
Functiones et Approximatio
48.1 (2013), 123–131
doi: 10.7169/facm/2013.48.1.10

A REMARK ON THE GOLDBACH-VINOGRADOV THEOREM

Yingchun Cai

Abstract: Let N denote a sufficiently large odd integer. In this paper it is proved that N can
be represented as the sum of three primes, one of which is 6 N

11
400

+ε for any ε > 0. This result
constitutes an improvement upon that of K. C. Wong, who obtained the exponent 7

216
.
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1. Introduction

In 1937 Vinogradov [9] proved that any sufficiently large odd integer can be rep-
resented as the sum of three primes, and this result was named the Goldbach-
–Vinogradov theorem. Afterwards, some authors engaged in the refinement of
it. One result in this aspect is due to Pan [8], in 1959 he showed that for any
sufficiently large odd integer, the equation

N = p1 + p2 + p3, p1 6 U (1.1)

is solvable in primes p1, p2, p3, where U = N
2c

2c+1+ε and c is determined by
ζ( 12 + it)≪ (|t|+1)c. The classical result c = 1

6 then provides us with U = N
1
4+ε.

In 1995 Zhan [11] improved Pan’s result by showing that the equation (1.1) is
solvable in primes p1, p2, p3 with U = N

7
120+ε. To explain the method in [11] let

us put y = Nθ1 , U = yθ2 and I = (0.5U,U ], J = (0.5y, y], K = (N − y,N ]. Then
the arguments in [11] shows that a sieving process for almost all short intervals of
the form (x, x+ xθ2 ] enable us to prove that∑

p1+p2+p3=N
p1∈I,p2∈J ,p3∈K

1≫ yU

log3N
(1.2)

with U = N
7
12 θ2 , and Zhan’s exponent 7

120 follows from Harman’s sieving process
with θ2 = 1

10 + ε in [4].
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In 1996, Wong [10] introduced a sieving process with exponent θ2 = 1
18 + ε

and he got U = N
7

216+ε in (1.1) upon replacing Harman’s sieving process in the
arguments in [11] by this one.

In 1996, Jia [6] constructed a sieving process with the exponent θ2 = 1
20 + ε,

and we can get U = N
7

240+ε in (1.1) immediately by applying this sieving process
in the arguments in [11] instead of that of Harman’s.

The arguments in [11] for (1.2) „sieved J but not K”. In [1] Baker, Harman
and Pintz developed a vector sieve to show that for almost all even integers 2n in
the short interval (x, x+ x2θ1θ2 ] we have∑

p1+p2=2n

p1∈J′,p2∈K′

1 > 0, (1.3)

where J ′ = (xθ1 , 2xθ1 ],K′ = (x − 2xθ1 , x], θ1 = 11
20 + ε, θ2 = 1

16 + ε. In their
arguments they sieved both J ′ and K′.

In this paper, we shall show that the sieve process in [1] can be used to inves-
tigate the equation (1.1) and obtain the following sharper result

Theorem. The equation (1.1) is solvable in primes p1, p2, p3 with U = N
11
400+ε.

For comparison, we have

7

120
= 0.058333 · · · ; 7

216
= 0.032407 · · · ;

7

240
= 0.029166 · · · ; 11

400
= 0.0275.

2. Some preliminary lemmas

In this paper, N always denotes a sufficiently large odd integer. Let ε ∈ (0, 10−10)
and A denote a sufficiently large constant. The constants in O-term and≪-symbol
depend at most on ε and A. The letter p, with or without subscript, is reserved for
a prime number. As usual, φ(n) denotes the Euler’s function, and µ(n) denotes
the Mőbius function. By ρ(n) we denote the characteristic function of the set of
prime numbers. We denote by π(x) the number of primes up to x. We use e(α) to
denote e2πiα and eq(α) = e(α/q). We denote by

∑
x(q)∗ a sum with x running over

a reduced system of residues modulo q. Let N denote the set of positive integers.
Put

y = N
11
20+ε, U = y

1
20+ε, τ = U log−8AN, Q = log8AN,

I = (0.5U,U ] ∩ N, J = (0.5y, y] ∩ N, K = (N − y,N ] ∩ N,

f(α) =
∑
p∈I

e(αp), S(α, x) =
∑

x
2<n6x

e(αn)

log n
, T (α, x) =

∑
x
2<n6x

e(αn)

log x
,

Cq(n) =
∑
a(q)∗

eq(an), S(N) =

∞∑
q=1

µ(q)

φ3(q)
Cq(−N).
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Lemma 1. There exist sequences aj(n)(j = 0, 1) such that
(i) aj(n) = 0 unless p|n⇒ p > Q;
(ii) a0(n) 6 ρ(n) 6 a1(n) for n ∈ J ;
(iii)

∑
n∈J |aj(n)|2 ≪ y log2AN ;

(iv)
∫ y

y
2

∣∣∣∑ t<n6t+τ
n≡l( mod q)

aj(n)− ujτ
φ(q) log y

∣∣∣2 dt≪ τ2y
log40A N

, (l, q) = 1, q 6 Q;
(v) 0.01456 < u0 < 1 < u1 < 2.70918.

Proof. Let X be a sufficiently large real number and for x ∈ (X, 2X) set

A(x) = {n|x < n 6 x+ ηx}, η =
1

2
X− 19

20+ε, δ = ε3,

P (z) =
∏
p<z

p, S(A(x), z) =
∑

n∈A(x)

(n,P (z))=1

1, A(x)
d = {a|a ∈ A(x)

d }.

Then we have

π(x+ ηx)− π(x) =
∑

x<n6x+ηx

ρ(n) = S(A(x), (2X)
1
2 ). (2.1)

By Buchstab’s identity we obtain

S(A(x), (2X)
1
2 ) > S(A(x), X

8
95 )−

∑
X

8
95 <p6(2X)

1
2

S(A(x)
p , X

8
95 )

+
94∑
j=1

∑
(p1,p2)∈Dj

S(A(x)
p1p2

, p1), (2.2)

and

S(A(x), (2X)
1
2 ) 6 S(A(x), X

8
95 )−

∑
X

8
95 <p6X

1
4

S(A(x)
p , X

8
95 )

+
∑

X
8
95 <p1<p26X

1
4

S(A(x)
p1p2

, p1), (2.3)

where and below Dj(1 6 j 6 94), defined in [6], are disjoint sub-domains of the
domain {X 8

95 < p1 < p2 6 (2X)
1
2 }.

By the arguments in [6], except for a subset of (X, 2X) the measure of which
is O(X log−40AX), we have,

S(A(x), (2X)
1
2 ) > 0.01456

ηx

log x
. (2.4)

From (23) and Lemma 20 in [6] we get

S(A(x), X
8
95 ) =

85

9
w

(
85

9

)
ηx

log x
+O

(
δηx

log x

)
< 5.30495

ηx

log x
, (2.5)

where and below w(x) denotes the Buchstab’s function.
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By the arguments in the proof of Lemma 23 in [6] we obtain

∑
X

8
95 <p6X

1
4

S(A(x)
p , X

8
95 ) =

85

9

ηx

log x

∫ 1
4

9
85

1

t
w

(
85

9
(1− t)

)
dt+O

(
δηx

log x

)

> 4.55359
ηx

log x
. (2.6)

The methods used from (29) to (32) in [6] provide us with∑
X

8
95 <p1<p26X

1
4

S(A(x)
p1p2

, p1)

6 85

9

ηx

log x

∫ 1
4

9
85

dt

t

∫ t

9
85

1

u
w

(
85

9
(1− t− u)

)
du+O

(
δηx

log x

)
< 1.95782

ηx

log x
. (2.7)

From (2.3) and (2.5)–(2.7) we get

S(A(x), (2X)
1
2 ) < 2.70918

ηx

log x
. (2.8)

Let

ρ(n, z) =

{
1, if n ∈ N, p|n⇒ p > z;

0, otherwise .

Then we have the Buchstab’s identity

ρ(n, z) = ρ(n,w)−
∑

w6p<z

ρ

(
n

p
, p

)
, 2 6 w < z. (2.9)

For n ∈ J , by (2.9) we have

ρ(n) > ρ(n, y
9
85 )−

∑
y

9
85 6p<(2y)

1
2

ρ

(
n

p
, y

9
85

)
+

94∑
j=1

∑
(p1,p2)∈Dj

ρ

(
n

p1p2
, p1

)
= a0(n) (2.10)

and

ρ(n) 6 ρ(n, y
9
85 )−

∑
y

9
85 6p<y

1
4

ρ

(
n

p
, y

9
85

)
+

∑
y

8
95 <p1<p26y

1
4

ρ

(
n

p1p2
, p1

)
= a1(n), (2.11)

which correspond to (2.2) and (2.3) respectively. Then it is easy to see that aj(n)
satisfy the properties (i)-(iii).



A remark on the Goldbach-Vinogradov theorem 127

By the arguments in [6] we know that∑
t<n6t+τ

a0(n)−
u0τ

log y
(2.12)

are actually the error terms in the sieve estimations in [6] and it was proved there
that

∫ y

y
2

∣∣∣∣∣∣
∑

t<n6t+τ

a0(n)−
u0τ

log y

∣∣∣∣∣∣
2

dt≪ τ2y log−40AN. (2.13)

By essentially the same method we can show that the inequality (iv) holds for
j = 0. By the same reason we have (iv) for j = 1 also. At last, property (v)
follows from (2.1)-(2.4) and (2.8) and the definitions of aj(n). �

Lemma 2. There exist sequences bj(n)(j = 0, 1) such that

(i) bj(n) = 0 unless p|n⇒ p > Q;
(ii) b0(n) 6 ρ(n) 6 b1(n) for n ∈ K;
(iii)

∑
n∈K |bj(n)|2 ≪ y log2AN ;

(iv)
∣∣∣∑ n∈K

n≡l( mod q)
bj(n)− vjy

φ(q) logN

∣∣∣≪ y
log40A N

, (l, q) = 1, q 6 Q;

(v) 0.9953 < v0 < 1 < v1 < 1.0001.

Proof. In the case Q = 1, the required sequences are constructed in [1] which
satisfy the properties (i)-(iii) and (v). It can be showed that they satisfy property
(iv) by essentially the same methods as those used in [1], see also [5, 7]. �

For (a, q) = 1, 1 6 a 6 q let

M(q, a) =

(
a

q
− 1

τ
,
a

q
+

1

τ

]
,

M =
∪

16q6Q

∪
16a6q
(a,q)=1

M(q, a),

m =

(
−1

τ
, 1− 1

τ

]\
M.

Then we have the Farey dissection(
−1

τ
, 1− 1

τ

]
= M ∪m. (2.14)

Lemma 3 ([2]). We have

(i) f(α)≪ U log−3AN, α ∈ m,
(ii) f(α) = µ(q)

φ(q)S(λ,U) +O(U exp(− log
1
3 N)), α = a

q + λ ∈M(q, a).
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3. Proof of Theorem

For the proof of the theorem let us consider the sum

S(N) =
∑

p1+p2+p3=N
p1∈I,p2∈J ,p3∈K

1 =
∑

p+n1+n2=N
p∈I,n1∈J ,n2∈K

ρ(n1)ρ(n2).

Let the sequences aj(n), bj(n)(j = 0, 1) be those provided by Lemma 1 and Lemma
2 respectively and

gj(α) =
∑
n∈J

aj(n)e(αn), hk(α) =
∑
n∈K

bk(n)e(αn).

By the inequality

ρ(n1)ρ(n2) > a0(n1)b1(n2) + a1(n1)b0(n2)− a1(n1)b1(n2)

for which see Lemma 10.1 in [5], we have

S(N) > S0,1(N) + S1,0(N)− S1,1(N), (3.1)

where

Sj,k(N) =
∑

p+n1+n2=N
p∈I,n1∈J ,n2∈K

aj(n1)bk(n2). (3.2)

By the Farey dissection (2.14) we have

Sj,k(N) =

∫ 1− 1
τ

− 1
τ

f(α)gj(α)hk(α)e(−αN)dα =

∫
M

+

∫
m

. (3.3)

It follows from Lemma 3(i) and Cauchy’s inequality that

∫
m

≪ U

log3AN

(∫ 1

0

|gj(α)|2dα
) 1

2
(∫ 1

0

|hk(α)|2dα
) 1

2

≪ U

log3AN

(∑
n∈J
|aj(n)|2

) 1
2
(∑

n∈K
|bk(n)|2

) 1
2

≪ Uy

logAN
, (3.4)

where the bounds in Lemma 1(iii) and Lemma 2(iii) are used.
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By Lemma 3(ii) we obtain∫
M(q,a)

=
µ(q)

φ(q)

∫ 1
τ

− 1
τ

S(λ,U)gj

(
a

q
+ λ

)
hk

(
a

q
+ λ

)
e

(
−
(
a

q
+ λ

)
N

)
dλ

+O

(
U exp(− log

1
3 N)

∫ 1

0

|gj(α)||hk(α)|dα
)

=
µ2(q)uj
φ2(q)

∫ 1
τ

− 1
τ

S(λ,U)T (λ, y)hk

(
a

q
+ λ

)
e

(
−
(
a

q
+ λ

)
N

)
dλ

+O

(
1

φ(q)

∫ 1
τ

− 1
τ

|S(λ,U)|
∣∣∣∣gj (aq + λ

)
− µ(q)uj

φ(q)
T (λ, y)

∣∣∣∣
×
∣∣∣∣hk (aq + λ

)∣∣∣∣ dλ)+O

(
Uy

log20AN

)
= I1(q, a) +O(I2(q, a)) +O

(
Uy

log20AN

)
, (3.5)

where the arguments which lead to (3.4) are applied.
From the trivial bound S(λ,U) ≪ U , Cauchy’s inequality and Gallagher’s

inequality in [3] we obtain

I2(q, a)≪
U

φ(q)

(∫ 1
τ

− 1
τ

∣∣∣∣gj (aq + λ

)
− µ(q)uj

φ(q)
T (λ, y)

∣∣∣∣2 dλ
) 1

2 (∫ 1

0

|hk(α)|2dα
) 1

2

≪ Uy
1
2 logAN

φ(q)τ

∫ y

y
2

∣∣∣∣∣∣
∑

t<n6t+τ

aj(n)eq(an)−
µ(q)ujτ

φ(q) log y

∣∣∣∣∣∣
2

dt


1
2

≪ Uy
1
2 logAN

τ

 max
(l,q)=1

∫ y

y
2

∣∣∣∣∣∣∣
∑

t<n6t+τ
n≡l( mod q)

aj(n)−
ujτ

φ(q) log y

∣∣∣∣∣∣∣
2

dt


1
2

≪ Uy

log18AN
. (3.6)

Now

I1(q, a) =
µ2(q)uj
φ2(q)

∫ 1
2

− 1
2

S(λ,U)T (λ, y)hk

(
a

q
+ λ

)
e

(
−
(
a

q
+ λ

)
N

)
dλ

+O

(
1

φ2(q)

∫ 1
2

1
τ

∣∣∣∣S(λ,U)T (λ, y)hk

(
a

q
+ λ

)∣∣∣∣ dλ
)

= I
(1)
1 (q, a) +O(I

(2)
1 (q, a)). (3.7)
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By the trivial bound S(λ,U)≪ λ−1 we get

I
(2)
1 (q, a)≪ τ

φ2(q)

(∫ 1

0

|T (λ, y)|2dλ
) 1

2
(∫ 1

0

|hk(λ)|2dλ
) 1

2

≪ Uy

φ2(q) log6AN
. (3.8)

It is easy to see that

I
(1)
1 (q, a) =

µ2(q)uj
φ2(q)

∑
n1+n2+n3=N

n1∈I,n2∈J ,n3∈K

bk(n3)

log n1 log y
eq(a(n3 −N))

=
µ2(q)uj
φ2(q)

∑
n3∈K

bk(n3)eq(a(n3 −N))
∑

n1+n2=N−n3
n1∈I,n2∈J

1

logn1 log y

=

(
1 +O

(
1

logN

))
µ2(q)ujU

φ2(q) logU log y

∑
n∈K

bk(n)eq(a(n−N))

=

(
1 +O

(
1

logN

))
µ2(q)ujU

φ2(q) logU log y

∑
l(q)∗

eq(a(l −N))
∑
n∈K

n≡l( mod q)

bk(n)

=

(
1 +O

(
1

logN

))
µ(q)ujvkUy

φ3(q) logU log y logN
eq(−aN)

+O

(
Uy

log20AN

)
, (3.9)

where Lemma 2(iv) is used.
From (3.5)-(3.9) we have∫
M

=
∑

16q6Q

∑
16a6q
(a,q)=1

∫
M(q,a)

=

(
1 +O

(
1

logN

))
ujvkUy

logU log y logN

∑
16q6Q

µ(q)Cq(−N)

φ3(q)
+O

(
Uy

logAN

)

=

(
1 +O

(
1

logN

))
ujvkUyS(N)

logU log y logN
+O

(
Uy

Q

)
+O

(
Uy

logAN

)
=

ujvkUyS(N)

logU log y logN
+O

(
Uy

log4N

)
. (3.10)

It follows from (3.3)-(3.4) and (3.10) that

Sj,k(N) =
ujvkUyS(N)

logU log y logN
+O

(
Uy

log4N

)
. (3.11)



A remark on the Goldbach-Vinogradov theorem 131

By (3.1), (3.11), Lemma 1(v) and Lemma 2(v), we have

S(N) > S0,1(N) + S1,0(N)− S1,1(N)

= (u0v1 + u1v0 − u1v1)
UyS(N)

logU log y logN
+O

(
Uy

log4N

)
>

0.0015UyS(N)

logU log y logN
≫ UyS(N)

logU log y logN
, (3.12)

where the well-known fact S(N) > 1
2 is used. Now by (3.12) the proof of the

theorem is completed.
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