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PAIRS OF ADDITIVE FORMS OF DEGREE pτ (p − 1)

Hemar Godinho, Tertuliano C. de Souza Neto

Abstract: Let
f(x1, ..., xn) = a1xk

1 + · · ·+ anxk
n

g(x1, ..., xn) = b1xk
1 + · · ·+ bnxk

n

be a pair of additive forms of degree k = pτ (p−1). We are interested in finding conditions which
guarantee the existence of p-adic zeros for this pair of forms. A well-known conjecture due to
Emil Artin states that the condition n > 2k2 is sufficient. Here we prove that

n > 2

(
p

p− 1

)
k2 − 2k

is sufficient, provided that p > 5 and τ > p− 1

2
.
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1. Introduction

We are interested in finding sufficient conditions which guarantee the existence of
non-trivial p-adic zeros for a pair of additive forms of degree k in n variables

f = a1x
k
1 + · · ·+ anx

k
n

g = b1x
k
1 + · · ·+ bnx

k
n,

(1.1)

where the coefficients aj , bj are rational numbers.
There is a longstanding conjecture of E. Artin stating that, for pairs of additive

forms, n > 2k2 could be such a condition. Many efforts have been made to prove
Artin’s Conjecture, starting with the pioneering works of Davenport and Lewis [2]
who confirmed the conjecture for the case of odd degrees. For even degrees, they
found that if n > 7k3 the existence of non-trivial p-adic zeros is guaranteed.
More recently, J. Brüdern and H. Godinho [1] proved that n > 2k2 does suffice
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to establish p-adic solubility of (1.1) unless the degree is basically of the form
k = pτ (p − 1) with τ > 1. And they also proved that for all degrees k there
is always p-adic solubility provided n > 4k2. In a recent paper [3], the authors
proved that any pair of additive forms of degree k = 3τ × 2 or k = 5τ × 4 in
n > 2

(
p
p−1

)
k2 − 2k variables has common p-adic zeros. Here we extend these

results for other values of p, and our main theorem is presented below. For more
information on the subject we refer the readers to [1].

Theorem 1.1. Let f, g be a pair of additive forms of degree k = pτ (p − 1) and
rational coefficients, with p > 7. If n > 2

(
p
p−1

)
k2 − 2k and τ > p−1

2 , then the
system (1.1) has q-adic solutions for all primes q.

The proof follows a combinatorial approach of looking for zero-sum subse-
quences of the sequence of all column-vectors of the 2× n matrix of coefficients of
the system (1.1). It is important to observe that for k = pτ (p − 1) only the case
q = p need to be considered, since for all other primes q, the condition n > 2k2 is
sufficient for q-adic solubility (see [1]).

We shall start with the Davenport and Lewis p-normalization process, an im-
portant technique that shall give the starting point for our analysis.

2. p-normalization

Let us consider a pair of additive forms of degree k in n variables

f(x1, ..., xn) = a1x
k
1 + · · ·+ anx

k
n

g(x1, ..., xn) = b1x
k
1 + · · ·+ bnx

k
n,

(2.1)

with rational coefficients aj , bj .
Let v1, ..., vn be integers and λ, δ, µ, ρ be rational numbers such that λδ−µρ ̸= 0.

Now define the following transformations of the pair (2.1)

F1(x1, ..., xn) = f(pv1x1, ..., p
vnxn)

G1(x1, ..., xn) = g(pv1x1, ..., p
vnxn)

(2.2)

F2(x1, ..., xn) = λf(x1, ..., xn) + µg(x1, ..., xn)

G2(x1, ..., xn) = ρf(x1, ..., xn) + δg(x1, ..., xn).
(2.3)

For each pair of additive forms, define the parameter

ϑ(f, g) =
∏
i ̸=j

(aibj − ajbi).

Davenport and Lewis[2] proved that

ϑ(F1, G1) = p2k(n−1)
∑
viϑ(f, g)

and
ϑ(F2, G2) = (λδ − µρ)n(n−1)ϑ(f, g).
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Two pairs of additive forms are said to be p−equivalent if one can be obtained
from another by repeated applications of transformations (2.2) and (2.3). It is an
immediate consequence that if the pair f, g has a non-trivial p-adic zero, the same
holds for any pair of forms in its p-equivalence class.

Let F,G be a pair of additive forms with integer coefficients and suppose that
ℓ = νp(ϑ(F,G)) < ∞, where νp is the p-adic valuation (in [2] it is proven that we
can always assume ϑ(F,G) ̸= 0). The pair F,G is said to be p-normalized if ℓ is the
least power of p diving in ϑ(f, g), for all pairs f, g having integer coefficients and
p-equivalent to F,G. The most important feature of the p-normalization process
is the affirmation that it is enough to prove Theorem 1.1 for a pair of p-normalized
additive forms, with all the nice properties described in the next lemma (see [2]
for a proof).

Lemma 2.1. A p-normalized pair of additive forms of degree k can be written
(after renumbering variables) as

f = f0 + pf1 + · · ·+ pk−1fk−1

g = g0 + pg1 + · · ·+ pk−1gk−1,
(2.4)

where each variable in a pair of subforms fi, gi occurs with a coefficient not divisible
by p in at least one of these subforms. Moreover, if we denote by q0 the minimum
number of variables appearing with coefficients not divisible by p in any form λf0+
µg0, with λ, µ not both divisible by p, and define mi as the number of variables
present in the pair fi, gi, then

q0 > n/2k and m0 + · · ·+mj > (j +1)n/k for 0 6 j 6 k− 1. (2.5)

To guarantee the existence of non-trivial p-adic zeros, we are going to use the
following Hensel-type lemma also due to Davenport and Lewis[2].

Lemma 2.2. Let f, g be a pair of forms as in (1.1), of degree k = pτ (p−1), p > 3,
and define γ = τ + 1. If the system

f ≡ 0 (mod pγ)
g ≡ 0 (mod pγ)

(2.6)

has a solution (x1, . . . , xn) for which the matrix(
a1x1 · · · anxn
b1x1 · · · bnxn

)
(2.7)

has rank 2 modulo p (i.e., for a pair i, j, (aibj − ajbi)xixj ̸≡ 0 mod p) then the
pair f, g has p-adic zeros.

3. Sequences over abelian groups

Let G = (G,+) be a finite abelian group and S be a sequence of elements of G
(repetitions allowed). For each g ∈ G, define vg(S) as the number of times that
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the element g occurs in the sequence S. We say that T is a subsequence of S
if vg(T ) 6 vg(S) for all g ∈ G. Define the support of S to be supp(S) = {g ∈
G; vg(S) ̸= 0} and the length of S as

|S| =
∑
g∈G

vg(S).

Here all sequences will be written in the multiplicative form, either as S =
g1 . . . gr or

S =
∏
g∈G

gvg(S), with supp(S) = {g1, . . . , gr}.

With S = g1 . . . gr, define the sum of S as

σ(S) =
r∑
i=1

gi ∈ G,

and the set of all non-empty sums of subsequences of S as

Σ(S) =

{
r∑
i=1

εigi : εi ∈ [0, 1] and
r∑
i=1

εi > 0

}
⊆ G.

Definition 3.1. Let S be a sequence in a group G.

(i) If σ(S) = 0, we say that S is a zero-sum sequence.
(ii) If σ(S) = 0 and |S| ∈ {1, . . . , exp(G)} (the exponent of G) we say that S

is a short zero-sum sequence.
(iii) If 0 /∈ Σ(S) we say that S is a zero-sum free sequence.

Definition 3.2. Let G be a finite abelian group.

(i) Define D(G) ( the Davenport constant) as the smallest positive integer r
such that every sequence S over G of length r has a non-empty zero-sum
subsequence.

(ii) Define η(G) as the smallest integer r such that every sequence S over G
with length r has a short zero-sum subsequence.

In [4, 5], J. Olson proved:

Lemma 3.3. Let p be a prime number and Cp the cyclic group of order p. Then

(i) D(Cp ⊕ Cp) = 2p− 1 and
(ii) η(Cp ⊕ Cp) = 3p− 2.

Definition 3.4. Let G be a finite abelian group and t ∈ {1, . . . , p(G)− 1}, where
p(G) is the least prime divisor of |G|. We define st = st(G) to be the smallest
positive integer such that every sequence of nonzero elements of G of length st has
a zero-sum free subsequence of length t.
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It is easy to verify that s1(G) = 1 and s2(G) = 3, for all groups G. Less obvious
is the fact that

s3(G) = 5, (3.1)

and its proof can be found in [3].

Lemma 3.5. Let S be a sequence of nonzero elements of G and suppose
| supp(S)| > t. If there is g ∈ G such that vg(S) > t − 1, then S has a zero-
sum free subsequence of length t.

Proof. Using the additive operation of the group, consider the following equations

ℓg + x = 0, with ℓ ∈ {1, . . . , t− 1}.

Since each of these equations has a unique solution in G and | supp(S)| > t, there
exists h ∈ supp(S) which does not satisfy any of these equations. Therefore

T = gt−1h

is a zero-sum free subsequence of length t. �

Lemma 3.6. Let p be a prime, p > 7. If 3 < t < p− 1, then

st(Cp) 6 (p− 1)(t− 2) + 1.

Proof. Let S be a sequence of nonzero elements of G of length |S| = (p− 1)(t−
2) + 1. If there is g ∈ G such that vg(S) > t, then T = gt is a zero-sum free
subsequence of length t, hence we may assume vg(S) 6 t− 1 for all g ∈ G. On the
other hand, the length of S implies that there must exist an element h ∈ supp(S)
such that vh(S) = t − 1. But this fact also gives a zero-sum free subsequence of
length t, unless | supp(S)| 6 t, according to Lemma 3.5. Write then

S = gv11 · · · gvrr with vi 6 t− 1 and r 6 t.

If | supp(S)| 6 t− 1, then

|S| − (t− 1)2 = (p− 1)(t− 2) + 1− (t− 1)2 = (t− 2)(p− t− 1) 6 0

which is impossible for t > 3 and p > t+1. Hence | supp(S)| = t and |S| 6 t(t−1).
Now,

|S| − (t(t− 1)− 1) = pt− 2p− t2 + 4 > (t+ 2)(t− 2)− t2 + 4 > 0

since p > t+ 2. Therefore

t(t− 1)− 1 6 |S| 6 t(t− 1).

Suppose |S| = t(t− 1). Then (p− 1)(t− 2) + 1 = t(t− 1) = (t+ 1)(t− 2) + 2,
which implies (t − 2)(p − t − 2) = 1. And this is an impossibility, for t > 3 and
p > t+ 1. Hence we must have |S| = t(t− 1)− 1. Let us write

S = gt−1
1 · · · gt−1

t−1g
t−2
t ,

and observe that (p − 1)(t − 2) + 1 = t(t − 1) − 1 = (t + 1)(t − 2) + 1, implies
(t− 2)(t+ 1) = (p− 1)(t− 2), that is, t = p− 2.
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Since p > 7, then t = p − 2 > p−1
2 + 1, hence the sets {g1, g2, . . . , gt−1} and

{2g1, 2g2, . . . , 2gt} must intersect, and there should be a g ∈ supp(S) such that
vg(S) = t− 1 and 2g ∈ supp(S). It follows that the subsequence

gt−1(2g)

is zero-sum free, for (t− 1)g + 2g ̸≡ 0 (mod p). �

3.1. Sequences over Z/pmZ

Let S = g1 · · · gr be a sequence of integer numbers and p a prime number. Con-
sidering

πi : Z → Z/piZ (3.2)

to be the canonical epimorphism, define the sequence (the image sequence) πi(S) =
πi(g1) · · ·πi(gr) in Z/piZ.

Lemma 3.7. Let S be a sequence of integers coprime to p and of length r > 3p−2.
Then S has a short subsequence T such that π1(T ) is a short zero-sum sequence
in Z/pZ, but π2(T ) is not a zero-sum sequence in Z/p2Z.

Proof. Let S = g1 · · · gr, and write these elements as gi = ai + pbi, where ai =
π1(gi) ∈ {1, . . . , p− 1}. By Lemma 3.3(ii), the sequence

(a1, π1(b1)), (a2, π1(b2)), . . . , (ar, π1(br))

has a short zero-sum subsequence over Z/pZ ⊕ Z/pZ, that is, there exists I ⊂
{1, . . . , r} such that |I| 6 p and∑

i∈I
ai ≡

∑
i∈I

bi ≡ 0 (mod p).

Therefore ∑
i∈I

gi ≡
∑
i∈I

ai + p
∑
i∈I

bi ≡ 0 (mod p).

Since 0 < ai < p for all i ∈ {1, . . . , r}, we have∑
i∈I

gi ̸≡ 0 (mod p2).

It is now clear that the subsequence T =
∏
i∈I gi has the desired properties. �

The proof of next two lemmas can be found in [3].

Lemma 3.8. Let S = g1g2 · · · gp be a sequence of integers coprime to p and choose
any gi ∈ supp(S). Then it is always possible to find a subsequence T of S with
gi ∈ supp(T ) such that π1(T ) is a zero-sum in Z/pZ.
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Lemma 3.9. If a,m, k ∈ N, define recursively

⌊ a
m

⌋
(1)

=
⌊ a
m

⌋
and

⌊ a
m

⌋
(k+1)

=


⌊ a
m

⌋
(k)

m

 .
Then ⌊ a

m

⌋
(k)

=
⌊ a

mk

⌋
.

3.2. Sequences over Z/pmZ ⊕ Z/pmZ

Let f, g be a pair of p-normalized forms and

A =

(
a1
b1

)
· · ·
(
an
bn

)
be the sequence of their coefficients (see (2.1)). According to Lemma 2.1, we can
rewrite the sequence A as

A = M0M1 · · ·Mk−1 (3.3)

where an element
(
aj
bj

)
of A is in Mi if aj , bj are coefficients of the pair of

subforms (pifi, p
igi). The elements of Mi are said to be at level i.

Write F2
p \ {(0, 0)} as the disjoint union of the p+ 1 lines L0, L1, . . . , Lp,

F2
p \ {(0, 0)} =

p⊔
i=0

Li, (3.4)

where
L0 =

{
λ

(
1
0

)
| λ ∈ {1, . . . , p− 1}

}
and

Li =

{
λ

(
i
1

)
| λ ∈ {1, . . . , p− 1}

}
for all i ∈ {1, . . . , p}.

Now, define (see (3.2)) the epimorphism

φi : Z× Z → Z/piZ⊕ Z/piZ

as
φi

(
a
b

)
=

(
πi(a)
πi(b)

)
. (3.5)

With these in mind, let S be a subsequence of M0, and for each j ∈ {0, 1, . . . , p},
define the subsequence of S

Ij(S) =
∏
g∈Bj

gvg(S), where Bj = {g ∈ M0 ; φ1(g) ∈ Lj}.
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We will say that an element g of S has color ȷ if g ∈ Bj . Writing ij(S) = |Ij(S)|
we have that

S =

p∏
j=0

Ij(S), and |S| =
p∑
j=0

ij(S). (3.6)

In an analogous way, if S is a subsequence of Mℓ, we can also write

Ij(S) =
∏
g∈Cj

gvg(S), where Cj = {g ∈ Mℓ ; φ1(p
−ℓg) ∈ Lj}

and in this case we also say that g has color ȷ (at level ℓ) if g ∈ Cj .
It is simple to see that for any fixed subsequence S of Mi, we can always

assume
i0(S) > ip(S) > ij(S) for all j ∈ {1, 2, . . . , p− 1}, (3.7)

and thus define the sequence

Q0(S) =

p∏
j=1

Ij(S), with q0(S) = |Q0(S)|. (3.8)

Hence, for every subsequence S of Mi, we have

S = I0(S)Q0(S) and |S| = i0(S) + q0(S).

Lemma 3.10. Let S be a subsequence of Mℓ and suppose that there exists j ∈
{0, . . . , p} such that ij(S) > 3p − 2. Then S has a short subsequence T such that
φℓ+1(T ) is a zero-sum sequence but φℓ+2(T ) is not a zero-sum sequence.

Proof. As seen above (see 3.7), we can assume i0(S) > 3p− 2. Let U be a subse-
quence of I0(S) of length 3p− 2

U =

(
a1
b1

)
· · ·
(
a3p−2

b3p−2

)
.

Observe that for ȷ ∈ {1, . . . , 3p− 2} we have

p−ℓaj ̸≡ 0 (mod p) and p−ℓbj ≡ 0 (mod p).

Since the sequence of integers V = p−ℓa1 · · · p−ℓa3p−2 has a short subsequence T ∗

(see Lemma 3.7) such that π1(T ∗) is a short zero-sum sequence but π2(T ∗) is not
a zero-sum sequence, it is now simple to choose the short subsequence T of U with
the desired properties. �

Lemma 3.11. Let S be a subsequence of Mℓ. If i0(S) > su(Z/pZ) and q0(S) >
sv(Z/pZ), then φℓ+1(S) has a zero-sum free subsequence of length u + v over
Z/pℓ+1Z⊕ Z/pℓ+1Z.
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Proof. Let us consider

T =

(
a1
b1

)
· · ·
(
ar
br

)(
c1
d1

)
· · ·
(
cs
ds

)
a subsequence of S containing r = su(Z/pZ) elements of I0(S) and s = sv(Z/pZ)
elements of Q0(S). Then

φ1(p
−ℓT ) =

(
A1

0

)
· · ·
(
Ar
0

)(
C1

D1

)
· · ·
(
Cs
Ds

)
.

It follows from Definition 3.4 that the sequence A1 · · ·Ar has a zero-free sub-
sequence over Z/pZ of length u, and in an analogous way, there is also a zero-sum
free subsequence of D1 · · ·Ds of length v over Z/pZ. Denoting these zero-sum
free sequences as A1 · · ·Au and D1 · · ·Dv, we have a sequence of length u + v of
Z/pZ⊕ Z/pZ such that(

0
0

)
/∈ Σ

((
A1

0

)
· · ·
(
Au
0

)(
C1

D1

)
· · ·
(
Cv
Dv

))
,

concluding this proof. �

4. Proof of Theorem 1.1

From this point on we are considering the pair of forms f, g to be p-normalized,
with all the properties described in Lemma 2.1. Since k = pτ (p − 1) and n >
2
(

p
p−1

)
k2 − 2k, inequalities (2.5) give

q0 > n

2k
> k

p

p− 1
− 1 = pτ+1 − 1,

and
ℓ∑
i=0

mi > (ℓ+ 1)
n

k
> 2(ℓ+ 1)

(
k
( p

p− 1

)
− 1

)
.

Hence

q0 > pτ+1 and
ℓ∑
i=0

mi > 2(ℓ+ 1)(pτ+1 − 1). (4.1)

In order to guarantee the existence of p-adic zeros for this pair of additive
forms, it is sufficient, by Lemma 2.2, to obtain a solution of rank 2 to the system
(see (2.7))

a1x
k
1 + · · ·+ anx

k
n ≡ 0 (mod pγ)

b1x
k
1 + · · ·+ bnx

k
n ≡ 0 (mod pγ).

(4.2)

Since γ = τ + 1 and
k = pτ (p− 1) = φ(pγ),
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(where φ is the Euler function), the above system is equivalent to the equation(
a1
b1

)
ε1 + · · ·+

(
an
bn

)
εn =

(
0
0

)
(4.3)

in Z/pγZ⊕ Z/pγZ, with εi ∈ {0, 1}.

Definition 4.1. We will say that a subsequence S of A = M0 . . .Mk−1 is a
non-singular zero-sum sequence modulo pi if φi(S) is a zero-sum sequence and
supp(φ1(S))∩ supp(φ1(M0)) contains at least two elements of distinct colors (see
(3.6)).

The system (4.2) and the equation (4.3) presents a correspondence between
the problem of finding solutions of rank 2 for a pair of additive forms f, g and the
question of existence of a non-singular zero-sum subsequence sequence modulo pγ
of the sequence

A = M0M1 · · ·Mk−1 =

(
a1
b1

)
· · ·
(
an
bn

)
of the coefficients of the forms f, g.

Definition 4.2. Let S be a subsequence of A = M0 . . .Mk−1. If S is a non-
singular zero-sum sequence modulo pℓ, we will say that σ(S) is a Primary Element
at level ℓ or higher. If φℓ(S) is a zero-sum sequence but φℓ+1(S) is not a zero-sum
sequence, we will say that σ(S) is a Secondary Element at level ℓ. We will denote
by Pℓ the sequence of the primary elements at level ℓ (or higher), and Sℓ the
sequence of the secondary elements at level ℓ. Let Sℓ be the sequence Sℓ · Mℓ (it
is only natural to considerer the elements of Mℓ as secondary elements at level ℓ).
Let us denote by

pℓ = |Pℓ| and sℓ = |Sℓ|. (4.4)

The next theorem, proved in [2], give us a lower bound to the length of P1.

Theorem 4.3. If f, g is a p-normalized pair, then

p1 > min

(⌊
m0

2p− 1

⌋
,

⌊
q0
p

⌋)
.

It now follows from Theorem 4.3 and (4.1) that the minimum number of pri-
mary elements that can be obtained at the first level is (since m0 > 2pτ+1 − 1)

p1 > pτ . (4.5)

As pointed out by the inequality in Theorem 4.3, to produce a primary element
at level 1, we can use only zero-sum sequences of length at most 2p. Hence to
produce p1 primary elements at level 1, we are using at most pτ sequences of
maximum length 2p at level zero. Thus we define

s0 = m0 − 2p× pτ = m0 − 2pτ+1. (4.6)
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Lemma 4.4. If pℓ > p and ij(Sℓ) > p − 1, for some j ∈ {0, 1, . . . , p}, then we
can produce a primary element at level ℓ + 1 or higher using at most p primary
elements and p− 1 secondary elements

Proof. Suppose that the pℓ primary elements are at level ℓ (otherwise we already
have a primary element at level ℓ+1 or higher) and i0(Sℓ) > p−1 (see (3.7)). Let

T =

(
a1
b1

)
· · ·
(
ap
bp

)(
c1
d1

)
· · ·
(
cp−1

dp−1

)
be a subsequence of Sℓ containing p primary elements and p − 1 elements of the
sequence I0(Sℓ). Then, for ȷ ∈ {1, . . . , p− 1}

p−ℓcj ̸≡ 0 (mod p) and dj ≡ 0 (mod pℓ+1).

If there is i ∈ {1, . . . , p} such that bi ≡ 0 (mod pℓ+1), then we must have ai ̸≡
0 (mod pℓ+1), and Lemma 3.8 tells us that there exists J ⊆ {1, . . . , p − 1} such
that ∑

j∈J

p−ℓcj + p−ℓai ≡ 0 (mod p).

Therefore,

φℓ+1

( ai
bi

)
+
∑
j∈J

(
cj
dj

) =

(
0
0

)
,

giving a primary element at level ℓ + 1. So, let us assume bi ̸≡ 0 (mod pℓ+1)
for i ∈ {1, . . . , p}. Again by Lemma 3.8, there exists I ⊆ {1, . . . , p} such that∑
i∈I p

−ℓbi ≡ 0 (mod p), hence

φℓ+1

(∑
i∈I

(
ai
bi

))
=

(
a
0

)
.

If a ≡ 0 (mod pℓ+1), we have a primary element at level ℓ+1. So assume p−ℓa ̸≡
0 (mod p), and repeating the arguments above, we can find J ⊆ {1, . . . , p−1} such
that

φℓ+1

∑
i∈I

(
ai
bi

)
+
∑
j∈J

(
cj
dj

) =

(
0
0

)
,

giving a primary element at level ℓ+ 1 or higher, and completing the proof. �

Lemma 4.5. Let ℓ > 0. Then

sℓ+1 > mℓ+1 +

⌊
sℓ − 3(p2 − 1)

p

⌋
.

Proof. This result is a consequence of Lemma 3.10, since a secondary element at
level ℓ+1 can always be produced, unless for every ȷ ∈ {0, 1, . . . , p}, ij(Sℓ) 6 3p−3.
Thus there would remain at most (3p−3)(p+1) = 3(p2−1) elements at level ℓ. �
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Lemma 4.6. If ℓ > 1, then

sℓ >
⌊∑ℓ

i=1 p
imi + s0 − 3(p+ 1)(pℓ − 1)

pℓ

⌋
.

Proof. (Induction on ℓ) For ℓ = 1, Lemma 4.5 gives

s1 > m1 +

⌊
s0 − 3(p2 − 1)

p

⌋
=

⌊
pm1 + s0 − 3(p2 − 1)

p

⌋
.

Now, from Lemmas 3.9, 4.5 and the induction hypothesis, it follows that

sℓ > mℓ +


⌊∑ℓ−1

i=1 p
imi+s0−3(p+1)(pℓ−1−1)

pℓ−1

⌋
− 3(p2 − 1)

p


sℓ > mℓ +

⌊∑ℓ−1
i=1 p

imi + s0 − 3(p+ 1)(pℓ−1 − 1)− 3pℓ−1(p2 − 1)

pℓ

⌋

sℓ >
⌊∑ℓ

i=1 p
imi + s0 − 3(p+ 1)(pℓ − 1)

pℓ

⌋
. �

Lemma 4.7. Suppose ℓ > 1 and p > 11. If pℓ > p and sℓ > p2 − 6p + 5, then
we can obtain a primary element at level ℓ+ 1 or higher using at most p primary
elements and p− 1 secondary elements.

Proof. We have (see (3.7))

i0(Sℓ) >
⌈

sℓ
p+ 1

⌉
> p− 6.

By Lemma 4.4, we can also assume i0(Sℓ) 6 p − 2. And since p > 11, we have
i0(Sℓ) > 5 = s3(Z/pZ), according to (3.1). On the other hand, Lemma 3.6 give us

q0(Sℓ) = sℓ − i0(Sℓ) > (p− 1)(p− 6) + 1 > sp−4(Z/pZ).

Now we can use Lemma 3.11 to find a zero-sum free subsequence T of Sℓ over
Z/pℓ+1Z⊕ Z/pℓ+1Z of length 3 + (p− 4) = p− 1.

Observe that the sequence TPℓ has length m > 2p−1, and according to Lemma
3.3(i), it has a subsequence U such that φℓ+1(U) is a zero-sum sequence. Since T
is zero-sum free sequence, the sequence U must contain at least one element of Pℓ,
hence σ(U) is a primary element at level ℓ+ 1. �

Lemma 4.8. Suppose p = 7 and ℓ > 1. If pℓ > 7 and sℓ > 41 we can obtain a
primary element at level ℓ + 1 or higher using at most 7 primary elements and 6
secondary elements at level ℓ.
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Proof. Since i0(Sℓ) >
⌈
sℓ
8

⌉
> 6, the result follows immediately from Lemma 4.4.

�

Lemma 4.9. Suppose, for ℓ ∈ {1, . . . , τ − 1}, that

sℓ >
{
p2 − 5p+ 4 if p > 11

47 if p = 7.

Then
pℓ+1 >

⌊
pℓ
p

⌋
.

Proof. Let us assume that pℓ > kp. If k 6 2 we can apply Lemmas 4.7 and 4.8
to obtain k primary elements at level ℓ+1 or higher, since p2 − 5p+4− (p− 1) =
p2 − 6p + 5 and 47 − 6 = 41. Now suppose that, for any t < k, if there are tp
primary elements at level ℓ, we can then obtain t primary elements at level ℓ+1 or
higher. Since we are assuming k > 3, we can use Lemma 3.3(ii) to obtain a primary
element at level ℓ + 1 or higher and still have left (k − 1)p primary elements at
level ℓ. By the induction hypothesis we can obtain other k − 1 primary elements
at level ℓ+ 1 or higher, concluding this proof. �

4.1. Conclusion

The final step of this proof is to guarantee the existence of a non-singular zero-
sum at level γ, that is, to prove that pγ ̸= 0, and this is accomplished in the
next lemmas. From this point on, we are assuming the validity of the conditions
(4.1),(4.5), (4.6), p > 7 and τ > p−1

2 .

Lemma 4.10. Under the conditions above we have, for ℓ ∈ {1, . . . , τ − 1},

sℓ > 2ℓp2 − 3p− 4, (4.7)

and
sτ > p2 − 4p− 4. (4.8)

Proof. The conditions (4.1) and (4.6) give

ℓ∑
i=0

pimi >
ℓ∑
i=0

mi > 2(ℓ+ 1)(pτ+1 − 1) and s0 = m0 − 2pτ+1.

Hence Lemma 4.6 gives

sℓ >
⌊∑ℓ

i=0 p
imi − 2pτ+1 − 3(p+ 1)(pℓ − 1)

pℓ

⌋
,

thus

sℓ >
⌊
2(ℓ+ 1)(pτ+1 − 1)− 2pτ+1 − 3(p+ 1)pℓ + 3(p+ 1)

pℓ

⌋
,
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giving

sℓ > 2ℓpτ−ℓ+1 − 3(p+ 1) +

⌊
3p− 2ℓ+ 1

pℓ

⌋
.

Now, since we are assuming p > 7 we have

⌊
3p− 2ℓ+ 1

pℓ

⌋
=


2 if ℓ = 1

0 if 3p > 2ℓ− 1 and ℓ > 1

−1 if 3p < 2ℓ− 1 and ℓ > 1.

Therefore, for ℓ ∈ {1, . . . , τ − 1}

sℓ > 2ℓpτ−ℓ+1 − 3p− 4 > 2ℓp2 − 3p− 4,

and, since we are assuming τ > p− 1

2

sτ > 2(
p− 1

2
)p− 3p− 4 = p2 − 4p− 4. �

Lemma 4.11. Under the conditions above we have

pτ > p.

Proof. From Lemma 4.10 it follows that sℓ > 2ℓp2−3p−4, for ℓ ∈ {1, 2, . . . , τ−1}.
Since 2ℓp2 − 3p − 4 > p2 − 5p + 4 if p > 11, and 2ℓp2 − 3p − 4 > 47 if p = 7, we
can apply Lemma 4.9 and inequality (4.5) to obtain pτ > pτ−(τ−1) = p. �

Lemma 4.12. Under the conditions stated above and for p > 11 we have

pτ+1 = pγ ̸= 0.

Proof. It follows from Lemmas 4.10 and 4.11 that

sτ > p2 − 4p− 4 and pτ > p.

Since p > 11, we have p2 − 4p− 4 > p2 − 6p+ 5, hence we can apply Lemma 4.7
to obtain pγ ̸= 0. �

Lemma 4.13. Under the conditions stated above and for p = 7 we have

pτ+1 = pγ ̸= 0.

Proof. Again, it follows from Lemmas 4.10 and 4.11 that

sτ > p2 − 4p− 4 = 17 and pτ > 7,

hence i0(Sτ ) >
⌈sτ
8

⌉
> 3.

If i0(Sτ ) > 6, the result follows from Lemma 4.4. If i0(Sτ ) = 5, then we have
q0(Sτ ) = sτ − i0(Sτ ) > 12 > s3(Z/7Z) (see (3.1)) and also i0(Sτ ) = s3(Z/7Z). It
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follows from Lemma 3.11 that we can find a subsequence S of Sτ such that φτ+1(S)
is a zero-sum free subsequence of length 6 over Z/7τ+1Z⊕Z/7τ+1Z. Observe that
the sequence SPτ has length m > 13, and according to Lemma 3.3(i), it has
a subsequence U such that φτ+1(U) is a zero-sum sequence. Since S is zero-sum
free sequence, the sequence U must contain at least one element of Pτ , hence σ(U)
is a primary element at level τ + 1 = γ.

Hence we may assume 3 6 i0(Sτ ) 6 4. Now we have q0(Sτ ) = sτ − i0(Sτ ) >
13 > s4(Z/7Z) (see Lemma (3.6)) and also i0(Sτ ) > 3 = s2(Z/7Z) (see (3.1)).
Again, it follows from Lemma 3.11 that we can find a subsequence S of Sτ such
that φτ+1(S) is a zero-sum free subsequence of length 6 over Z/7τ+1Z⊕Z/7τ+1Z.
Now, as above, the result follows from Lemma 3.3(i), since the sequence SPτ has
length m > 13. �
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