A REMARK ON THE GOLDBACH-VINOGRADOV THEOREM

Yingchun Cai

Abstract

Let N denote a sufficiently large odd integer. In this paper it is proved that N can be represented as the sum of three primes, one of which is $\leqslant N^{\frac{11}{400}+\varepsilon}$ for any $\varepsilon>0$. This result constitutes an improvement upon that of K. C. Wong, who obtained the exponent $\frac{7}{216}$.

Keywords: prime, sieve, mean value theorem.

1. Introduction

In 1937 Vinogradov [9] proved that any sufficiently large odd integer can be represented as the sum of three primes, and this result was named the Goldbach--Vinogradov theorem. Afterwards, some authors engaged in the refinement of it. One result in this aspect is due to Pan [8], in 1959 he showed that for any sufficiently large odd integer, the equation

$$
\begin{equation*}
N=p_{1}+p_{2}+p_{3}, \quad p_{1} \leqslant U \tag{1.1}
\end{equation*}
$$

is solvable in primes p_{1}, p_{2}, p_{3}, where $U=N^{\frac{2 c}{2 c+1}+\varepsilon}$ and c is determined by $\zeta\left(\frac{1}{2}+i t\right) \ll(|t|+1)^{c}$. The classical result $c=\frac{1}{6}$ then provides us with $U=N^{\frac{1}{4}+\varepsilon}$.

In 1995 Zhan [11] improved Pan's result by showing that the equation (1.1) is solvable in primes p_{1}, p_{2}, p_{3} with $U=N^{\frac{7}{120}+\varepsilon}$. To explain the method in [11] let us put $y=N^{\theta_{1}}, U=y^{\theta_{2}}$ and $\mathcal{I}=(0.5 U, U], \mathcal{J}=(0.5 y, y], \mathcal{K}=(N-y, N]$. Then the arguments in [11] shows that a sieving process for almost all short intervals of the form $\left(x, x+x^{\theta_{2}}\right]$ enable us to prove that

$$
\begin{equation*}
\sum_{\substack{p_{1}+p_{2}+p_{3}=N \\ p_{1} \in \mathcal{I}, p_{2} \in \mathcal{J}, p_{3} \in \mathcal{K}}} 1 \gg \frac{y U}{\log ^{3} N} \tag{1.2}
\end{equation*}
$$

with $U=N^{\frac{7}{12} \theta_{2}}$, and Zhan's exponent $\frac{7}{120}$ follows from Harman's sieving process with $\theta_{2}=\frac{1}{10}+\varepsilon$ in [4].

In 1996, Wong [10] introduced a sieving process with exponent $\theta_{2}=\frac{1}{18}+\varepsilon$ and he got $U=N^{\frac{7}{216}+\varepsilon}$ in (1.1) upon replacing Harman's sieving process in the arguments in [11] by this one.

In 1996, Jia [6] constructed a sieving process with the exponent $\theta_{2}=\frac{1}{20}+\varepsilon$, and we can get $U=N^{\frac{7}{240}}+\varepsilon$ in (1.1) immediately by applying this sieving process in the arguments in [11] instead of that of Harman's.

The arguments in [11] for (1.2), sieved \mathcal{J} but not \mathcal{K} ". In [1] Baker, Harman and Pintz developed a vector sieve to show that for almost all even integers $2 n$ in the short interval $\left(x, x+x^{2 \theta_{1} \theta_{2}}\right]$ we have

$$
\begin{equation*}
\sum_{\substack{p_{1}+p_{2}=2 n \\ p_{1} \in \mathcal{J}^{\prime}, p_{2} \in \mathcal{K}^{\prime}}} 1>0, \tag{1.3}
\end{equation*}
$$

where $\mathcal{J}^{\prime}=\left(x^{\theta_{1}}, 2 x^{\theta_{1}}\right], \mathcal{K}^{\prime}=\left(x-2 x^{\theta_{1}}, x\right], \theta_{1}=\frac{11}{20}+\varepsilon, \theta_{2}=\frac{1}{16}+\varepsilon$. In their arguments they sieved both \mathcal{J}^{\prime} and \mathcal{K}^{\prime}.

In this paper, we shall show that the sieve process in [1] can be used to investigate the equation (1.1) and obtain the following sharper result
Theorem. The equation (1.1) is solvable in primes p_{1}, p_{2}, p_{3} with $U=N^{\frac{11}{400}+\varepsilon}$.
For comparison, we have

$$
\begin{aligned}
\frac{7}{120} & =0.058333 \cdots ; & \frac{7}{216}=0.032407 \cdots ; \\
\frac{7}{240} & =0.029166 \cdots ; & \frac{11}{400}=0.0275
\end{aligned}
$$

2. Some preliminary lemmas

In this paper, N always denotes a sufficiently large odd integer. Let $\varepsilon \in\left(0,10^{-10}\right)$ and A denote a sufficiently large constant. The constants in O-term and \ll-symbol depend at most on ε and A. The letter p, with or without subscript, is reserved for a prime number. As usual, $\varphi(n)$ denotes the Euler's function, and $\mu(n)$ denotes the Mőbius function. By $\rho(n)$ we denote the characteristic function of the set of prime numbers. We denote by $\pi(x)$ the number of primes up to x. We use $e(\alpha)$ to denote $e^{2 \pi i \alpha}$ and $e_{q}(\alpha)=e(\alpha / q)$. We denote by $\sum_{x(q) *}$ a sum with x running over a reduced system of residues modulo q. Let \mathbb{N} denote the set of positive integers. Put

$$
\begin{aligned}
& y=N^{\frac{11}{20}+\varepsilon}, \quad U=y^{\frac{1}{20}+\varepsilon}, \quad \tau=U \log ^{-8 A} N, \quad Q=\log ^{8 A} N, \\
& \mathcal{I}=(0.5 U, U] \cap \mathbb{N}, \quad \mathcal{J}=(0.5 y, y] \cap \mathbb{N}, \quad \mathcal{K}=(N-y, N] \cap \mathbb{N}, \\
& f(\alpha)=\sum_{p \in \mathcal{I}} e(\alpha p), \quad S(\alpha, x)=\sum_{\frac{x}{2}<n \leqslant x} \frac{e(\alpha n)}{\log n}, \quad T(\alpha, x)=\sum_{\frac{x}{2}<n \leqslant x} \frac{e(\alpha n)}{\log x}, \\
& C_{q}(n)=\sum_{a(q) *} e_{q}(a n), \quad \mathfrak{S}(N)=\sum_{q=1}^{\infty} \frac{\mu(q)}{\varphi^{3}(q)} C_{q}(-N) .
\end{aligned}
$$

Lemma 1. There exist sequences $a_{j}(n)(j=0,1)$ such that
(i) $a_{j}(n)=0$ unless $p \mid n \Rightarrow p>Q$;
(ii) $a_{0}(n) \leqslant \rho(n) \leqslant a_{1}(n) f_{2 A} r n \in \mathcal{J}$;
(iii) $\sum_{n \in \mathcal{J}}\left|a_{j}(n)\right|^{2} \ll y \log ^{2 A} N$;
(iv) $\int_{\frac{y}{2}}^{y}\left|\sum_{\substack{t<n \leqslant t+\tau \\ n=l(\bmod q)}} a_{j}(n)-\frac{u_{j} \tau}{\varphi(q) \log y}\right|^{2} d t \ll \frac{\tau^{2} y}{\log ^{40 A} N},(l, q)=1, q \leqslant Q$;
(v) $0.01456<u_{0}<1<u_{1}<2.70918$.

Proof. Let X be a sufficiently large real number and for $x \in(X, 2 X)$ set

$$
\begin{gathered}
\mathcal{A}^{(x)}=\{n \mid x<n \leqslant x+\eta x\}, \quad \eta=\frac{1}{2} X^{-\frac{19}{20}+\varepsilon}, \quad \delta=\varepsilon^{3}, \\
P(z)=\prod_{p<z} p, \quad S\left(\mathcal{A}^{(x)}, z\right)=\sum_{\substack{n \in \mathcal{A}(x) \\
(n, P(z))=1}} 1, \quad \mathcal{A}_{d}^{(x)}=\left\{a \mid a \in \mathcal{A}_{d}^{(x)}\right\} .
\end{gathered}
$$

Then we have

$$
\begin{equation*}
\pi(x+\eta x)-\pi(x)=\sum_{x<n \leqslant x+\eta x} \rho(n)=S\left(\mathcal{A}^{(x)},(2 X)^{\frac{1}{2}}\right) . \tag{2.1}
\end{equation*}
$$

By Buchstab's identity we obtain

$$
\begin{align*}
S\left(\mathcal{A}^{(x)},(2 X)^{\frac{1}{2}}\right) \geqslant & S\left(\mathcal{A}^{(x)}, X^{\frac{8}{95}}\right)-\sum_{X^{\frac{8}{95}}<p \leqslant(2 X)^{\frac{1}{2}}} S\left(\mathcal{A}_{p}^{(x)}, X^{\frac{8}{95}}\right) \\
& +\sum_{j=1}^{94} \sum_{\left(p_{1}, p_{2}\right) \in D_{j}} S\left(\mathcal{A}_{p_{1} p_{2}}^{(x)}, p_{1}\right) \tag{2.2}
\end{align*}
$$

and

$$
\begin{align*}
S\left(\mathcal{A}^{(x)},(2 X)^{\frac{1}{2}}\right) \leqslant & S\left(\mathcal{A}^{(x)}, X^{\frac{8}{95}}\right)-\sum_{X^{\frac{8}{95}}<p \leqslant X^{\frac{1}{4}}} S\left(\mathcal{A}_{p}^{(x)}, X^{\frac{8}{95}}\right) \\
& +\sum_{X^{\frac{8}{95}}<p_{1}<p_{2} \leqslant X^{\frac{1}{4}}} S\left(\mathcal{A}_{p_{1} p_{2}}^{(x)}, p_{1}\right) \tag{2.3}
\end{align*}
$$

where and below $D_{j}(1 \leqslant j \leqslant 94)$, defined in [6], are disjoint sub-domains of the domain $\left\{X^{\frac{8}{95}}<p_{1}<p_{2} \leqslant(2 X)^{\frac{1}{2}}\right\}$.

By the arguments in [6], except for a subset of $(X, 2 X)$ the measure of which is $O\left(X \log ^{-40 A} X\right)$, we have,

$$
\begin{equation*}
S\left(\mathcal{A}^{(x)},(2 X)^{\frac{1}{2}}\right)>0.01456 \frac{\eta x}{\log x} \tag{2.4}
\end{equation*}
$$

From (23) and Lemma 20 in [6] we get

$$
\begin{align*}
S\left(\mathcal{A}^{(x)}, X^{\frac{8}{95}}\right) & =\frac{85}{9} w\left(\frac{85}{9}\right) \frac{\eta x}{\log x}+O\left(\frac{\delta \eta x}{\log x}\right) \\
& <5.30495 \frac{\eta x}{\log x} \tag{2.5}
\end{align*}
$$

where and below $w(x)$ denotes the Buchstab's function.

By the arguments in the proof of Lemma 23 in [6] we obtain

$$
\begin{align*}
\sum_{X^{\frac{8}{95}}<p \leqslant X^{\frac{1}{4}}} S\left(\mathcal{A}_{p}^{(x)}, X^{\frac{8}{95}}\right) & =\frac{85}{9} \frac{\eta x}{\log x} \int_{\frac{9}{85}}^{\frac{1}{4}} \frac{1}{t} w\left(\frac{85}{9}(1-t)\right) d t+O\left(\frac{\delta \eta x}{\log x}\right) \\
& >4.55359 \frac{\eta x}{\log x} \tag{2.6}
\end{align*}
$$

The methods used from (29) to (32) in [6] provide us with

$$
\begin{align*}
& \sum_{X \frac{8}{95}<p_{1}<p_{2} \leqslant X^{\frac{1}{4}}} S\left(\mathcal{A}_{p_{1} p_{2}}^{(x)}, p_{1}\right) \\
& \leqslant \frac{85}{9} \frac{\eta x}{\log x} \int_{\frac{9}{85}}^{\frac{1}{4}} \frac{d t}{t} \int_{\frac{9}{85}}^{t} \frac{1}{u} w\left(\frac{85}{9}(1-t-u)\right) d u+O\left(\frac{\delta \eta x}{\log x}\right) \\
&<1.95782 \frac{\eta x}{\log x} . \tag{2.7}
\end{align*}
$$

From (2.3) and (2.5)-(2.7) we get

$$
\begin{equation*}
S\left(\mathcal{A}^{(x)},(2 X)^{\frac{1}{2}}\right)<2.70918 \frac{\eta x}{\log x} \tag{2.8}
\end{equation*}
$$

Let

$$
\rho(n, z)= \begin{cases}1, & \text { if } n \in \mathbb{N}, p \mid n \Rightarrow p \geqslant z \\ 0, & \text { otherwise }\end{cases}
$$

Then we have the Buchstab's identity

$$
\begin{equation*}
\rho(n, z)=\rho(n, w)-\sum_{w \leqslant p<z} \rho\left(\frac{n}{p}, p\right), \quad 2 \leqslant w<z \tag{2.9}
\end{equation*}
$$

For $n \in \mathcal{J}$, by (2.9) we have

$$
\begin{align*}
\rho(n) & \geqslant \rho\left(n, y^{\frac{9}{85}}\right)-\sum_{y^{\frac{9}{85}} \leqslant p<(2 y)^{\frac{1}{2}}} \rho\left(\frac{n}{p}, y^{\frac{9}{85}}\right)+\sum_{j=1}^{94} \sum_{\left(p_{1}, p_{2}\right) \in D_{j}} \rho\left(\frac{n}{p_{1} p_{2}}, p_{1}\right) \\
& =a_{0}(n) \tag{2.10}
\end{align*}
$$

and

$$
\begin{align*}
\rho(n) & \leqslant \rho\left(n, y^{\frac{9}{85}}\right)-\sum_{y^{\frac{9}{85}} \leqslant p<y^{\frac{1}{4}}} \rho\left(\frac{n}{p}, y^{\frac{9}{85}}\right)+\sum_{y^{\frac{8}{95}}<p_{1}<p_{2} \leqslant y^{\frac{1}{4}}} \rho\left(\frac{n}{p_{1} p_{2}}, p_{1}\right) \\
& =a_{1}(n), \tag{2.11}
\end{align*}
$$

which correspond to (2.2) and (2.3) respectively. Then it is easy to see that $a_{j}(n)$ satisfy the properties (i)-(iii).

By the arguments in [6] we know that

$$
\begin{equation*}
\sum_{t<n \leqslant t+\tau} a_{0}(n)-\frac{u_{0} \tau}{\log y} \tag{2.12}
\end{equation*}
$$

are actually the error terms in the sieve estimations in [6] and it was proved there that

$$
\begin{equation*}
\int_{\frac{y}{2}}^{y}\left|\sum_{t<n \leqslant t+\tau} a_{0}(n)-\frac{u_{0} \tau}{\log y}\right|^{2} d t \ll \tau^{2} y \log ^{-40 A} N \tag{2.13}
\end{equation*}
$$

By essentially the same method we can show that the inequality (iv) holds for $j=0$. By the same reason we have (iv) for $j=1$ also. At last, property (v) follows from (2.1)-(2.4) and (2.8) and the definitions of $a_{j}(n)$.

Lemma 2. There exist sequences $b_{j}(n)(j=0,1)$ such that
(i) $b_{j}(n)=0$ unless $p \mid n \Rightarrow p>Q$;
(ii) $b_{0}(n) \leqslant \rho(n) \leqslant b_{1}(n)$ for $n \in \mathcal{K}$;
(iii) $\sum_{n \in \mathcal{K}}\left|b_{j}(n)\right|^{2} \ll y \log ^{2 A} N$;
(iv) $\left|\sum_{\substack{n \in \mathcal{K} \\ n \equiv l(\bmod q)}} b_{j}(n)-\frac{v_{j} y}{\varphi(q) \log N}\right| \ll \frac{y}{\log ^{401} N}, \quad(l, q)=1, q \leqslant Q$;
(v) $0.9953<v_{0}<1<v_{1}<1.0001$.

Proof. In the case $Q=1$, the required sequences are constructed in [1] which satisfy the properties (i)-(iii) and (v). It can be showed that they satisfy property (iv) by essentially the same methods as those used in [1], see also [5, 7].

For $(a, q)=1,1 \leqslant a \leqslant q$ let

$$
\begin{aligned}
\mathfrak{M}(q, a) & =\left(\frac{a}{q}-\frac{1}{\tau}, \frac{a}{q}+\frac{1}{\tau}\right], \\
\mathfrak{M} & =\bigcup_{1 \leqslant q \leqslant Q} \bigcup_{\substack{1 \leqslant a \leqslant q \\
(a, q)=1}} \mathfrak{M}(q, a), \\
\mathfrak{m} & =\left(-\frac{1}{\tau}, 1-\frac{1}{\tau}\right] \backslash \mathfrak{M} .
\end{aligned}
$$

Then we have the Farey dissection

$$
\begin{equation*}
\left(-\frac{1}{\tau}, 1-\frac{1}{\tau}\right]=\mathfrak{M} \cup \mathfrak{m} . \tag{2.14}
\end{equation*}
$$

Lemma 3 ([2]). We have
(i) $f(\alpha) \ll U \log ^{-3 A} N, \quad \alpha \in \mathfrak{m}$,
(ii) $f(\alpha)=\frac{\mu(q)}{\varphi(q)} S(\lambda, U)+O\left(U \exp \left(-\log ^{\frac{1}{3}} N\right)\right), \alpha=\frac{a}{q}+\lambda \in \mathfrak{M}(q, a)$.

3. Proof of Theorem

For the proof of the theorem let us consider the sum

$$
S(N)=\sum_{\substack{p_{1}+p_{2}+p_{3}=N \\ p_{1} \in \mathcal{I}, p_{2} \in \mathcal{J}, p_{3} \in \mathcal{K}}} 1=\sum_{\substack{p+n_{1}+n_{2}=N \\ p \in \mathcal{I}, n_{1} \in \mathcal{J}, n_{2} \in \mathcal{K}}} \rho\left(n_{1}\right) \rho\left(n_{2}\right) .
$$

Let the sequences $a_{j}(n), b_{j}(n)(j=0,1)$ be those provided by Lemma 1 and Lemma 2 respectively and

$$
g_{j}(\alpha)=\sum_{n \in \mathcal{J}} a_{j}(n) e(\alpha n), \quad h_{k}(\alpha)=\sum_{n \in \mathcal{K}} b_{k}(n) e(\alpha n) .
$$

By the inequality

$$
\rho\left(n_{1}\right) \rho\left(n_{2}\right) \geqslant a_{0}\left(n_{1}\right) b_{1}\left(n_{2}\right)+a_{1}\left(n_{1}\right) b_{0}\left(n_{2}\right)-a_{1}\left(n_{1}\right) b_{1}\left(n_{2}\right)
$$

for which see Lemma 10.1 in [5], we have

$$
\begin{equation*}
S(N) \geqslant S_{0,1}(N)+S_{1,0}(N)-S_{1,1}(N) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{j, k}(N)=\sum_{\substack{p+n_{1}+n_{2}=N \\ p \in \mathcal{I}, n_{1} \in \mathcal{J}, n_{2} \in \mathcal{K}}} a_{j}\left(n_{1}\right) b_{k}\left(n_{2}\right) . \tag{3.2}
\end{equation*}
$$

By the Farey dissection (2.14) we have

$$
\begin{equation*}
S_{j, k}(N)=\int_{-\frac{1}{\tau}}^{1-\frac{1}{\tau}} f(\alpha) g_{j}(\alpha) h_{k}(\alpha) e(-\alpha N) d \alpha=\int_{\mathfrak{M}}+\int_{\mathfrak{m}} \tag{3.3}
\end{equation*}
$$

It follows from Lemma 3(i) and Cauchy's inequality that

$$
\begin{align*}
\int_{\mathfrak{m}} & \ll \frac{U}{\log ^{3 A} N}\left(\int_{0}^{1}\left|g_{j}(\alpha)\right|^{2} d \alpha\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|h_{k}(\alpha)\right|^{2} d \alpha\right)^{\frac{1}{2}} \\
& \ll \frac{U}{\log ^{3 A} N}\left(\sum_{n \in \mathcal{J}}\left|a_{j}(n)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n \in \mathcal{K}}\left|b_{k}(n)\right|^{2}\right)^{\frac{1}{2}} \\
& \ll \frac{U y}{\log ^{A} N}, \tag{3.4}
\end{align*}
$$

where the bounds in Lemma 1(iii) and Lemma 2(iii) are used.

By Lemma 3(ii) we obtain

$$
\begin{align*}
\int_{\mathfrak{M}(q, a)}= & \frac{\mu(q)}{\varphi(q)} \int_{-\frac{1}{\tau}}^{\frac{1}{\tau}} S(\lambda, U) g_{j}\left(\frac{a}{q}+\lambda\right) h_{k}\left(\frac{a}{q}+\lambda\right) e\left(-\left(\frac{a}{q}+\lambda\right) N\right) d \lambda \\
& +O\left(U \exp \left(-\log ^{\frac{1}{3}} N\right) \int_{0}^{1}\left|g_{j}(\alpha)\right|\left|h_{k}(\alpha)\right| d \alpha\right) \\
= & \frac{\mu^{2}(q) u_{j}}{\varphi^{2}(q)} \int_{-\frac{1}{\tau}}^{\frac{1}{\tau}} S(\lambda, U) T(\lambda, y) h_{k}\left(\frac{a}{q}+\lambda\right) e\left(-\left(\frac{a}{q}+\lambda\right) N\right) d \lambda \\
& +O\left(\frac{1}{\varphi(q)} \int_{-\frac{1}{\tau}}^{\frac{1}{\tau}}|S(\lambda, U)|\left|g_{j}\left(\frac{a}{q}+\lambda\right)-\frac{\mu(q) u_{j}}{\varphi(q)} T(\lambda, y)\right|\right. \\
& \left.\times\left|h_{k}\left(\frac{a}{q}+\lambda\right)\right| d \lambda\right)+O\left(\frac{U y}{\log ^{20 A} N}\right) \\
= & I_{1}(q, a)+O\left(I_{2}(q, a)\right)+O\left(\frac{U y}{\log ^{20 A} N}\right) \tag{3.5}
\end{align*}
$$

where the arguments which lead to (3.4) are applied.
From the trivial bound $S(\lambda, U) \ll U$, Cauchy's inequality and Gallagher's inequality in [3] we obtain

$$
\begin{align*}
I_{2}(q, a) & \ll \frac{U}{\varphi(q)}\left(\int_{-\frac{1}{\tau}}^{\frac{1}{\tau}}\left|g_{j}\left(\frac{a}{q}+\lambda\right)-\frac{\mu(q) u_{j}}{\varphi(q)} T(\lambda, y)\right|^{2} d \lambda\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|h_{k}(\alpha)\right|^{2} d \alpha\right)^{\frac{1}{2}} \\
& \ll \frac{U y^{\frac{1}{2}} \log ^{A} N}{\varphi(q) \tau}\left(\int_{\frac{y}{2}}^{y}\left|\sum_{t<n \leqslant t+\tau} a_{j}(n) e_{q}(a n)-\frac{\mu(q) u_{j} \tau}{\varphi(q) \log y}\right|^{2} d t\right)^{\frac{1}{2}} \\
& \ll \frac{U y^{\frac{1}{2}} \log ^{A} N}{\tau}\left(\max _{(l, q)=1} \int_{\frac{y}{2}}^{y}\left|\sum_{\substack{t<n \leqslant t+\tau \\
n \equiv l(\bmod q)}} a_{j}(n)-\frac{u_{j} \tau}{\varphi(q) \log y}\right|^{2} d t\right)^{\frac{1}{2}} \\
& \ll \frac{U y}{\log ^{18 A} N} . \tag{3.6}
\end{align*}
$$

Now

$$
\begin{align*}
I_{1}(q, a)= & \frac{\mu^{2}(q) u_{j}}{\varphi^{2}(q)} \int_{-\frac{1}{2}}^{\frac{1}{2}} S(\lambda, U) T(\lambda, y) h_{k}\left(\frac{a}{q}+\lambda\right) e\left(-\left(\frac{a}{q}+\lambda\right) N\right) d \lambda \\
& +O\left(\frac{1}{\varphi^{2}(q)} \int_{\frac{1}{\tau}}^{\frac{1}{2}}\left|S(\lambda, U) T(\lambda, y) h_{k}\left(\frac{a}{q}+\lambda\right)\right| d \lambda\right) \\
= & I_{1}^{(1)}(q, a)+O\left(I_{1}^{(2)}(q, a)\right) \tag{3.7}
\end{align*}
$$

By the trivial bound $S(\lambda, U) \ll \lambda^{-1}$ we get

$$
\begin{align*}
I_{1}^{(2)}(q, a) & \ll \frac{\tau}{\varphi^{2}(q)}\left(\int_{0}^{1}|T(\lambda, y)|^{2} d \lambda\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|h_{k}(\lambda)\right|^{2} d \lambda\right)^{\frac{1}{2}} \\
& \ll \frac{U y}{\varphi^{2}(q) \log ^{6 A} N} . \tag{3.8}
\end{align*}
$$

It is easy to see that

$$
\begin{align*}
I_{1}^{(1)}(q, a)= & \frac{\mu^{2}(q) u_{j}}{\varphi^{2}(q)} \sum_{\substack{n_{1}+n_{2}+n_{3}=N \\
n_{1} \in \mathcal{I}, n_{2} \in \mathcal{J}, n_{3} \in \mathcal{K}}} \frac{b_{k}\left(n_{3}\right)}{\log n_{1} \log y} e_{q}\left(a\left(n_{3}-N\right)\right) \\
= & \frac{\mu^{2}(q) u_{j}}{\varphi^{2}(q)} \sum_{n_{3} \in \mathcal{K}} b_{k}\left(n_{3}\right) e_{q}\left(a\left(n_{3}-N\right)\right) \sum_{\substack{n_{1}+n_{2}=N-n_{3} \\
n_{1} \in \mathcal{T}, n_{2} \in \mathcal{J}}} \frac{1}{\log n_{1} \log y} \\
= & \left(1+O\left(\frac{1}{\log N}\right)\right) \frac{\mu^{2}(q) u_{j} U}{\varphi^{2}(q) \log U \log y} \sum_{n \in \mathcal{K}} b_{k}(n) e_{q}(a(n-N)) \\
= & \left(1+O\left(\frac{1}{\log N}\right)\right) \frac{\mu^{2}(q) u_{j} U}{\varphi^{2}(q) \log U \log y} \sum_{l(q) *} e_{q}(a(l-N)) \sum_{\substack{n \in \mathcal{K} \\
n \equiv l \bmod q)}} b_{k}(n) \\
= & \left(1+O\left(\frac{1}{\log N}\right)\right) \frac{\mu(q) u_{j} v_{k} U y}{\varphi^{3}(q) \log U \log y \log N} e_{q}(-a N) \\
& +O\left(\frac{U y}{\log ^{20 A} N}\right), \tag{3.9}
\end{align*}
$$

where Lemma 2(iv) is used.
From (3.5)-(3.9) we have

$$
\begin{align*}
\int_{\mathfrak{M}} & =\sum_{1 \leqslant q \leqslant Q} \sum_{\substack{1 \leqslant a \leqslant q \\
(a, q)=1}} \int_{\mathfrak{M}(q, a)} \\
& =\left(1+O\left(\frac{1}{\log N}\right)\right) \frac{u_{j} v_{k} U y}{\log U \log y \log N} \sum_{1 \leqslant q \leqslant Q} \frac{\mu(q) C_{q}(-N)}{\varphi^{3}(q)}+O\left(\frac{U y}{\log ^{A} N}\right) \\
& =\left(1+O\left(\frac{1}{\log N}\right)\right) \frac{u_{j} v_{k} U y \mathfrak{S}(N)}{\log U \log y \log N}+O\left(\frac{U y}{Q}\right)+O\left(\frac{U y}{\log ^{A} N}\right) \\
& =\frac{u_{j} v_{k} U y \mathfrak{S}(N)}{\log U \log y \log N}+O\left(\frac{U y}{\log ^{4} N}\right) . \tag{3.10}
\end{align*}
$$

It follows from (3.3)-(3.4) and (3.10) that

$$
\begin{equation*}
S_{j, k}(N)=\frac{u_{j} v_{k} U y \mathfrak{S}(N)}{\log U \log y \log N}+O\left(\frac{U y}{\log ^{4} N}\right) \tag{3.11}
\end{equation*}
$$

By (3.1), (3.11), Lemma 1(v) and Lemma 2(v), we have

$$
\begin{align*}
S(N) & \geqslant S_{0,1}(N)+S_{1,0}(N)-S_{1,1}(N) \\
& =\left(u_{0} v_{1}+u_{1} v_{0}-u_{1} v_{1}\right) \frac{U y \mathfrak{S}(N)}{\log U \log y \log N}+O\left(\frac{U y}{\log ^{4} N}\right) \\
& >\frac{0.0015 U y \mathfrak{S}(N)}{\log U \log y \log N} \gg \frac{U y \mathfrak{S}(N)}{\log U \log y \log N}, \tag{3.12}
\end{align*}
$$

where the well-known fact $\mathfrak{S}(N)>\frac{1}{2}$ is used. Now by (3.12) the proof of the theorem is completed.

References

[1] R.C. Baker, G. Harman and J. Pintz, The exceptional set for Goldbach's problem in short intervals, in: Sieves, Exponetial Sums and Their Applications in Number Theory, 1-54, Cambridge University Press, 1997.
[2] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, Berlin, 1980.
[3] P.X. Gallagher, A large sieve density estimate near $\sigma=1$, Invent. Math. 11 (1970), 329-339.
[4] G. Harman, Primes in short intervals, Math. Z. 180 (1982), no. 3, 335-348.
[5] G. Harman, Prime-Detecting Sieves, Princeton Press, 2007.
[6] C.H. Jia, Almost all short intervals containing prime numbers, Acta Arith. 76 (1996), 21-84.
[7] A. Kumchev, The difference between consecutive primes in an arithmetic progression, Quart. J. Math. 53 (2002), 479-501.
[8] C.D. Pan, Some new results in additive number theory, Acta Math Sinica. 9 (1959), 315-329.
[9] I.M. Vinogradov, Representation of an odd integer as a sum of three primes, Dokl. Akad. Hauk. SSSR. 15 (1937), 169-172.
[10] K.C. Wong, Contribution to analytic number theory, Ph. Thesis, Cardiff, 1996.
[11] T. Zhan, A generalization of the Goldbach-Vinogradov theorem, Acta Arith. LXXI. 2 (1995), 95-106.

Address: Yingchun Cai: Department of Mathematics, Tongji University, Shanghai, 200092, P.R. China.

E-mail: yingchuncai@mail.tongji.edu.cn
Received: 27 December 2011

