), then

Fβ(T (m)) = Fβ(νv0νv1 . . . νvh−t1−1
). (4.13)

Now, one can easily show that the number of those n ∈ [u, 2u] for which h−t1 6 k2

is o(u). Hence, we may assume that h − t1 > k2. Then, in light of (4.12), (4.13)
and Lemma 6, we easily obtain (4.11) and thereby (4.2) and (4.5), thus completing
the proof of Theorem 1.

5. Proof of Theorem 2

To prove Theorem 2, we use the notations of Theorem 1 and essentially the same
kind of technique.
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Let u > 3 and set
κu := T (p1 − 1) . . . T (pk − 1),

where u 6 p1 < · · · < pk < 2u are all the primes included in the interval [u, 2u).
Now,

λ(κu) =
∑

u6pℓ<2u

ω℘∗(pℓ − 1) = qδ · u

log u
· log log u+ o

(
u log log u

log u

)
, (5.1)

an estimate that follows essentially from the fact that p − 1 has no more than 3
prime divisors π > u1/3 if u 6 p < 2u. Since equation (5.1) provides the exact size
of λ(κu), it will be used repetitively below.

Then, choose the intervals Ij as we did in the proof of Theorem 1 and let us
estimate

W (u) :=
∑

u6pℓ62u

π1|pℓ−1,π2|pℓ−1
π1,π2∈Ij for some j

ω(pℓ − 1).

We have

W (u) =
∑

wu<π1<π2<2π1<Zu

∑
p∈(u,2u)

p−1≡0 (mod π1π2)

ω(p− 1). (5.2)

Since π1π2|p− 1, we have from (5.2) that

W (u) 6
∑

wu<π1<π2<2π1<Zu

∑
π0<u1/4

π(2u;π0π1π2, 1) + π(2u;π1π2, 1). (5.3)

Then, using the Brun-Titchmarsh inequality (Lemma 2), it is clear that the right
hand side of (5.3) is less than

c
u

log u

∑
π0<u1/4

1

π0

∑
wu<π1<π2<2π1<Zu

1

(π1 − 1)(π2 − 1)

+ c
u

log u

∑
wu<π1<π2<2π1<Zu

1

(π1 − 1)(π2 − 1)
. (5.4)

On the other hand, one can easily establish that∑
π1<π2<2π1

1

(π1 − 1)(π2 − 1)
6 c

∑
p

1

(p− 1) log p
<∞, (5.5)

while it is clear that ∑
π0<u1/4

1

π0
≪ log log u. (5.6)

Using estimates (5.5) and (5.6) in (5.4), it follows that (5.3) can be replaced by

W (u) = o

(
u log log u

log u

)
. (5.7)
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Now, let β = i1 . . . ik ∈ Ak
q . We will now estimate Fβ(κu). We have

Fβ(κu) =
k∑

j=1

Fβ(T (pj − 1)) +O(π([u, 2u])). (5.8)

Since ∑
u6p62u

∑
π0|p−1

π0 ̸∈(wu,Zu)

1 = o(li(u) log log u) (u→∞),

relation (5.8) becomes

Fβ(κu) =

k∑
j=1

Fβ(T (A(pj − 1)B(pj − 1))) + o(li(u) log log u) (u→∞). (5.9)

Let A([u, 2u]|m) = A(2u|m) − A(u|m). Using the notation of Lemma 5, it
follows that A(pj − 1)B(pj − 1) = m holds for A([u, 2u]|m) numbers, so that∑

m6Z
Ku
u

P (m)6Zu

∣∣∣∣A([u, 2u]|m)− ν(Q)κ(m)

m
(li(2u)− li(u))

∣∣∣∣≪ u

logC u
,

where C is an arbitrary positive number. Using this in (5.9), it follows that,
with ν(Q) =

∏
2<p6Zu

(
1− 1

p−1

)
and with the strongly multiplicative function κ

defined in (3.1),

Fβ(κu) =
∑

m6Z
Ku
u

P (m)6Zu

∗ ν(Q)κ(m)

m
(li(2u)− li(u))Fβ(T (m)) + o (li(u) log log u) , (5.10)

where the star (∗) on the sum indicates that, in light of (5.7), we omitted those m’s
for which there exist two primes π1 and π2 such that π1π2|m, wu < π1 < π2 6 Zu

with π1, π2 ∈ Ij for some j. Note that in this same sum, we dropped those integers
m > ZKu

u since ∑
m>Z

Ku
u

P (m)6Zu

A([u, 2u]|m)ω(m) = o

(
u

log u
log log u

)
.

Let us write
m =

∏
pa∥m
p6wu

pa ·
∏

pa∥m
wu<p6Zu

pa = Am1,

say. Since ω(A) 6 wu = O(log log log u), it follows that estimate (5.10) becomes

Fβ(κu) = ν(Q)(li(2u)− li(u))
∑
A

+κ(A)

A

∑
m1

∗κ(m1)

m1
Fβ(T (m1)) + o(li(u) log log u),

(5.11)
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where the (+) sign on the sum indicates that we dropped those integers A which
are large, namely those for which A > wwu

u , say.
Now, since

1 6 κ(m1) =
∏
p|m1

(
1 +

1

p

) ∏
p|m1

p2 − p
p2 − p− 2

= exp

∑
p|m1

log

(
1 +

2

p2 − p− 2

) ∏
p|m1

(
1 +

1

p

)

6 exp

(
3
∑
p>wu

1

p2

) ∏
p|m1

(
1 +

1

p

)

6
(
1 +

1

wu

)∑
d|m1

|µ(d)|
d

,

we obtain that

0 6 κ(m1)− 1 6
∑
d|m1
d>1

|µ(d)|
d

+
1

wu

∑
d|m1

|µ(d)|
d

.

Hence, using this last estimate in (5.11), we obtain

Fβ(κu) = ν(Q)
u

log u

∑
A

κ(A)

A

∑
m1

∗ 1

m1
Fβ(T (m1)) + o(li(u) log log u).

Proceeding as we did in the proof of Theorem 1, we then obtain that∑
m1

∗ 1

m1
Fβ1(T (m1)) = (1 + o(1))

∑
m1

∗ 1

m1
Fβ2(T (m1)) (u→∞),

and therefore that

Fβ1(κu) = Fβ2(κu) + o

(
u

log u
log log u

)
(u→∞),

for every words β1 and β2 belonging to Ak
q . This observation concludes the proof

of Theorem 2.

6. The proof of Theorem 3

We first introduce the multiplicative function ρ defined on prime powers by

ρ(pa) =


1 if p = 2 and a = 1,

0 if p = 2 and a > 2,

2 if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).
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First observe that, given an integer D > 1, the congruence n2 + 1 ≡ 0 (mod D)
has ρ(D) distinct solutions.

As in the proof of Theorem 1, let Zu = exp{(log u)1−εu} and, for each integer
n > 2, set

E(n|Zu) =
∏
pa∥n
p6Zu

pa.

Further define

A([u, 2u]|m) := #{n ∈ [u, 2u] : E(n2 + 1|Zu) = m}

and let Ku be a function tending to infinity with u and that we will determine
later.

Our first goal will be to find an upper bound for

S :=
∑

m>Z
Ku
u

P (m)6Zu

A([u, 2u]|m)ω(m).

Letting ωY (n) :=
∑

p|n, p6Y

1, we have that

∑
n∈[u,2u]

ωZu(n
2 + 1)2 ≪ u

∑
p1,p26Zu

ρ(p1)

p1

ρ(p2)

p2
+ u

∑
p6Zu

ρ(p)

p

≪ u(log logZu)
2 ≪ u(log log u)2.

Hence, it follows from this that, setting

S1 :=
∑

m>Z
Ku
u

P (m)6Zu

A([u, 2u]|m), (6.1)

we have, letting E(u) be a function which tends to infinity with u and that we will
determine later,

S =
∑

m>Z
Ku
u

P (m)6Zu
ωZu

(m)<E(u) log log u

A([u, 2u]|m)ω(m) +
∑

m>Z
Ku
u

P (m)6Zu
ωZu

(m)>E(u) log log u

A([u, 2u]|m)ω(m)

< E(u)(log log u)S1 +
∑

n∈[u,2u]

ωZu
(n2+1)>E(u) log log u

ωZu(n
2 + 1)

6 E(u)(log log u)S1 +
1

E(u) log log u

∑
n∈[u,2u]

ωZu(n
2 + 1)2

≪ E(u)(log log u)S1 +
1

E(u)
u log log u. (6.2)
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Let us now bound S1. Clearly, if n ∈ [u, 2u] is counted on the right hand side
of (6.1), then the corresponding integer m for which E(n2 + 1|Zu) = m > ZKu

u

has a divisor m1 satisfying ZKu−1
u 6 m1 6 ZKu

u .
Now consider the subintervals Jℓ := [2ℓZKu−1

u , 2ℓ+1ZKu−1
u ] with ℓ = 0, 1, . . . , ℓ0,

where ℓ0 is the unique positive integer such that 2ℓ0−1 6 Zu < 2ℓ0 , so that

[ZKu−1
u , ZKu

u ] ⊂
ℓ0∪
ℓ=0

Jℓ.

Now, for a given integer n ∈ [u, 2u], if the corresponding integers m and m1

mentioned above are such that m1 is the minimal divisor of m and thus of n2 +1,
with m1 ∈ Jℓ for some ℓ > 0, then p(n2 + 1) > 2ℓ. It follows from this that

S1 6
ℓ0∑
ℓ=0

Tℓ, (6.3)

where

Tℓ 6
∑

m1∈Jℓ
P (m1)6Zu
p(m1)>2ℓ

#{n ∈ [u, 2u] : m1|n2 + 1, (n2 + 1, π0) = 1 for all primes π0 < 2ℓ}.

Now, using the Selberg Sieve, it follows that

Tℓ 6 u
∑

m1∈Jℓ
P (m1)6Zu
p(m1)>2ℓ

ρ(m1)

m1

∏
π0<2ℓ

(
1− ρ(π0)

π0

)
≪ u

ℓ

∑
m1∈Jℓ

P (m1)6Zu
p(m1)>2ℓ

ρ(m1)

m1

6 u

ℓ

1

2ℓZKu−1
u

∑
m1∈Jℓ

P (m1)6Zu
p(m1)>2ℓ

ρ(m1) =
u

ℓ

1

2ℓZKu−1
u

Hℓ, (6.4)

say.
Again, using a sieving technique, we get that

Hℓ ≪
∏
p<2ℓ

(
1− ρ(p)

p

) ∏
Zu<p<ZKu

u

(
1− ρ(p)

p

)∑
a∈Jℓ

ρ(a)≪ 1

ℓKu
2ℓZKu−1

u . (6.5)

Using (6.5) in (6.4), we obtain that

Tℓ ≪
u

ℓ2Ku
.

Substituting this back in (6.3), we obtain that

S1 ≪
u

Ku
.
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Using this in (6.2) and choosing E(u) and Ku in such a manner that E(u)/Ku → 0
as u→∞, we finally obtain that

S = o (u log log u) (u→∞). (6.6)

Now assume that m 6 ZKu
u . Then, in light of (6.6) and using Lemma 1, we

obtain that

A([u, 2u]|m) = (1 + o(1))u
ρ(m)

m

∏
π0<Zu

(
1− ρ(π0)

π0

)
(u→∞). (6.7)

The rest of the proof of Theorem 3 then runs along the same lines as those of
Theorems 1 and 2, in particular by using our 1995 results (see [1]).

Indeed, let
τu := T (f([u] + 1)) . . . T (f([2u])).

By using (6.7) and our earlier estimates, we obtain that, in light of (6.6), as u→∞,

Fβ(τu) = (1 + o(1))u
∏

π0<Zu

(
1− ρ(π0)

π0

) ∑
m6Z

Ku
u

P (m)6Zu

ρ(m)

m
Fβ(T (m)) + o(u log log u).

(6.8)
Let wu = log log log u and write m in the form m = Am1, where P (A) 6 wu,
p(m1) > wu. As in our 1995 paper [1], we let ℓj , for j = 0, 1, . . ., be the sequence
defined by

ℓ0 = wu and ℓj+1 = ℓj +
ℓj

(log ℓj)5

and set Ij := [ℓj , ℓj+1].
Now, on the right hand side of (6.8), drop those integers m = Am1 for which

one of the following five conditions holds:

1. m1 is not squarefree,
2. A > wwu

u ,
3. there exist two prime divisors q1, q2 of m1 for which q1 < q2 < 4q1,
4. |ω(m1)− log log u| > 1

2 log log u,
5. ρ(m) = 0.

It is easy to see that the whole contribution of the dropped elements located
on the right hand side of (6.8) is o(u log log u).

Let us now consider all the remaining m’s. Let m1 = q1q2 · · · qh and let
ℓi1 , . . . , ℓih be such indices for which qj ∈ Iℓj (j = 1, . . . , h). Further let
K(ℓi1 , . . . , ℓih) be the set of those m1’s for which each factor qj |m1 belongs to
Iℓj for j = 1, . . . , h. We then have

minm1 >
h∏

j=1

ℓij and maxm1 6

 h∏
j=1

ℓij

 exp


h∑

j=1

c

(log ℓij )
5

 .



26 Jean-Marie De Koninck, Imre Kátai

But since ℓij > 4j−1ℓ0, it follows that

h∑
j=1

c

(log ℓij )
5
6

h∑
j=1

c

(log ℓ0 + (j − 1) log 4)5
6 c1

(log ℓ0)5
,

and therefore m1 ∈ K(ℓi1 , . . . , ℓih) implies that

ρ(m1)

m1
= (1 + o(1))2h

h∏
j=1

ℓij (u→∞),

implying that, for those m1 ∈ K(ℓi1 , . . . , ℓih), we have that ρ(m1)
m1

tends to a con-
stant (independent of m1) as u→∞.

Now, the number of integers m1 ∈ K(ℓi1 , . . . , ℓih) is equal to

D :=
h∏

j=1

π(Iℓij ∩ ℘̃). (6.9)

Let us set R0 = ℘̃ \
∪q−1

j=0 ℘i. On the one hand, it is obvious that, in light
of (2.1),

π([u, v] ∩R0) = π(u+ v; 4, 1)− π(u; 4, 1)−
q−1∑
j=0

π([u, v] ∩ ℘j)

=

(
1

2
− qδ

)
π([u, v]) +O

(
u

logc1 u

)
, (6.10)

uniformly for 2 6 v 6 u.
We shall now subdivide the sequence {i1, . . . , ih} into two monotone subse-

quences {u1, . . . , ut} and {v1, . . . , vh−t} in the following way. Count those ele-
ments of K(ℓi1 , . . . , ℓih) in which quj ∈ R0 and qvν ∈ ℘eν for eν ∈ {0, . . . , q − 1}
(ν = 1, . . . , h− t), and denote this number by D(u1, . . . , ut|e1, . . . , eh−t). Then, in
light of the definition of D given in (6.9) and of estimate (6.10), it follows that,
uniformly for 0 6 t 6 h,

D(u1, . . . , ut|e1, . . . , eh−t)

D
= (1 + o(1))

(
1

2
− qδ

)t

δh−t (h→∞).

Hence, we obtain that for every class K(ℓi1 , . . . , ℓih), we have that

∑
m∈K(ℓi1 ,...,ℓih )

ρ(m1)

m1
Fβ1(T (m1))

= (1 + o(1))
∑

m∈K(ℓi1 ,...,ℓih )

ρ(m1)

m1
Fβ2(T (m1)) (h→∞),
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which in turn implies that

Fβ1(τu) = Fβ2(τu) + o(u log log u) (u→∞)

for every words β1 and β2 belonging to Ak
q , which completes the proof of Theo-

rem 3.
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