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THE METRICAL THEORY OF SIMULTANEOUSLY SMALL
LINEAR FORMS

Mumtaz Hussain, Jason Levesley

Abstract: In this paper we investigate the metrical structure of the set of all points X ∈ Rn

which satisfy a simultaneously small system of Diophantine inequalities for infinitely many integer
vectors. We establish the complete metric theory for the given system which implies a general
Khintchine–Groshev type theorem, as well as its Hausdorff measure generalization. The latter
includes the original dimension results obtained in [5] as special cases.
Keywords: Diophantine approximation, Khintchine type theorems, system linear forms, Haus-
dorff measure.

1. Introduction

Notation. For two real quantities a and b we will write a ≪ b if there exists
a constant C > 0 such that a 6 Cb. If a≪ b and b≪ a we write a ≍ b and a and
b are said to be comparable. For a set A ⊂ Rk, |A|k is the k-dimensional Lebesgue
measure of the set A.

Let ψ : R+ → R+ be a real positive decreasing function with ψ(r) → 0 as
r → ∞. Such a function will be referred to as an approximation function. An
m × n matrix X = (xij) ∈ Rmn is said to be ψ–approximable if the system of
inequalities

|q1x1i + q2x2i + · · ·+ qmxmi| 6 ψ(|q|) for (1 6 i 6 n),

is satisfied for infinitely many q ∈ Zm \ {0}. Here and throughout |q| will denote
the supremum norm of the vector q. Specifically, |q| = max {|q1 | , |q2 | , . . . , |qm |}.
The system q1x1i+q2x2i+· · ·+qmxmi of n linear forms in m variables q1 , q2 , . . . , qm
will be written more concisely as qX, where the matrix X is regarded as a point
in Rmn. It is easily verified that ψ-approximability is not affected under transla-
tion by integer vectors and we can therefore restrict attention to the unit cube
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Imn := [−1
2 ,

1
2 ]
mn. The set of ψ–approximable points in Imn will be denoted by

W0(m,n;ψ);

W0(m,n;ψ) := {X ∈ Imn : |qX| < ψ(|q|) for i.m. q ∈ Zm \ {0}},

where ‘i.m.’ is to be read as ‘infinitely many’. In the case when ψ(r) = r−τ for
some τ > 0 we shall write W0 (m,n; τ) instead of W0 (m,n;ψ).

It is worth relating the above formulation to the set of ψ-approximable matrices
as studied in classical Diophantine approximation. In such a setting, the metric
structure of the lim sup set

W (m,n;ψ) = {X ∈ Imn : ∥qX∥ < ψ(|q|) for i.m. q ∈ Zm \ {0}},

where ∥x∥ denotes the distance of x to the nearest integer vector, is a central prob-
lem and the theory is well established, see for example [1]. The set W0 (m,n;ψ) is
therefore an analogue of W (m,n;ψ) with | · | replacing ∥ · ∥. The aim of this paper
is to obtain the complete metric theory for the set W0(m,n;ψ).

It is readily verified that W0(1, n;ψ) = {0} as any x = (x1, x2, . . . , xn) ∈
W0(1, n;ψ) must satisfy the inequality |qxj | < ψ(q) infinitely often. As ψ(q) → 0
as q → ∞ this is only possible if xj = 0 for all j = 1, 2, . . . , n. Thus when m = 1
the set W0(1, n;ψ) is a singleton and has both zero measure and dimension. We
will therefore assume that m > 2 .

Before giving the main results of this paper we include a brief review of some
of the work done previously on the measure theoretic structure of W0(m,n;ψ).
The first result is due to Dickinson [5].

Theorem (D). When τ > m
n − 1 and m > 2

dim(W0(m,n; τ)) = (m− 1)n+
m

τ + 1
,

and when 0 < τ 6 m
n − 1,

dim(W0(m,n; τ)) = mn.

Theorem (D) does not hold for the cases m 6 n if τ <
m

m− 1
− 1. As a con-

sequence of Theorem 2 below we have corrected this mistake. To the best of our
knowledge the only other result is due to Kemble [12] who established a Khintchine-
Groshev type theorem for W0(m, 1;ψ) under various conditions on the approxi-
mating function. We shall remove these conditions and prove the precise analogue
of the Khintchine-Groshev theorem for W0(m,n;ψ).

Finally, it is worth mentioning the set is not only of number theoretic interest
but appears naturally in operator theory, see [6] for further details.

2. Statement of main results

The results of this paper depend crucially on the choice of m and n and the
statements of the main results of this paper are split into two cases; one when
m > n and the other when m 6 n.
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In what follows Hf will denote f -dimensional Hausdorff measure, which will
be defined fully in §3.1, and for any approximating function ψ we define Ψ to be
the function Ψ(r) := ψ(r)

r .

Theorem 1. Let m > n and ψ be an approximating function. Let f be a dimension
function such that r−mnf(r) is non-increasing and r−(m−1)nf(r) is increasing.
Then

Hf (W0 (m,n;ψ)) =


0, if

∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 <∞,

Hf (Imn), if
∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 = ∞.

Note that if the dimension function f is such that r−mnf(r) → ∞ as r → 0
then Hf (Imn) = ∞ and Theorem 1 is the analogue of the classical result of Jarník
(see [11]).

If we now set f(r) = rs for s > 0, Theorem 1 reduces to the following
s-dimensional Hausdorff measure statement.

Corollary 1. Let m > n and ψ be an approximating function. Let s be such that
(m− 1)n < s 6 mn. Then,

Hs (W0 (m,n;ψ)) =


0, if

∞∑
r=1

Ψ(r)s−(m−1)nrm−1 <∞,

Hs(Imn), if
∞∑
r=1

Ψ(r)s−(m−1)nrm−1 = ∞.

Corollary 1 is more discriminating than the Hausdorff dimension result of Dick-
inson. Indeed, Dickinson’s result (for the cases when m > n) can be deduced
from it.

In the case when f(r) = rmn, the Hausdorff f -measure Hf is simply Lebesgue
measure supported on Imn and Theorem 1 implies a natural analogue of the
Khintchine–Groshev theorem for W0 (m,n;ψ).

Corollary 2. Let m > n and ψ be an approximating function, then

|W0 (m,n;ψ) |mn =


0, if

∞∑
r=1

Ψ(r)nrm−1 <∞,

1, if
∞∑
r=1

Ψ(r)nrm−1 = ∞.

Theorem 1 establishes the metric theory for W0 (m,n;ψ) when m > n. For
the cases when m 6 n the problem becomes more complicated due to the fact
that the set W0(m,n;ψ) can be shown to lie in a manifold of dimension at most
(m−1)(n+1). This results in some changes to the statement of Theorem 1 in the
cases when m 6 n.

Firstly consider the case when m = n and take any X ∈ W0(m,m;ψ). We
claim that the column vectors of X are linearly dependent. To see why assume
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to the contrary, that they are linearly independent. Since X ∈W0(m,m;ψ) there
exists infinitely many q such that

|qX| < ψ(|q).

As X is assumed to have linearly independent column vectors, it follows that X
is invertible and

1 6 |q| = |qXX−1| 6 C(X)ψ(q) → 0 as |q| → ∞

for some constant C(X) depending only on X. This is clearly impossible and we
must have the column vectors of X being linearly dependent, as claimed. Thus
any such X must lie in the hypersurface Γ where

Γ := {Y ∈ Im
2

: det(Y ) = 0}.

As det is a multinomial, it follows that Γ is a co-dimension 1 hypersurface in Im2

.
When m < n the argument is more involved. From the above argument for the

case when m = n, every minor of X of order m is 0. It follows that the rank of X
is at most m−1 and the rows of X must therefore be linearly dependent. Consider
first the case when the rank is m − 1 and assume without loss of generality that
the first m − 1 rows are linearly independent. Denoting the jth row by R(j), we
have

R(m) =
m−1∑
j=1

λjR
(j).

As (m− 1)(n+1) = (m− 1)n+m− 1, the total number of independent variables
required to specify X is (m− 1)(n+ 1). When the rank of X is strictly less than
m the total number of variables needed to specify X is

rn+ (m− 1)(m− r) 6 (m− 1)(n+ 1)

where r < m− 1 is the rank of X.
In conclusion, when m 6 n the set W0(m,n;ψ) lies in the intersection of the

different algebraic hyper-surfaces defined above and this set, Γ, has co-dimension
m− 1. In light of this remark an upper bound for dimW0 (m,n;ψ) follows imme-
diately,

dimW0(m,n;ψ) 6 (m− 1)(n+ 1).

Theorem 2. Let m 6 n and ψ be an approximating function. Let f and
r−(n−m+1)(m−1)f(r) be dimension functions. Assume that r−(m−1)(n+1)f(r) is
non-increasing and r−(m−1)nf(r) is increasing. Then Hf (W0(m,n;ψ)) = 0 when-
ever

∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 <∞.

If
∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 = ∞,
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then

Hf (W0(m,n;ψ)) =

{
∞, if r−(m−1)(n+1)f(r) → ∞ as r → 0,

K, if r−(m−1)(n+1)f(r) → C as r → 0,

where C > 0 is some fixed constant and 0 < K <∞.

It is worth noting that for a dimension function f which satisfies
r−(m−1)(n+1)f(r) → C > 0 as r → 0, the measure Hf is comparable to standard
(m−1)(n+1)-dimensional Lebesgue measure. In the case when f(r) = r(m−1)(n+1),
we obtain the following analogue of the Khintchine-Groshev theorem.

Corollary 3. Let m 6 n and ψ be an approximating function and assume that
the conditions of Theorem 2 hold for the dimension function f(r) := r(m−1)(n+1).
Then

|W0(m,n;ψ)|(m−1)(n+1) =


0, if

∞∑
r=1

ψ(r)m−1 <∞,

K if
∞∑
r=1

ψ(r)m−1 = ∞.

where 0 < K <∞.

As above, if we set f(r) = rs we obtain the m 6 n analogue of Corollary 1.

Corollary 4. Let m 6 n and ψ be an approximating function. Let s be such that
(m− 1)n < s 6 (m− 1)(n+ 1). Then,

Hs(W0(m,n;ψ)) =



0, if
∑∞
r=1 Ψ(r)s−(m−1)nrm−1 <∞,

Hs(Γ), if
∑∞
r=1 Ψ(r)s−(m−1)nrm−1 = ∞

and s < (m− 1)(n+ 1),

K, if
∑∞
r=1 Ψ(r)s−(m−1)nrm−1 = ∞

and s = (m− 1)(n+ 1),

where 0 < K <∞. Also, if

inf

{
s :

∞∑
r=1

Ψ(r)s−(m−1)nrm−1 <∞

}
6 (m− 1)(n+ 1)

then

dimW0(m,n;ψ) = inf

{
s :

∞∑
r=1

Ψ(r)s−(m−1)nrm−1 <∞

}
.

On the other hand, if inf
{
s :
∑∞
r=1 Ψ(r)s−(m−1)nrm−1 <∞

}
> (m − 1)(n + 1)

then
dimW0(m,n;ψ) = (m− 1)(n+ 1).

When m 6 n the above corollary not only gives Hausdorff dimension of
W0(m,n; τ) but also that the Hausdorff measure at the critical exponent is in-
finity. The Corollary below corrects the mistake in [5].
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Corollary 5. For m 6 n,

dimW0(m,n; τ) =

{
(m− 1)n+ m

τ+1 , if τ > m
m−1 − 1,

(m− 1)(n+ 1), if τ 6 m
m−1 − 1.

Remark. In the cases when m 6 n, the complementary set to W0(m,n;ψ) corre-
sponds to the set of badly approximable systems of linear forms. In line with the
classical theory one would expect this set to be of maximal Hausdorff dimension.
This is indeed the case and the reader is referred to [9, 10] for full details of the
proofs.

The paper is organized as follows. In Section 3, we give the definitions of
Hausdorff measure and ubiquity, which is the main tool for proving Theorem 1,
in a manner appropriate to the setting of this paper. Section 3 also includes the
statement of the ‘Slicing’ lemma (Lemma 1) which is used to prove Theorem 2.
The paper continues with the proof of Theorem 1 in § 4. As is common when
proving such ‘zero-full’ results the proof is split into two parts; the convergence
case and the divergence case. We conclude the paper with the proof of Theorem 2.

3. Basic definitions and auxiliary results

In this section we give the definitions of some fundamental concepts along with
some auxiliary results which are needed for the proofs of Theorems 1 and 2.

3.1. Hausdorff measure and dimension

Below we give a brief introduction to Hausdorff f -measure and dimension. For
further details see [7].

A dimension function is an increasing, continuous function f : R+ → R+ such
that f(r) → 0 as r → 0. Let X ⊂ Rn and ρ > 0. A ρ-cover of X is a countable
collection {Bi}∞i=1 of balls in Rn with diameters diam(Bi) 6 ρ satisfying X ⊂∪∞
i=1Bi. Define

Hf
ρ(X) = inf

C

{ ∞∑
i=1

f(diam(Bi)) : Bi ∈ C

}

where the infimum is taken over all possible ρ-covers C of X. The Hausdorff
f -measure of X is defined to be

Hf (X) = lim
ρ→0

Hf
ρ(X).

In the particular case when f(r) := rs (s > 0), we write Hs(X) for Hf (X) and
the measure is referred to as s-dimensional Hausdorff measure. The Hausdorff
dimension of a set X, denoted by dim(X), is defined to be

dim(X) := inf{s ∈ R+ : Hs(X) = 0} = sup{s ∈ R+ : Hs(X) = ∞}.
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At the critical exponent s = dimX the quantity Hs(X) can be zero, infinite or
strictly positive and finite. In the latter case; i.e. when 0 < Hs(X) < ∞, the set
X is said to be an s-set.

3.2. Ubiquitous systems

We now describe the main tool used in proving the divergence case of Theorem 1;
the idea of a locally ubiquitous system. The set-up presented below is tailored
towards the current problem. The full notion of ubiquity is more general and
details can be found in [1] and [3].

Let ℜ = {Rq : q ∈ Zm \ {0}} be the family of subsets Rq := {X ∈ Imn :
qX = 0}. The sets Rq will be referred to as resonant sets. Let the function
β : Zm \ {0} → R+ : q → |q| attach a weight to the resonant set Rq. Given an
approximating function ψ and Rq, let

∆(Rq,Ψ(|q|)) := {X ∈ Imn : dist (X,Rq) 6 Ψ(|q|)}

where dist(X,Rq) := inf{|X − Y | : Y ∈ Rq}. Thus ∆(Rq,Ψ(|q|)) is a Ψ-
neighbourhood of Rq. Notice that in the case when the resonant sets are points
the sets ∆(Rq,Ψ(|q|)) are balls centred at the points q.

Let

Λ(m,n;ψ) = {X ∈ Imn : X ∈ ∆(Rq,Ψ(|q|)) for i.m. q ∈ Zm \ {0}}.

The set Λ(m,n;ψ) is a ‘limsup’ set. It is the set of points in Imn which lie in
infinitely many of the sets ∆(Rq,Ψ(|q|)). This is apparent if we restate Λ(m,n;ψ)
in a manner which emphasises its limsup structure. For any t ∈ N define

∆(ψ, t) :=
∪

2t−16|q|62t

∆(Rq,Ψ(|q|)). (1)

It follows that

Λ(m,n;ψ) = lim sup
t→∞

∆(ψ, t) =
∞∩
N=1

∞∪
t=N

∆(ψ, t). (2)

We now move onto the formal definition of a locally ubiquitous system. As
stated above the definition given is in a simplified form suitable for the problem at
hand. In the more abstract setting as developed in [1], there are specific conditions
that the measure on the ambient space needs to satisfy. These conditions are not
stated below as they hold trivially for Lebesgue measure, the measure on our
ambient space Imn, and stating the conditions would complicate the discussion
somewhat. Nevertheless the reader should be aware that in the more abstract
notion of ubiquity these extra conditions exist and need to be established.
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Let ρ : R+ → R+ be a function with ρ (r) → 0 as r → ∞ and let

∆̂ (ρ, t) :=
∪

q∈J(t)

∆
(
Rq, ρ

(
2t
))

where J(t) is defined to be the set

J(t) :=
{
q ∈ Zm \ {0} : |q| 6 2t

}
.

Definition 1. Let B := B (X, r) be an arbitrary ball with centre X ∈ Imn and
r 6 ro. Suppose there exists a function ρ and an absolute constant κ > 0 such that

|B ∩ ∆̂ (ρ, t) |mn > κ|B|mn for t > to (B) .

Then ℜ is said to be a locally ubiquitous system relative to ρ.

Loosely speaking the definition of local ubiquity says that the set ∆̂(ρ, t) locally
approximates the underlying space Imn in terms of the Lebesgue measure. The
function ρ, will be referred to as the ubiquity function. The actual value of the
constant κ in the above definition is irrelevant. It is the existence of such a constant
that is important. In practice the local ubiquity of a system can be established
using standard arguments concerning the distribution of the resonant sets in Imn
from which the function ρ arises naturally. Clearly if |∆̂ (ρ, t) |mn → 1 as t → ∞
then ℜ is locally ubiquitous.

A final definition is needed before we state a simplified version of Theorem 1
from [3], which will allow us to prove the divergence part of Theorem 1. A function
f will be said to be 2-regular if there exists a positive constant λ < 1 such that
for t sufficiently large

f(2t+1) 6 λf(2t).

Theorem 3. Suppose that ℜ is locally ubiquitous relative ρ and ψ is an approxima-
tion function. Let f be a dimension function such that r−δf(r) is non-increasing.
Furthermore suppose that r−γf(r) is increasing and ρ is 2-regular. Then

Hf (W0(m,n;ψ)) = Hf (Imn) if
∞∑
n=1

f(Ψ(2t))Ψ(2t)−γ

ρ(2t)δ−γ
= ∞.

3.3. Slicing

We now state a result which is the key ingredient in the proof of Theorem 2. The
result was used in [2] to prove the Hausdorff measure version of W. M. Schmidt’s
inhomogeneous linear forms theorem in metric number theory. The authors refer
to the technique as “slicing”. We will merely state the result. For a more detailed
discussion and proof see [2].

Before we state the theorem, it is necessary to introduce a little notation.
Suppose that V is a linear subspace of Ik, V ⊥ will be used to denote the linear
subspace of Ik orthogonal to V . Further, V + a := {v + a : v ∈ V } for a ∈ V ⊥.



The metrical theory of simultaneously small linear forms 175

Lemma 1. Let l, k ∈ N be such that l 6 k and let f and g : r → r−lf(r) be
dimension functions. Let B ⊂ Ik be a Borel set and let V be a (k− l)–dimensional
linear subspace of Ik. If, for a subset S of V ⊥ of positive Hl measure,

Hg (B ∩ (V + b)) = ∞ for all b ∈ S,

then Hf (B) = ∞.

We are now in a position to begin the proofs of Theorems 1 and 2.

4. Proof of Theorem 1

As stated above, the proof of Theorem 1 is split into two parts; the convergence
case and the divergence case. We begin with the convergence case.

4.1. The convergence case

Recall that in the statement of Theorem 1 we assumed that m > n and we imposed
some conditions on the dimension function f . As it turns out these conditions are
not needed for the convergence case and we can prove a less restrictive result which
has the added benefit of also implying the convergence case of Theorem 2.

Theorem 4. Let ψ be an approximating function and let f be a dimension func-
tion. If

∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 <∞,

then
Hf (W0 (m,n;ψ)) = 0.

Obviously Theorem 4 implies the convergence cases of Theorems 1 and 2.

Proof. To prove Theorem 4 we make use of the natural cover ofW0 (m,n;ψ) given
by Equations (1) and (2). It follows almost immediately that for each N ∈ N the
family  ∪

Rq:|q|=r

∆(Rq,Ψ(|q|)) : r = N,N + 1, . . .


is a cover for the set W0 (m,n;ψ). That is

W0 (m,n;ψ) ⊂
∪
r>N

∪
|q|=r

∆(Rq,Ψ(|q|))

for any N ∈ N.
Now, for each resonant set Rq, let ∆(q) be a collection of mn-dimensional

closed hypercubes C with disjoint interiors and side length Ψ(|q|) such that

C
∩ ∪

|q|=r

∆(Rq,Ψ(|q|)) ̸= ∅



176 Mumtaz Hussain, Jason Levesley

and
∆(Rq,Ψ(|q|)) ⊂

∪
C∈∆(q)

C.

Then
#∆(q) ≪ (Ψ(|q|))−(m−1)n

where # denotes cardinality. Note that

W0 (m,n;ψ) ⊂
∪
r>N

∪
|q|=r

∆(Rq,Ψ(|q|)) ⊂
∪
r>N

∪
q:|q|=r

∪
C∈∆(q)

C.

It follows that

Hf (W0 (m,n;ψ)) 6
∑
r>N

∑
∆(q):|q|=r

∑
C∈∆(q)

f(Ψ(|q|))

≪
∑
r>N

rm−1f (Ψ(r))Ψ(r)−(m−1)n → 0 as N → ∞,

and therefore Hf (W0 (m,n;ψ)) = 0, as required. �

4.2. The divergence case

When m > n, the divergence part of Theorem 1 relies on the notion of ubiquity,
as defined above, and primarily Theorem 3. To use ubiquity we must show that
ℜ is locally ubiquitous with respect to some suitable ubiquity function ρ.

In order to establish ubiquity two technical lemmas are needed. The first result
is due to Dickinson [5] and is an analogue of Dirichlet’s theorem.

Lemma 2. For each X ∈ Imn and any N ∈ N, there exists a non-zero integer
vector q in Zm with |q| 6 N such that

|qX| < mN−m
n +1.

The second lemma is essentially a slight modification of another result of Dick-
inson from the same paper. The key difference being the introduction of a function
ω instead of log. As the changes needed to prove the second result are minimal
we merely state the result here and refer the reader to the original proof as found
in [5].

Lemma 3. Let ω be a positive real increasing function such that 1
ω(t) → 0 as

t → ∞ and there exists C > 1 such that for t sufficiently large ω (2t) < Cω (t).
Then the family (ℜ, β) is locally ubiquitous with respect to the function ρ : N → R+

where ρ(t) = mN−m
n ω(N).

To apply Theorem 3, set δ = mn and γ = (m − 1)n. The sum in Theorem 3
becomes

∞∑
t=1

f(Ψ(2t))Ψ(2t)−(m−1)n(2t)mω(t)−n
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which is comparable to
∞∑
r=1

f (Ψ (r))Ψ (r)
−(m−1)n

rm−1ω (r)
−n

. (3)

To obtain the precise statement of Theorem 1 we need to remove the ω factor
from equation (3).

Firstly, note that if the sum in equation (3) diverges then so does the sum
∞∑
r=1

f (Ψ (r))Ψ (r)
−(m−1)n

rm−1 (4)

On the other hand, if the sum in equation (4) diverges, then there exists a strictly
increasing sequence of positive integers {ri}i∈N such that

∞∑
ri−16r6ri

f(Ψ(r))Ψ(r)−(m−1)nrm−1 > 1

and ri > 2ri−1. Define ω to be the step function ω(r) = i
1
n for ri−1 6 r 6 ri and

ω satisfies the required properties. This function was first introduced in [4]. With
ω defined as above, the convergence or otherwise of

∞∑
r=1

f (Ψ (r))Ψ (r)
−(m−1)n

rm−1ω (r)
−n

coincides with that of
∞∑
r=1

f (Ψ (r))Ψ (r)
−(m−1)n

rm−1

and Theorem 1 is proved.

5. Proof of Theorem 2

In view of Theorem 4 we need only prove the divergence part of Theorem 2.
The proof will be split into two sub-cases. The first, which we refer to as the
“infinite measure” case, is for dimension functions f with r−(m−1)(n+1)f(r) →
∞. The second case corresponds to f which satisfy r−(m−1)(n+1)f(r) → C
for some constant C > 0. In the latter case the measure is comparable to
(m − 1)(n + 1)-dimensional Lebesgue measure. We call this the “finite measure”
case. Before we begin the proof of Theorem 2 recall that W0(m,n;ψ) lies in
a manifold (hypersurface) Γ of dimension at most (m− 1)(n+ 1) if m 6 n.

Following [5] and the argument leading to Theorem 2, we restrict ourself to
X ∈ W0 (m,n;ψ) which has rank at most m − 1. It can be readily verified that
the set of X with a lower rank is of strictly lower dimension. Let

Ŵ0 (m,n;ψ) := {X ∈W0 (m,n;ψ) : X is of rank m− 1} ,
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and let A be the set of points of the formX(1), X(2), . . . , X(m−1),
m−1∑
j=1

a
(1)
j X(j), . . . ,

m−1∑
j=1

a
(n−m+1)
j X(j)

 ,

with (
X(1), X(2), . . . , X(m−1)

)
∈ Ŵ0(m,m− 1;ψ)

and a(i)j ∈
(
− 1
m−1 ,

1
m−1

)
for 1 6 i 6 (n−m+ 1).

It is straightforward to show that

A ⊆W0(m,n;ψ).

We now define the function

η : Ŵ0(m,m− 1, ψ)×
(
− 1

m− 1
,

1

m− 1

)(n−(m−1))(m−1)

→ A

by

η
(
X(1), X(2), . . . , X(m−1), a11, . . . , a

1
m−1, . . . , a

(n−(m−1))
1 , . . . , a

(n−(m−1))
m−1

)
=

X(1), X(2), . . . , X(m−1),

m−1∑
j=1

a
(1)
j X(j), . . . ,

m−1∑
j=1

a
(n−m+1)
j X(j)

 .

As in [5] it can be shown that η is an embedding and its range is diffeomorphic
to A. This in turn implies that η is (locally) bi-Lipschitz.

5.1. The infinite measure case

As mentioned above the proof of Theorem 2 is split into two parts. In this sec-
tion we concentrate on the infinite measure case which can be deduced from the
following lemma.

Lemma 4. Let m 6 n and ψ be an approximating function. Let f and g :
r → r−(n−(m−1))(m−1)f(r) be dimension functions with r−(m−1)(n+1)f(r) → ∞ as
r → 0. Further, let r−m(m−1)g(r) be non-increasing and r−(m−1)2g(r) be increas-
ing. If

∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 = ∞,

then
Hf (A) = ∞.
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Proof. As η is bi-Lipschitz, we have that

Hf (A) = Hf
(
η
(
Ŵ0(m,m− 1, ψ)× I(n−(m−1))(m−1)

))
≍ Hf

(
Ŵ0(m,m− 1, ψ)× I(n−(m−1))(m−1)

)
,

where I =
(
− 1
m−1 ,

1
m−1

)
∩I. The proof relies on the slicing technique of Lemma 1.

Let
B := Ŵ0(m,m− 1;ψ)× I(n−(m−1))(m−1) ⊆ I(m−1)(n+1)

and V be the space Im(m−1) × {0}(m−1)(n+1−m). As Ŵ0(m,m− 1;ψ) is a lim sup
set, B is a Borel set. Let S := {0}m(m−1) × I(n+1−m)(m−1). Clearly S is a subset
of V ⊥ and further it has positive H(n−(m−1))(m−1)-measure. Now, for each b ∈ S

Hg (B ∩ (V + b)) = Hg
(
(Ŵ0(m,m− 1;ψ)× I(n−(m−1))(m−1)) ∩ (V + b)

)
= Hg(Ŵ0(m,m− 1;ψ)× {0}(n+1−m)(m−1) + b)

≍ Hg
(
Ŵ0(m,m− 1;ψ)× {0}(n+1−m)(m−1)

)
Theorem 1

= ∞,

if
∞∑
r=1

g(Ψ(r))Ψ(r)−(m−1)2rm−1 = ∞.

Applying Lemma 1 and using the relation between f and g, it follows that
Hf (A) = ∞ if

∞∑
r=1

g(Ψ(r))Ψ(r)−(m−1)2rm−1 =
∞∑
r=1

f(Ψ(r))Ψ(r)(m−1)nrm−1 = ∞,

as required. �

As A ⊆ W0(m,n;ψ), Hf (A) = ∞ implies that Hf (W0(m,n;ψ)) = ∞. This
completes the proof of Theorem 2.

5.2. Finite measure case

We now come to the case where r−(m−1)(n+1)f(r) → C as r → 0 and C > 0 is
finite. In this case, Hf is comparable to (m − 1)(n + 1)-dimensional Lebesgue
measure and

∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 =
∞∑
r=1

ψm−1(r).

We begin with the following lemma. The proof of which can be found in [8]
and is a straightforward adaptation of Corollary 2.4 from [7].
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Lemma 5. Suppose that L ⊂ Rl, M ⊂ Rk and η : L → M is a bi-Lipschitz
transformation. Let f be a dimension function. Then for any C ⊆ L, Hf (C) ≍
Hf (η(C)).

In applying Lemma 5, we first note that∣∣∣Ŵ0(m,m− 1;ψ)× I(n−(m−1))(m−1)
∣∣∣
(m−1)(n+1)

≍ |A|(m−1)(n+1).

Corollary 2 implies that |Ŵ0(m,m − 1;ψ)|m(m−1) = 1. This result coupled with
an application of Fubini’s Theorem implies that the (m − 1)(n + 1)-dimensional
Lebesgue measure of A is positive and finite. Using Lemma 5 we can conclude
that the (m− 1)(n+ 1)-dimensional Lebesgue measure of W0 (m,n;ψ) is positive
and finite, as required.
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