PAIRS OF ADDITIVE FORMS OF DEGREE $p^{\boldsymbol{\tau}}(\boldsymbol{p}-1)$

Hemar Godinho, Tertuliano C. de Souza Neto

Abstract: Let

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}^{k}+\cdots+a_{n} x_{n}^{k} \\
g\left(x_{1}, \ldots, x_{n}\right)=b_{1} x_{1}^{k}+\cdots+b_{n} x_{n}^{k}
\end{gathered}
$$

be a pair of additive forms of degree $k=p^{\tau}(p-1)$. We are interested in finding conditions which guarantee the existence of p-adic zeros for this pair of forms. A well-known conjecture due to Emil Artin states that the condition $n>2 k^{2}$ is sufficient. Here we prove that

$$
n>2\left(\frac{p}{p-1}\right) k^{2}-2 k
$$

is sufficient, provided that $p>5$ and $\tau \geqslant \frac{p-1}{2}$.
Keywords: additive forms, Artin's Conjecture, p-adic forms.

1. Introduction

We are interested in finding sufficient conditions which guarantee the existence of non-trivial p-adic zeros for a pair of additive forms of degree k in n variables

$$
\begin{align*}
& f=a_{1} x_{1}^{k}+\cdots+a_{n} x_{n}^{k} \\
& g=b_{1} x_{1}^{k}+\cdots+b_{n} x_{n}^{k} \tag{1.1}
\end{align*}
$$

where the coefficients a_{j}, b_{j} are rational numbers.
There is a longstanding conjecture of E . Artin stating that, for pairs of additive forms, $n>2 k^{2}$ could be such a condition. Many efforts have been made to prove Artin's Conjecture, starting with the pioneering works of Davenport and Lewis [2] who confirmed the conjecture for the case of odd degrees. For even degrees, they found that if $n \geqslant 7 k^{3}$ the existence of non-trivial p-adic zeros is guaranteed. More recently, J. Brüdern and H. Godinho [1] proved that $n>2 k^{2}$ does suffice

[^0]to establish p-adic solubility of (1.1) unless the degree is basically of the form $k=p^{\tau}(p-1)$ with $\tau \geqslant 1$. And they also proved that for all degrees k there is always p-adic solubility provided $n \geqslant 4 k^{2}$. In a recent paper [3], the authors proved that any pair of additive forms of degree $k=3^{\tau} \times 2$ or $k=5^{\tau} \times 4$ in $n>2\left(\frac{p}{p-1}\right) k^{2}-2 k$ variables has common p-adic zeros. Here we extend these results for other values of p, and our main theorem is presented below. For more information on the subject we refer the readers to [1].

Theorem 1.1. Let f, g be a pair of additive forms of degree $k=p^{\tau}(p-1)$ and rational coefficients, with $p \geqslant 7$. If $n>2\left(\frac{p}{p-1}\right) k^{2}-2 k$ and $\tau \geqslant \frac{p-1}{2}$, then the system (1.1) has q-adic solutions for all primes q.

The proof follows a combinatorial approach of looking for zero-sum subsequences of the sequence of all column-vectors of the $2 \times n$ matrix of coefficients of the system (1.1). It is important to observe that for $k=p^{\tau}(p-1)$ only the case $q=p$ need to be considered, since for all other primes q, the condition $n>2 k^{2}$ is sufficient for q-adic solubility (see [1]).

We shall start with the Davenport and Lewis p-normalization process, an important technique that shall give the starting point for our analysis.

2. p-normalization

Let us consider a pair of additive forms of degree k in n variables

$$
\begin{align*}
& f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}^{k}+\cdots+a_{n} x_{n}^{k} \\
& g\left(x_{1}, \ldots, x_{n}\right)=b_{1} x_{1}^{k}+\cdots+b_{n} x_{n}^{k}, \tag{2.1}
\end{align*}
$$

with rational coefficients a_{j}, b_{j}.
Let v_{1}, \ldots, v_{n} be integers and $\lambda, \delta, \mu, \rho$ be rational numbers such that $\lambda \delta-\mu \rho \neq 0$. Now define the following transformations of the pair (2.1)

$$
\begin{gather*}
F_{1}\left(x_{1}, \ldots, x_{n}\right)=f\left(p^{v_{1}} x_{1}, \ldots, p^{v_{n}} x_{n}\right) \\
G_{1}\left(x_{1}, \ldots, x_{n}\right)=g\left(p^{v_{1}} x_{1}, \ldots, p^{v_{n}} x_{n}\right) \tag{2.2}\\
F_{2}\left(x_{1}, \ldots, x_{n}\right)=\lambda f\left(x_{1}, \ldots, x_{n}\right)+\mu g\left(x_{1}, \ldots, x_{n}\right) \\
G_{2}\left(x_{1}, \ldots, x_{n}\right)=\rho f\left(x_{1}, \ldots, x_{n}\right)+\delta g\left(x_{1}, \ldots, x_{n}\right) . \tag{2.3}
\end{gather*}
$$

For each pair of additive forms, define the parameter

$$
\vartheta(f, g)=\prod_{i \neq j}\left(a_{i} b_{j}-a_{j} b_{i}\right) .
$$

Davenport and Lewis[2] proved that

$$
\vartheta\left(F_{1}, G_{1}\right)=p^{2 k(n-1) \sum v_{i}} \vartheta(f, g)
$$

and

$$
\vartheta\left(F_{2}, G_{2}\right)=(\lambda \delta-\mu \rho)^{n(n-1)} \vartheta(f, g) .
$$

Two pairs of additive forms are said to be p-equivalent if one can be obtained from another by repeated applications of transformations (2.2) and (2.3). It is an immediate consequence that if the pair f, g has a non-trivial p-adic zero, the same holds for any pair of forms in its p-equivalence class.

Let F, G be a pair of additive forms with integer coefficients and suppose that $\ell=\nu_{p}(\vartheta(F, G))<\infty$, where ν_{p} is the p-adic valuation (in [2] it is proven that we can always assume $\vartheta(F, G) \neq 0)$. The pair F, G is said to be p-normalized if ℓ is the least power of p diving in $\vartheta(f, g)$, for all pairs f, g having integer coefficients and p-equivalent to F, G. The most important feature of the p-normalization process is the affirmation that it is enough to prove Theorem 1.1 for a pair of p-normalized additive forms, with all the nice properties described in the next lemma (see [2] for a proof).

Lemma 2.1. A p-normalized pair of additive forms of degree k can be written (after renumbering variables) as

$$
\begin{align*}
& f=f_{0}+p f_{1}+\cdots+p^{k-1} f_{k-1} \\
& g=g_{0}+p g_{1}+\cdots+p^{k-1} g_{k-1} \tag{2.4}
\end{align*}
$$

where each variable in a pair of subforms f_{i}, g_{i} occurs with a coefficient not divisible by p in at least one of these subforms. Moreover, if we denote by q_{0} the minimum number of variables appearing with coefficients not divisible by p in any form $\lambda f_{0}+$ μg_{0}, with λ, μ not both divisible by p, and define m_{i} as the number of variables present in the pair f_{i}, g_{i}, then

$$
\begin{equation*}
q_{0} \geqslant n / 2 k \quad \text { and } \quad m_{0}+\cdots+m_{j} \geqslant(j+1) n / k \quad \text { for } \quad 0 \leqslant j \leqslant k-1 \tag{2.5}
\end{equation*}
$$

To guarantee the existence of non-trivial p-adic zeros, we are going to use the following Hensel-type lemma also due to Davenport and Lewis[2].
Lemma 2.2. Let f, g be a pair of forms as in (1.1), of degree $k=p^{\tau}(p-1), p \geqslant 3$, and define $\gamma=\tau+1$. If the system

$$
\begin{align*}
f & \equiv 0 \quad\left(\bmod p^{\gamma}\right) \tag{2.6}\\
g & \equiv 0 \quad\left(\bmod p^{\gamma}\right)
\end{align*}
$$

has a solution $\left(x_{1}, \ldots, x_{n}\right)$ for which the matrix

$$
\left(\begin{array}{ccc}
a_{1} x_{1} & \cdots & a_{n} x_{n} \tag{2.7}\\
b_{1} x_{1} & \cdots & b_{n} x_{n}
\end{array}\right)
$$

has rank 2 modulo p (i.e., for a pair $\left.i, j,\left(a_{i} b_{j}-a_{j} b_{i}\right) x_{i} x_{j} \not \equiv 0 \bmod p\right)$ then the pair f, g has p-adic zeros.

3. Sequences over abelian groups

Let $G=(G,+)$ be a finite abelian group and S be a sequence of elements of G (repetitions allowed). For each $g \in G$, define $v_{g}(S)$ as the number of times that
the element g occurs in the sequence S. We say that T is a subsequence of S if $v_{g}(T) \leqslant v_{g}(S)$ for all $g \in G$. Define the support of S to be $\operatorname{supp}(S)=\{g \in$ $\left.G ; v_{g}(S) \neq 0\right\}$ and the length of S as

$$
|S|=\sum_{g \in G} v_{g}(S) .
$$

Here all sequences will be written in the multiplicative form, either as $S=$ $g_{1} \ldots g_{r}$ or

$$
S=\prod_{g \in G} g^{v_{g}(S)}, \quad \text { with } \quad \operatorname{supp}(S)=\left\{g_{1}, \ldots, g_{r}\right\}
$$

With $S=g_{1} \ldots g_{r}$, define the sum of S as

$$
\sigma(S)=\sum_{i=1}^{r} g_{i} \in G
$$

and the set of all non-empty sums of subsequences of S as

$$
\Sigma(S)=\left\{\sum_{i=1}^{r} \varepsilon_{i} g_{i}: \varepsilon_{i} \in[0,1] \text { and } \sum_{i=1}^{r} \varepsilon_{i}>0\right\} \subseteq G
$$

Definition 3.1. Let S be a sequence in a group G.
(i) If $\sigma(S)=0$, we say that S is a zero-sum sequence.
(ii) If $\sigma(S)=0$ and $|S| \in\{1, \ldots, \exp (G)\}$ (the exponent of G) we say that S is a short zero-sum sequence.
(iii) If $0 \notin \Sigma(S)$ we say that S is a zero-sum free sequence.

Definition 3.2. Let G be a finite abelian group.
(i) Define $D(G)$ (the Davenport constant) as the smallest positive integer r such that every sequence S over G of length r has a non-empty zero-sum subsequence.
(ii) Define $\eta(G)$ as the smallest integer r such that every sequence S over G with length r has a short zero-sum subsequence.

In [4, 5], J. Olson proved:
Lemma 3.3. Let p be a prime number and C_{p} the cyclic group of order p. Then
(i) $D\left(C_{p} \oplus C_{p}\right)=2 p-1 \quad$ and
(ii) $\eta\left(C_{p} \oplus C_{p}\right)=3 p-2$.

Definition 3.4. Let G be a finite abelian group and $t \in\{1, \ldots, p(G)-1\}$, where $p(G)$ is the least prime divisor of $|G|$. We define $\mathfrak{s}_{t}=\mathfrak{s}_{t}(G)$ to be the smallest positive integer such that every sequence of nonzero elements of G of length \mathfrak{s}_{t} has a zero-sum free subsequence of length t.

It is easy to verify that $\mathfrak{s}_{1}(G)=1$ and $\mathfrak{s}_{2}(G)=3$, for all groups G. Less obvious is the fact that

$$
\begin{equation*}
\mathfrak{s}_{3}(G)=5, \tag{3.1}
\end{equation*}
$$

and its proof can be found in [3].
Lemma 3.5. Let S be a sequence of nonzero elements of G and suppose $|\operatorname{supp}(S)|>t$. If there is $g \in G$ such that $v_{g}(S) \geqslant t-1$, then S has a zerosum free subsequence of length t.
Proof. Using the additive operation of the group, consider the following equations

$$
\ell g+x=0, \quad \text { with } \ell \in\{1, \ldots, t-1\}
$$

Since each of these equations has a unique solution in G and $|\operatorname{supp}(S)|>t$, there exists $h \in \operatorname{supp}(S)$ which does not satisfy any of these equations. Therefore

$$
T=g^{t-1} h
$$

is a zero-sum free subsequence of length t.
Lemma 3.6. Let p be a prime, $p \geqslant 7$. If $3<t<p-1$, then

$$
\mathfrak{s}_{t}\left(C_{p}\right) \leqslant(p-1)(t-2)+1
$$

Proof. Let S be a sequence of nonzero elements of G of length $|S|=(p-1)(t-$ $2)+1$. If there is $g \in G$ such that $v_{g}(S) \geqslant t$, then $T=g^{t}$ is a zero-sum free subsequence of length t, hence we may assume $v_{g}(S) \leqslant t-1$ for all $g \in G$. On the other hand, the length of S implies that there must exist an element $h \in \operatorname{supp}(S)$ such that $v_{h}(S)=t-1$. But this fact also gives a zero-sum free subsequence of length t, unless $|\operatorname{supp}(S)| \leqslant t$, according to Lemma 3.5. Write then

$$
S=g_{1}^{v_{1}} \cdots g_{r}^{v_{r}} \quad \text { with } \quad v_{i} \leqslant t-1 \text { and } r \leqslant t
$$

If $|\operatorname{supp}(S)| \leqslant t-1$, then

$$
|S|-(t-1)^{2}=(p-1)(t-2)+1-(t-1)^{2}=(t-2)(p-t-1) \leqslant 0
$$

which is impossible for $t>3$ and $p>t+1$. Hence $|\operatorname{supp}(S)|=t$ and $|S| \leqslant t(t-1)$. Now,

$$
|S|-(t(t-1)-1)=p t-2 p-t^{2}+4 \geqslant(t+2)(t-2)-t^{2}+4 \geqslant 0
$$

since $p \geqslant t+2$. Therefore

$$
t(t-1)-1 \leqslant|S| \leqslant t(t-1)
$$

Suppose $|S|=t(t-1)$. Then $(p-1)(t-2)+1=t(t-1)=(t+1)(t-2)+2$, which implies $(t-2)(p-t-2)=1$. And this is an impossibility, for $t>3$ and $p>t+1$. Hence we must have $|S|=t(t-1)-1$. Let us write

$$
S=g_{1}^{t-1} \cdots g_{t-1}^{t-1} g_{t}^{t-2}
$$

and observe that $(p-1)(t-2)+1=t(t-1)-1=(t+1)(t-2)+1$, implies $(t-2)(t+1)=(p-1)(t-2)$, that is, $t=p-2$.

Since $p \geqslant 7$, then $t=p-2>\frac{p-1}{2}+1$, hence the sets $\left\{g_{1}, g_{2}, \ldots, g_{t-1}\right\}$ and $\left\{2 g_{1}, 2 g_{2}, \ldots, 2 g_{t}\right\}$ must intersect, and there should be a $g \in \operatorname{supp}(S)$ such that $v_{g}(S)=t-1$ and $2 g \in \operatorname{supp}(S)$. It follows that the subsequence

$$
g^{t-1}(2 g)
$$

is zero-sum free, for $(t-1) g+2 g \not \equiv 0(\bmod p)$.

3.1. Sequences over $\mathbb{Z} / p^{m} \mathbb{Z}$

Let $S=g_{1} \cdots g_{r}$ be a sequence of integer numbers and p a prime number. Considering

$$
\begin{equation*}
\pi_{i}: \mathbb{Z} \rightarrow \mathbb{Z} / p^{i} \mathbb{Z} \tag{3.2}
\end{equation*}
$$

to be the canonical epimorphism, define the sequence (the image sequence) $\pi_{i}(S)=$ $\pi_{i}\left(g_{1}\right) \cdots \pi_{i}\left(g_{r}\right)$ in $\mathbb{Z} / p^{i} \mathbb{Z}$.

Lemma 3.7. Let S be a sequence of integers coprime to p and of length $r \geqslant 3 p-2$. Then S has a short subsequence T such that $\pi_{1}(T)$ is a short zero-sum sequence in $\mathbb{Z} / p \mathbb{Z}$, but $\pi_{2}(T)$ is not a zero-sum sequence in $\mathbb{Z} / p^{2} \mathbb{Z}$.

Proof. Let $S=g_{1} \cdots g_{r}$, and write these elements as $g_{i}=a_{i}+p b_{i}$, where $a_{i}=$ $\pi_{1}\left(g_{i}\right) \in\{1, \ldots, p-1\}$. By Lemma 3.3(ii), the sequence

$$
\left(a_{1}, \pi_{1}\left(b_{1}\right)\right),\left(a_{2}, \pi_{1}\left(b_{2}\right)\right), \ldots,\left(a_{r}, \pi_{1}\left(b_{r}\right)\right)
$$

has a short zero-sum subsequence over $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$, that is, there exists $I \subset$ $\{1, \ldots, r\}$ such that $|I| \leqslant p$ and

$$
\sum_{i \in I} a_{i} \equiv \sum_{i \in I} b_{i} \equiv 0 \quad(\bmod p)
$$

Therefore

$$
\sum_{i \in I} g_{i} \equiv \sum_{i \in I} a_{i}+p \sum_{i \in I} b_{i} \equiv 0 \quad(\bmod p)
$$

Since $0<a_{i}<p$ for all $i \in\{1, \ldots, r\}$, we have

$$
\sum_{i \in I} g_{i} \not \equiv 0 \quad\left(\bmod p^{2}\right)
$$

It is now clear that the subsequence $T=\prod_{i \in I} g_{i}$ has the desired properties.
The proof of next two lemmas can be found in [3].
Lemma 3.8. Let $S=g_{1} g_{2} \cdots g_{p}$ be a sequence of integers coprime to p and choose any $g_{i} \in \operatorname{supp}(S)$. Then it is always possible to find a subsequence T of S with $g_{i} \in \operatorname{supp}(T)$ such that $\pi_{1}(T)$ is a zero-sum in $\mathbb{Z} / p \mathbb{Z}$.

Lemma 3.9. If $a, m, k \in \mathbb{N}$, define recursively

$$
\left\lfloor\frac{a}{m}\right\rfloor_{(1)}=\left\lfloor\frac{a}{m}\right\rfloor \quad \text { and } \quad\left\lfloor\frac{a}{m}\right\rfloor_{(k+1)}=\left\lfloor\frac{\left\lfloor\frac{a}{m}\right\rfloor}{m}\right\rfloor
$$

Then

$$
\left\lfloor\frac{a}{m}\right\rfloor_{(k)}=\left\lfloor\frac{a}{m^{k}}\right\rfloor .
$$

3.2. Sequences over $\mathbb{Z} / \boldsymbol{p}^{m} \mathbb{Z} \oplus \mathbb{Z} / \boldsymbol{p}^{m} \mathbb{Z}$

Let f, g be a pair of p-normalized forms and

$$
\mathscr{A}=\binom{a_{1}}{b_{1}} \cdots\binom{a_{n}}{b_{n}}
$$

be the sequence of their coefficients (see (2.1)). According to Lemma 2.1, we can rewrite the sequence \mathscr{A} as

$$
\begin{equation*}
\mathscr{A}=\mathscr{M}_{0} \mathscr{M}_{1} \cdots \mathscr{M}_{k-1} \tag{3.3}
\end{equation*}
$$

where an element $\binom{a_{j}}{b_{j}}$ of \mathscr{A} is in \mathscr{M}_{i} if a_{j}, b_{j} are coefficients of the pair of subforms $\left(p^{i} f_{i}, p^{i} g_{i}\right)$. The elements of \mathscr{M}_{i} are said to be at level i.

Write $\mathbb{F}_{p}^{2} \backslash\{(0,0)\}$ as the disjoint union of the $p+1$ lines $L_{0}, L_{1}, \ldots, L_{p}$,

$$
\begin{equation*}
\mathbb{F}_{p}^{2} \backslash\{(0,0)\}=\bigsqcup_{i=0}^{p} L_{i} \tag{3.4}
\end{equation*}
$$

where

$$
L_{0}=\left\{\left.\lambda\binom{1}{0} \right\rvert\, \lambda \in\{1, \ldots, p-1\}\right\}
$$

and

$$
L_{i}=\left\{\left.\lambda\binom{i}{1} \right\rvert\, \lambda \in\{1, \ldots, p-1\}\right\}
$$

for all $i \in\{1, \ldots, p\}$.
Now, define (see (3.2)) the epimorphism

$$
\varphi_{i}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} / p^{i} \mathbb{Z} \oplus \mathbb{Z} / p^{i} \mathbb{Z}
$$

as

$$
\begin{equation*}
\varphi_{i}\binom{a}{b}=\binom{\pi_{i}(a)}{\pi_{i}(b)} \tag{3.5}
\end{equation*}
$$

With these in mind, let S be a subsequence of \mathscr{M}_{0}, and for each $j \in\{0,1, \ldots, p\}$, define the subsequence of S

$$
I_{j}(S)=\prod_{g \in B_{j}} g^{v_{g}(S)}, \quad \text { where } \quad B_{j}=\left\{g \in \mathscr{M}_{0} ; \varphi_{1}(g) \in L_{j}\right\}
$$

We will say that an element g of S has color \jmath if $g \in B_{j}$. Writing $i_{j}(S)=\left|I_{j}(S)\right|$ we have that

$$
\begin{equation*}
S=\prod_{j=0}^{p} I_{j}(S), \quad \text { and } \quad|S|=\sum_{j=0}^{p} i_{j}(S) . \tag{3.6}
\end{equation*}
$$

In an analogous way, if S is a subsequence of \mathscr{M}_{ℓ}, we can also write

$$
I_{j}(S)=\prod_{g \in C_{j}} g^{v_{g}(S)}, \quad \text { where } C_{j}=\left\{g \in \mathscr{M}_{\ell} ; \varphi_{1}\left(p^{-\ell} g\right) \in L_{j}\right\}
$$

and in this case we also say that g has color \jmath (at level ℓ) if $g \in C_{j}$.
It is simple to see that for any fixed subsequence S of \mathscr{M}_{i}, we can always assume

$$
\begin{equation*}
i_{0}(S) \geqslant i_{p}(S) \geqslant i_{j}(S) \quad \text { for all } j \in\{1,2, \ldots, p-1\} \tag{3.7}
\end{equation*}
$$

and thus define the sequence

$$
\begin{equation*}
Q_{0}(S)=\prod_{j=1}^{p} I_{j}(S), \quad \text { with } \quad q_{0}(S)=\left|Q_{0}(S)\right| \tag{3.8}
\end{equation*}
$$

Hence, for every subsequence S of \mathscr{M}_{i}, we have

$$
S=I_{0}(S) Q_{0}(S) \quad \text { and } \quad|S|=i_{0}(S)+q_{0}(S)
$$

Lemma 3.10. Let S be a subsequence of \mathscr{M}_{ℓ} and suppose that there exists $j \in$ $\{0, \ldots, p\}$ such that $i_{j}(S) \geqslant 3 p-2$. Then S has a short subsequence T such that $\varphi_{\ell+1}(T)$ is a zero-sum sequence but $\varphi_{\ell+2}(T)$ is not a zero-sum sequence.

Proof. As seen above (see 3.7), we can assume $i_{0}(S) \geqslant 3 p-2$. Let U be a subsequence of $I_{0}(S)$ of length $3 p-2$

$$
U=\binom{a_{1}}{b_{1}} \cdots\binom{a_{3 p-2}}{b_{3 p-2}}
$$

Observe that for $\jmath \in\{1, \ldots, 3 p-2\}$ we have

$$
p^{-\ell} a_{j} \not \equiv 0(\bmod p) \quad \text { and } \quad p^{-\ell} b_{j} \equiv 0(\bmod p)
$$

Since the sequence of integers $V=p^{-\ell} a_{1} \cdots p^{-\ell} a_{3 p-2}$ has a short subsequence T^{*} (see Lemma 3.7) such that $\pi_{1}\left(T^{*}\right)$ is a short zero-sum sequence but $\pi_{2}\left(T^{*}\right)$ is not a zero-sum sequence, it is now simple to choose the short subsequence T of U with the desired properties.

Lemma 3.11. Let S be a subsequence of \mathscr{M}_{ℓ}. If $i_{0}(S) \geqslant \mathfrak{s}_{u}(\mathbb{Z} / p \mathbb{Z})$ and $q_{0}(S) \geqslant$ $\mathfrak{s}_{v}(\mathbb{Z} / p \mathbb{Z})$, then $\varphi_{\ell+1}(S)$ has a zero-sum free subsequence of length $u+v$ over $\mathbb{Z} / p^{\ell+1} \mathbb{Z} \oplus \mathbb{Z} / p^{\ell+1} \mathbb{Z}$.

Proof. Let us consider

$$
T=\binom{a_{1}}{b_{1}} \cdots\binom{a_{r}}{b_{r}}\binom{c_{1}}{d_{1}} \cdots\binom{c_{s}}{d_{s}}
$$

a subsequence of S containing $r=\mathfrak{s}_{u}(\mathbb{Z} / p \mathbb{Z})$ elements of $I_{0}(S)$ and $s=\mathfrak{s}_{v}(\mathbb{Z} / p \mathbb{Z})$ elements of $Q_{0}(S)$. Then

$$
\varphi_{1}\left(p^{-\ell} T\right)=\binom{A_{1}}{0} \cdots\binom{A_{r}}{0}\binom{C_{1}}{D_{1}} \cdots\binom{C_{s}}{D_{s}} .
$$

It follows from Definition 3.4 that the sequence $A_{1} \cdots A_{r}$ has a zero-free subsequence over $\mathbb{Z} / p \mathbb{Z}$ of length u, and in an analogous way, there is also a zero-sum free subsequence of $D_{1} \cdots D_{s}$ of length v over $\mathbb{Z} / p \mathbb{Z}$. Denoting these zero-sum free sequences as $A_{1} \cdots A_{u}$ and $D_{1} \cdots D_{v}$, we have a sequence of length $u+v$ of $\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ such that

$$
\binom{0}{0} \notin \Sigma\left(\binom{A_{1}}{0} \cdots\binom{A_{u}}{0}\binom{C_{1}}{D_{1}} \cdots\binom{C_{v}}{D_{v}}\right)
$$

concluding this proof.

4. Proof of Theorem 1.1

From this point on we are considering the pair of forms f, g to be p-normalized, with all the properties described in Lemma 2.1. Since $k=p^{\tau}(p-1)$ and $n>$ $2\left(\frac{p}{p-1}\right) k^{2}-2 k$, inequalities (2.5) give

$$
q_{0} \geqslant \frac{n}{2 k}>k \frac{p}{p-1}-1=p^{\tau+1}-1
$$

and

$$
\sum_{i=0}^{\ell} m_{i} \geqslant(\ell+1) \frac{n}{k}>2(\ell+1)\left(k\left(\frac{p}{p-1}\right)-1\right)
$$

Hence

$$
\begin{equation*}
q_{0} \geqslant p^{\tau+1} \quad \text { and } \quad \sum_{i=0}^{\ell} m_{i}>2(\ell+1)\left(p^{\tau+1}-1\right) \tag{4.1}
\end{equation*}
$$

In order to guarantee the existence of p-adic zeros for this pair of additive forms, it is sufficient, by Lemma 2.2, to obtain a solution of rank 2 to the system (see (2.7))

$$
\begin{align*}
a_{1} x_{1}^{k}+\cdots+a_{n} x_{n}^{k} & \equiv 0\left(\bmod p^{\gamma}\right) \tag{4.2}\\
b_{1} x_{1}^{k}+\cdots+b_{n} x_{n}^{k} & \equiv 0\left(\bmod p^{\gamma}\right)
\end{align*}
$$

Since $\gamma=\tau+1$ and

$$
k=p^{\tau}(p-1)=\varphi\left(p^{\gamma}\right),
$$

(where φ is the Euler function), the above system is equivalent to the equation

$$
\begin{equation*}
\binom{a_{1}}{b_{1}} \varepsilon_{1}+\cdots+\binom{a_{n}}{b_{n}} \varepsilon_{n}=\binom{0}{0} \tag{4.3}
\end{equation*}
$$

in $\mathbb{Z} / p^{\gamma} \mathbb{Z} \oplus \mathbb{Z} / p^{\gamma} \mathbb{Z}$, with $\varepsilon_{i} \in\{0,1\}$.
Definition 4.1. We will say that a subsequence \mathcal{S} of $\mathscr{A}=\mathscr{M}_{0} \ldots \mathscr{M}_{k-1}$ is a non-singular zero-sum sequence modulo p^{i} if $\varphi_{i}(\mathcal{S})$ is a zero-sum sequence and $\operatorname{supp}\left(\varphi_{1}(\mathcal{S})\right) \cap \operatorname{supp}\left(\varphi_{1}\left(\mathscr{M}_{0}\right)\right)$ contains at least two elements of distinct colors (see (3.6)).

The system (4.2) and the equation (4.3) presents a correspondence between the problem of finding solutions of rank 2 for a pair of additive forms f, g and the question of existence of a non-singular zero-sum subsequence sequence modulo p^{γ} of the sequence

$$
\mathscr{A}=\mathscr{M}_{0} \mathscr{M}_{1} \cdots \mathscr{M}_{k-1}=\binom{a_{1}}{b_{1}} \cdots\binom{a_{n}}{b_{n}}
$$

of the coefficients of the forms f, g.
Definition 4.2. Let \mathcal{S} be a subsequence of $\mathscr{A}=\mathscr{M}_{0} \ldots \mathscr{M}_{k-1}$. If S is a nonsingular zero-sum sequence modulo p^{ℓ}, we will say that $\sigma(S)$ is a Primary Element at level ℓ or higher. If $\varphi_{\ell}(S)$ is a zero-sum sequence but $\varphi_{\ell+1}(S)$ is not a zero-sum sequence, we will say that $\sigma(S)$ is a Secondary Element at level ℓ. We will denote by \mathcal{P}_{ℓ} the sequence of the primary elements at level ℓ (or higher), and \mathscr{S}_{ℓ} the sequence of the secondary elements at level ℓ. Let \mathcal{S}_{ℓ} be the sequence $\mathscr{S}_{\ell} \cdot \mathscr{M}_{\ell}$ (it is only natural to considerer the elements of \mathscr{M}_{ℓ} as secondary elements at level ℓ). Let us denote by

$$
\begin{equation*}
p_{\ell}=\left|\mathcal{P}_{\ell}\right| \quad \text { and } \quad s_{\ell}=\left|\mathcal{S}_{\ell}\right| . \tag{4.4}
\end{equation*}
$$

The next theorem, proved in [2], give us a lower bound to the length of P_{1}.
Theorem 4.3. If f, g is a p-normalized pair, then

$$
p_{1} \geqslant \min \left(\left\lfloor\frac{m_{0}}{2 p-1}\right\rfloor,\left\lfloor\frac{q_{0}}{p}\right\rfloor\right) .
$$

It now follows from Theorem 4.3 and (4.1) that the minimum number of primary elements that can be obtained at the first level is (since $m_{0} \geqslant 2 p^{\tau+1}-1$)

$$
\begin{equation*}
p_{1} \geqslant p^{\tau} \tag{4.5}
\end{equation*}
$$

As pointed out by the inequality in Theorem 4.3, to produce a primary element at level 1 , we can use only zero-sum sequences of length at most $2 p$. Hence to produce p_{1} primary elements at level 1 , we are using at most p^{τ} sequences of maximum length $2 p$ at level zero. Thus we define

$$
\begin{equation*}
s_{0}=m_{0}-2 p \times p^{\tau}=m_{0}-2 p^{\tau+1} . \tag{4.6}
\end{equation*}
$$

Lemma 4.4. If $p_{\ell} \geqslant p$ and $i_{j}\left(S_{\ell}\right) \geqslant p-1$, for some $j \in\{0,1, \ldots, p\}$, then we can produce a primary element at level $\ell+1$ or higher using at most p primary elements and $p-1$ secondary elements

Proof. Suppose that the p_{ℓ} primary elements are at level ℓ (otherwise we already have a primary element at level $\ell+1$ or higher) and $i_{0}\left(S_{\ell}\right) \geqslant p-1$ (see (3.7)). Let

$$
T=\binom{a_{1}}{b_{1}} \cdots\binom{a_{p}}{b_{p}}\binom{c_{1}}{d_{1}} \cdots\binom{c_{p-1}}{d_{p-1}}
$$

be a subsequence of S_{ℓ} containing p primary elements and $p-1$ elements of the sequence $I_{0}\left(S_{\ell}\right)$. Then, for $\jmath \in\{1, \ldots, p-1\}$

$$
p^{-\ell} c_{j} \not \equiv 0(\bmod p) \quad \text { and } \quad d_{j} \equiv 0\left(\bmod p^{\ell+1}\right)
$$

If there is $i \in\{1, \ldots, p\}$ such that $b_{i} \equiv 0\left(\bmod p^{\ell+1}\right)$, then we must have $a_{i} \not \equiv$ $0\left(\bmod p^{\ell+1}\right)$, and Lemma 3.8 tells us that there exists $J \subseteq\{1, \ldots, p-1\}$ such that

$$
\sum_{j \in J} p^{-\ell} c_{j}+p^{-\ell} a_{i} \equiv 0 \quad(\bmod p)
$$

Therefore,

$$
\varphi_{\ell+1}\left(\binom{a_{i}}{b_{i}}+\sum_{j \in J}\binom{c_{j}}{d_{j}}\right)=\binom{0}{0}
$$

giving a primary element at level $\ell+1$. So, let us assume $b_{i} \not \equiv 0\left(\bmod p^{\ell+1}\right)$ for $i \in\{1, \ldots, p\}$. Again by Lemma 3.8, there exists $I \subseteq\{1, \ldots, p\}$ such that $\sum_{i \in I} p^{-\ell} b_{i} \equiv 0(\bmod p)$, hence

$$
\varphi_{\ell+1}\left(\sum_{i \in I}\binom{a_{i}}{b_{i}}\right)=\binom{a}{0} .
$$

If $a \equiv 0\left(\bmod p^{\ell+1}\right)$, we have a primary element at level $\ell+1$. So assume $p^{-\ell} a \not \equiv$ $0(\bmod p)$, and repeating the arguments above, we can find $J \subseteq\{1, \ldots, p-1\}$ such that

$$
\varphi_{\ell+1}\left(\sum_{i \in I}\binom{a_{i}}{b_{i}}+\sum_{j \in J}\binom{c_{j}}{d_{j}}\right)=\binom{0}{0}
$$

giving a primary element at level $\ell+1$ or higher, and completing the proof.
Lemma 4.5. Let $\ell \geqslant 0$. Then

$$
s_{\ell+1} \geqslant m_{\ell+1}+\left\lfloor\frac{s_{\ell}-3\left(p^{2}-1\right)}{p}\right\rfloor .
$$

Proof. This result is a consequence of Lemma 3.10, since a secondary element at level $\ell+1$ can always be produced, unless for every $\jmath \in\{0,1, \ldots, p\}, i_{j}\left(S_{\ell}\right) \leqslant 3 p-3$. Thus there would remain at most $(3 p-3)(p+1)=3\left(p^{2}-1\right)$ elements at level ℓ.

Lemma 4.6. If $\ell \geqslant 1$, then

$$
s_{\ell} \geqslant\left\lfloor\frac{\sum_{i=1}^{\ell} p^{i} m_{i}+s_{0}-3(p+1)\left(p^{\ell}-1\right)}{p^{\ell}}\right\rfloor .
$$

Proof. (Induction on ℓ) For $\ell=1$, Lemma 4.5 gives

$$
s_{1} \geqslant m_{1}+\left\lfloor\frac{s_{0}-3\left(p^{2}-1\right)}{p}\right\rfloor=\left\lfloor\frac{p m_{1}+s_{0}-3\left(p^{2}-1\right)}{p}\right\rfloor .
$$

Now, from Lemmas 3.9, 4.5 and the induction hypothesis, it follows that

$$
\begin{gathered}
s_{\ell} \geqslant m_{\ell}+\left\lfloor\frac{\left\lfloor\frac{\sum_{i=1}^{\ell-1} p^{i} m_{i}+s_{0}-3(p+1)\left(p^{\ell-1}-1\right)}{p^{\ell-1}}\right\rfloor-3\left(p^{2}-1\right)}{p}\right\rfloor \\
s_{\ell} \geqslant m_{\ell}+\left\lfloor\frac{\sum_{i=1}^{\ell-1} p^{i} m_{i}+s_{0}-3(p+1)\left(p^{\ell-1}-1\right)-3 p^{\ell-1}\left(p^{2}-1\right)}{p^{\ell}}\right\rfloor \\
s_{\ell} \geqslant\left\lfloor\frac{\sum_{i=1}^{\ell} p^{i} m_{i}+s_{0}-3(p+1)\left(p^{\ell}-1\right)}{p^{\ell}}\right\rfloor .
\end{gathered}
$$

Lemma 4.7. Suppose $\ell \geqslant 1$ and $p \geqslant 11$. If $p_{\ell} \geqslant p$ and $s_{\ell} \geqslant p^{2}-6 p+5$, then we can obtain a primary element at level $\ell+1$ or higher using at most p primary elements and $p-1$ secondary elements.

Proof. We have (see (3.7))

$$
i_{0}\left(S_{\ell}\right) \geqslant\left\lceil\frac{s_{\ell}}{p+1}\right\rceil \geqslant p-6
$$

By Lemma 4.4, we can also assume $i_{0}\left(S_{\ell}\right) \leqslant p-2$. And since $p \geqslant 11$, we have $i_{0}\left(S_{\ell}\right) \geqslant 5=\mathfrak{s}_{3}(\mathbb{Z} / p \mathbb{Z})$, according to (3.1). On the other hand, Lemma 3.6 give us

$$
q_{0}\left(S_{\ell}\right)=s_{\ell}-i_{0}\left(S_{\ell}\right) \geqslant(p-1)(p-6)+1 \geqslant \mathfrak{s}_{p-4}(\mathbb{Z} / p \mathbb{Z}) .
$$

Now we can use Lemma 3.11 to find a zero-sum free subsequence T of S_{ℓ} over $\mathbb{Z} / p^{\ell+1} \mathbb{Z} \oplus \mathbb{Z} / p^{\ell+1} \mathbb{Z}$ of length $3+(p-4)=p-1$.

Observe that the sequence $T P_{\ell}$ has length $m \geqslant 2 p-1$, and according to Lemma 3.3(i), it has a subsequence U such that $\varphi_{\ell+1}(U)$ is a zero-sum sequence. Since T is zero-sum free sequence, the sequence U must contain at least one element of P_{ℓ}, hence $\sigma(U)$ is a primary element at level $\ell+1$.

Lemma 4.8. Suppose $p=7$ and $\ell \geqslant 1$. If $p_{\ell} \geqslant 7$ and $s_{\ell} \geqslant 41$ we can obtain a primary element at level $\ell+1$ or higher using at most 7 primary elements and 6 secondary elements at level ℓ.

Proof. Since $i_{0}\left(S_{\ell}\right) \geqslant\left\lceil\frac{s_{\ell}}{8}\right\rceil \geqslant 6$, the result follows immediately from Lemma 4.4.

Lemma 4.9. Suppose, for $\ell \in\{1, \ldots, \tau-1\}$, that

$$
s_{\ell} \geqslant \begin{cases}p^{2}-5 p+4 & \text { if } p \geqslant 11 \\ 47 & \text { if } p=7\end{cases}
$$

Then

$$
p_{\ell+1} \geqslant\left\lfloor\frac{p_{\ell}}{p}\right\rfloor .
$$

Proof. Let us assume that $p_{\ell} \geqslant k p$. If $k \leqslant 2$ we can apply Lemmas 4.7 and 4.8 to obtain k primary elements at level $\ell+1$ or higher, since $p^{2}-5 p+4-(p-1)=$ $p^{2}-6 p+5$ and $47-6=41$. Now suppose that, for any $t<k$, if there are $t p$ primary elements at level ℓ, we can then obtain t primary elements at level $\ell+1$ or higher. Since we are assuming $k \geqslant 3$, we can use Lemma 3.3(ii) to obtain a primary element at level $\ell+1$ or higher and still have left $(k-1) p$ primary elements at level ℓ. By the induction hypothesis we can obtain other $k-1$ primary elements at level $\ell+1$ or higher, concluding this proof.

4.1. Conclusion

The final step of this proof is to guarantee the existence of a non-singular zerosum at level γ, that is, to prove that $p_{\gamma} \neq 0$, and this is accomplished in the next lemmas. From this point on, we are assuming the validity of the conditions (4.1),(4.5), (4.6), $p \geqslant 7$ and $\tau \geqslant \frac{p-1}{2}$.

Lemma 4.10. Under the conditions above we have, for $\ell \in\{1, \ldots, \tau-1\}$,

$$
\begin{equation*}
s_{\ell} \geqslant 2 \ell p^{2}-3 p-4 \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{\tau} \geqslant p^{2}-4 p-4 \tag{4.8}
\end{equation*}
$$

Proof. The conditions (4.1) and (4.6) give

$$
\sum_{i=0}^{\ell} p^{i} m_{i} \geqslant \sum_{i=0}^{\ell} m_{i}>2(\ell+1)\left(p^{\tau+1}-1\right) \quad \text { and } \quad s_{0}=m_{0}-2 p^{\tau+1}
$$

Hence Lemma 4.6 gives

$$
s_{\ell} \geqslant\left\lfloor\frac{\sum_{i=0}^{\ell} p^{i} m_{i}-2 p^{\tau+1}-3(p+1)\left(p^{\ell}-1\right)}{p^{\ell}}\right\rfloor
$$

thus

$$
s_{\ell} \geqslant\left\lfloor\frac{2(\ell+1)\left(p^{\tau+1}-1\right)-2 p^{\tau+1}-3(p+1) p^{\ell}+3(p+1)}{p^{\ell}}\right\rfloor
$$

giving

$$
s_{\ell} \geqslant 2 \ell p^{\tau-\ell+1}-3(p+1)+\left\lfloor\frac{3 p-2 \ell+1}{p^{\ell}}\right\rfloor .
$$

Now, since we are assuming $p \geqslant 7$ we have

$$
\left\lfloor\frac{3 p-2 \ell+1}{p^{\ell}}\right\rfloor= \begin{cases}2 & \text { if } \ell=1 \\ 0 & \text { if } 3 p \geqslant 2 \ell-1 \text { and } \ell>1 \\ -1 & \text { if } 3 p<2 \ell-1 \text { and } \ell>1\end{cases}
$$

Therefore, for $\ell \in\{1, \ldots, \tau-1\}$

$$
s_{\ell} \geqslant 2 \ell p^{\tau-\ell+1}-3 p-4 \geqslant 2 \ell p^{2}-3 p-4
$$

and, since we are assuming $\tau \geqslant \frac{p-1}{2}$

$$
s_{\tau} \geqslant 2\left(\frac{p-1}{2}\right) p-3 p-4=p^{2}-4 p-4 .
$$

Lemma 4.11. Under the conditions above we have

$$
p_{\tau} \geqslant p
$$

Proof. From Lemma 4.10 it follows that $s_{\ell} \geqslant 2 \ell p^{2}-3 p-4$, for $\ell \in\{1,2, \ldots, \tau-1\}$. Since $2 \ell p^{2}-3 p-4 \geqslant p^{2}-5 p+4$ if $p \geqslant 11$, and $2 \ell p^{2}-3 p-4 \geqslant 47$ if $p=7$, we can apply Lemma 4.9 and inequality (4.5) to obtain $p_{\tau} \geqslant p^{\tau-(\tau-1)}=p$.

Lemma 4.12. Under the conditions stated above and for $p \geqslant 11$ we have

$$
p_{\tau+1}=p_{\gamma} \neq 0
$$

Proof. It follows from Lemmas 4.10 and 4.11 that

$$
s_{\tau} \geqslant p^{2}-4 p-4 \quad \text { and } \quad p_{\tau} \geqslant p
$$

Since $p \geqslant 11$, we have $p^{2}-4 p-4 \geqslant p^{2}-6 p+5$, hence we can apply Lemma 4.7 to obtain $p_{\gamma} \neq 0$.

Lemma 4.13. Under the conditions stated above and for $p=7$ we have

$$
p_{\tau+1}=p_{\gamma} \neq 0
$$

Proof. Again, it follows from Lemmas 4.10 and 4.11 that

$$
s_{\tau} \geqslant p^{2}-4 p-4=17 \quad \text { and } \quad p_{\tau} \geqslant 7,
$$

hence $i_{0}\left(S_{\tau}\right) \geqslant\left\lceil\frac{s_{\tau}}{8}\right\rceil \geqslant 3$.
If $i_{0}\left(S_{\tau}\right) \geqslant 6$, the result follows from Lemma 4.4. If $i_{0}\left(S_{\tau}\right)=5$, then we have $q_{0}\left(S_{\tau}\right)=s_{\tau}-i_{0}\left(S_{\tau}\right) \geqslant 12 \geqslant \mathfrak{s}_{3}(\mathbb{Z} / 7 \mathbb{Z})$ (see (3.1)) and also $i_{0}\left(S_{\tau}\right)=\mathfrak{s}_{3}(\mathbb{Z} / 7 \mathbb{Z})$. It
follows from Lemma 3.11 that we can find a subsequence S of S_{τ} such that $\varphi_{\tau+1}(S)$ is a zero-sum free subsequence of length 6 over $\mathbb{Z} / 7^{\tau+1} \mathbb{Z} \oplus \mathbb{Z} / 7^{\tau+1} \mathbb{Z}$. Observe that the sequence $S P_{\tau}$ has length $m \geqslant 13$, and according to Lemma 3.3(i), it has a subsequence U such that $\varphi_{\tau+1}(U)$ is a zero-sum sequence. Since S is zero-sum free sequence, the sequence U must contain at least one element of P_{τ}, hence $\sigma(U)$ is a primary element at level $\tau+1=\gamma$.

Hence we may assume $3 \leqslant i_{0}\left(S_{\tau}\right) \leqslant 4$. Now we have $q_{0}\left(S_{\tau}\right)=s_{\tau}-i_{0}\left(S_{\tau}\right) \geqslant$ $13 \geqslant \mathfrak{s}_{4}(\mathbb{Z} / 7 \mathbb{Z})$ (see Lemma (3.6)) and also $i_{0}\left(S_{\tau}\right) \geqslant 3=\mathfrak{s}_{2}(\mathbb{Z} / 7 \mathbb{Z})$ (see (3.1)). Again, it follows from Lemma 3.11 that we can find a subsequence S of S_{τ} such that $\varphi_{\tau+1}(S)$ is a zero-sum free subsequence of length 6 over $\mathbb{Z} / 7^{\tau+1} \mathbb{Z} \oplus \mathbb{Z} / 7^{\tau+1} \mathbb{Z}$. Now, as above, the result follows from Lemma 3.3(i), since the sequence $S P_{\tau}$ has length $m \geqslant 13$.

References

[1] J. Brüdern and H. Godinho, On Artin's Conjecture, II: Pairs of Additive Forms, Proc. Lond. Math. Soc. (3) 84 (2002), 513-538.
[2] H. Davenport and D. J. Lewis, Two Additive Equations, Proc. Sympos. Pure Math. 12 (1967), 74-98.
[3] H. Godinho and T.C. Souza, Pairs of Additive Forms of Degrees 2.3^{τ} and 4.5^{τ}, J. Comb. Number Theory 3 (2012), 87-102.
[4] J.E. Olson, A combinatorial problem on finite abelian groups, I, J. Number Theory 1 (1969), 8-10.
[5] J.E. Olson, A combinatorial problem on finite abelian groups, II, J. Number Theory 1 (1969), 195-199.

Address: H. Godinho and T.C. de Souza Neto: Departamento de Matemática, Universidade de Brasília, Brasília, DF, 70910, Brazil.
E-mail: hemar@mat.unb.br, tsouzaneto@gmail.com
Received: 9 October 2012

[^0]: The first author was partially supported by a grant from CNPq-Brazil, and the second author was partially supported by grants from CNPq-Brazil and CAPES-Brazil.

 2010 Mathematics Subject Classification: primary: 11D72; secondary: 11P99

