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PARTIAL SUMS OF THE MÖBIUS FUNCTION IN ARITHMETIC
PROGRESSIONS ASSUMING GRH

Karin Halupczok, Benjamin Suger

Abstract: We consider Mertens’ function in arithmetic progression,

M(x, q, a) :=
∑
n6x

n≡a mod q

µ(n).

Assuming the generalized Riemann hypothesis (GRH), we show that the bound

M(x, q, a) ≪ε
√
x exp

(
(log x)3/5(log log x)16/5+ε

)
holds uniform for all q 6 exp

(
log 2
2

⌊
(log x)3/5(log log x)11/5

⌋)
, gcd(a, q) = 1 and all ε > 0. The

implicit constant is depending only on ε. For the proof, a former method of K. Soundararajan
is extended to L-series.
Keywords: Möbius function, Mertens’ function, GRH.

1. Introduction

Mertens’ function is defined by

M(x) :=
∑
n6x

µ(n).

It is well known that M(x) = o(x1/2+ε) is equivalent to Riemann’s hypothesis.
When assuming Riemann’s hypothesis for ζ, one can give even sharper bounds

for M(x), see [3], [8], [4], [7], [5]:
In [4], H. Maier and H. L. Montgomery proved the bound

M(x)≪ x1/2 exp
(
c(log x)39/61

)
for a c > 0.

In [7], K. Soundararajan improved the bound by showing

M(x)≪ x1/2 exp
(
(log x)1/2(log log x)14

)
.
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In [5], A. de Roton und M. Balazard refine the result of K. Soundararajan and
show

M(x)≪ε

√
x exp

(
(log x)1/2(log log x)5/2+ε

)
,

which is the best bound up to date.
In this paper we generalize the method of K. Soundararajan to provide a bound

for Mertens’ function in arithmetic progression,

M(x, q, a) :=
∑
n6x

n≡a mod q

µ(n).

Note that the trivial bound is 6 x/q, so bounds smaller than x1/2+ε are nontrivial
if q 6 x1/2−ε.

We adapt the method of K. Soundararajan resp. the modification of A. de
Roton and M. Balazard in such a way, that it remains applicable for Dirichlet
L-series. We obtain the following nontrivial upper bound assuming Riemann’s
hypothesis for all Dirichlet L-series L(s, χ) with χ mod q and all moduli q in
question (GRH for short):

Theorem 1. Assuming GRH, the bound

M(x, q, a)≪ε

√
x exp

(
(log x)3/5(log log x)16/5+ε

)
holds uniform for all q 6 exp

(
log 2
2

⌊
(log x)3/5(log log x)11/5

⌋)
, gcd(a, q) = 1 and

all ε > 0 with an implicit constant depending only on ε.

With this theorem, we extend the results of [7] resp. [5] to a Siegel-Walfisz-type
result. The obtained bound is weaker than the one of [7] resp. [5], but still sharper
than the one of [4].

The method we use is as follows. We expand the Möbius sum M(x, q, a) using
Dirichlet characters,

M(x, q, a) =
1

φ(q)

∑
χ(q)

χ̄(a)
∑
n6x

χ(n)µ(n)

=
1

φ(q)

∑
χ(q)

χ̄(a)A(x, χ, q) + O(log x),

using Perron’s formula with integrals

A(x, q, χ) =
1

2πi

∫ 1+1/(log x)+i2K

1+1/(log x)−i2K

xs

L(s, χ)s
ds, K :=

⌊ log x
log 2

⌋
.
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With this, bounds for L(s, χ) are needed. Considering the principal character χ0

mod q, the formula

L(s, χ0) = ζ(s)
∏
p|q

(
1− 1

ps

)
shows that already the sharper bound of [7]/[5] applies (see the proof of Lemma 3).
So the main work is to consider nonprincipal characters.

Like in [7]/[5], the main steps are then some propositions aiming to bound
L(s, χ) to obtain an upper estimate for A(x, q, χ). They are given in Sections 7
and 8 and are resulting from the propositions in the former Sections 2 and 4, 5, 6.

Most of these propositions are stated for primitive characters. If necessary,
results for nonprimitive characters χ ̸= χ0 are derived by reduction to a primitive
character that induces χ.

The main idea in [7], namely the concept of V -typical ordinates, is extended
to a version which allows one to work also with L-series. We give the adapted
definition in Section 3.

As one important step, we show in Section 4 that there are actually V -typical
ordinates, see Proposition 8.

In Section 5, it is shown that short intervals containing an unusual number of
ordinates of nontrivial L-zeros mod q do not appear too often, even uniformly for
all q up to the given bound (Proposition 9), so the V -untypical ordinates are small
in number (Proposition 10). In the case of ζ, this has been the breakthrough in
Soundararajan’s paper [7].

The resulting bound and the range for q in Theorem 1 is then obtained by
optimizing the bounds for A(x, q, χ) in Section 9. The elementary Proposition 20
plays an intrinsic rôle for this.

A remark on notations used in this paper: We mark all Propositions that
assume the generalized Riemann hypothesis by the symbol (GRH). We stress that
all implicit constants are absolute unless otherwise indicated.

2. List of tools

In this section, we give a collection of the tools used in the proof.
The first proposition gives an approximation of the characteristic function of

a given interval:

Proposition 1. Let h > 0, ∆ > 1. Let 1[−h,h] be the characteristic function of
the interval [−h, h].

There are even, entire functions F+ and F− depending on h and ∆, being real
on the real axis and such that the following properties hold:

1. ∀u ∈ R : F−(u) 6 1[−h,h](u) 6 F+(u),

2.
∞∫
−∞
|F±(u)− 1[−h,h](u)|du = 1/∆ and F̂±(0) = 2h± 1/∆,

3. F̂± is realvalued and even, and we have F̂±(x) = 0 for all |x| > ∆ and
|xF̂±(x)| 6 2 for all x ∈ R,
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4. for z ∈ C with |z| > max{2h, 1} we have

|F±(z)| ≪
exp(2π|ℑz|∆)

(∆|z|)2
.

The proof uses Beurling’s Approximation of the signum function

sgn(x) :=

{
x/|x|, x ̸= 0,

0, x = 0.

Let K(z) :=
(

sin(πz)
πz

)2
and H(z) = K(z)

(∑∞
n=−∞

sgn(n)
(z−n)2 + 2

z

)
, then it can be

shown that the functions

F±(z) :=
1

2
(H(∆(z + h))±K(∆(z + h)) +H(∆(h− z))±K(∆(h− z)))

have the properties asserted in Proposition 1. This can be seen as in [6] and [9],
see also [5], we just give the proof of part 4. in more detail:

For this, let z = x + iy with x, y ∈ R and |z| > max{2h, 1}. Since F± are
even, consider only nonnegative x. Using sin(z) ≪ e|ℑ(z)| and ℑ(∆(z + h)) =
−ℑ(∆(h− z)) = ∆ℑ(z), we get the desired bound for K(∆(z+h))±K(∆(h− z))
since |z ± h| = |z|

∣∣1± h
z

∣∣ > |z|(1− h
|z|

)
> 1

2 |z|.
To estimate H(∆(z + h)) +H(∆(h− z)) we use the identities(

π

sin(πz)

)2

=

∞∑
n=−∞

1

(z − n)2
, converging on every compact subset of C \ Z,

(1)
∞∑

n=0

1

(z + n)(z + n+ 1)
=

1

z
, converging absolutely for z ∈ C \ −N0. (2)

Consider H(∆(z + h)) and H(∆(h− z)) separately. By (1), we have

H(∆(z + h)) =

(
sin(π∆(z + h))

π

)2
( ∞∑

n=−∞

sgn(n)

(∆(z + h)− n)2
+

2

∆(z + h)

)

= 1 +

(
sin(π∆(z + h))

π

)2

×

(
−2

∞∑
n=1

1

(∆(z + h) + n)2
− 1

(∆(z + h))2
+

2

∆(z + h)

)
,

and (2) gives for the negative of the last term in large brackets the expression
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∞∑
n=0

(
1

(∆(z + h) + n)2
+

1

(∆(z + h) + n+ 1)2

)

−
∞∑

n=0

2

(∆(z + h) + n)(∆(z + h) + n+ 1)

=

∞∑
n=0

(
1

(∆(z + h) + n)
− 1

(∆(z + h) + n+ 1)

)2

=

∞∑
n=0

1

(∆(z + h) + n)2(∆(z + h) + n+ 1)2

6 1

(∆(x+ h+ |y|))2
∞∑

n=0

1

(∆(x+ h+ |y|) + n)(∆(x+ h+ |y|) + n+ 1)

=
1

(∆(x+ h+ |y|))3
≪ 1

|∆(z + h)|3
≪ 1

|∆z|3
.

Analogously, we get

H(∆(h− z)) =
(
sin(π∆(h− z))

π

)2
( ∞∑

−∞

sgn(n)

(∆(h− z)− n)2
+

2

∆(h− z)

)

= −1 +
(
sin(π∆(z − h))

π

)2

×

(
1

(∆(z − h))2
+ 2

∞∑
1

1

(∆(z − h) + n)2
− 2

∆(z − h)

)
.

If ℜ(z) > h, the treatment of the last term in large brackets is as before.
So let ℜ(z) 6 h. Due to |z| > 2h, we have |y| = |ℑ(z)| > h, so z ̸∈ R and

|ℑ(z)| > |ℜ(z)|. Again (2) gives for the last term in large brackets the expression
∞∑

n=0

1

(∆(z − h) + n)2(∆(z − h) + n+ 1)2

≪
∑

06n6∆h

1

|(∆(x− h) + n|+∆|y|)2(|∆(x− h) + n+ 1|+∆|y|)2

+
∑

n>∆h

1

|(∆(x− h) + n|+∆|y|)2(|∆(x− h) + n+ 1|+∆|y|)2

≪ max{∆h, 1}
|∆y|4

+

∞∑
n=0

1

(∆|y|+ n)2(∆|y|+ n+ 1)2
≪ 1

|∆y|3
≪ 1

|∆z|3
.

Summing up we obtain

H(∆(z + h)) +H(∆(h− z))≪ e2π∆|ℑ(z)|

(∆|z|)3

and the desired bound for |z| > max{2h, 1}. �
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We will make use of the following explicit formula for the functions F±.

Proposition 2. (GRH) Let χ be a primitive character mod q. Let t > 0, ∆ > 1,
h > 0, and F± the functions from Proposition 1. Then we have

∑
ρ= 1

2+iγ

F±(γ − t) =
1

2π
F̂±(0) log

q

π
+

1

2π

∞∫
−∞

F±(u− t)ℜ
Γ′

Γ

( 1
2 + iu+ a

2

)
du

− 1

π
ℜ
∑
n∈N

Λ(n)χ(n)

n
1
2+it

F̂±

(
log n

2π

)
.

Here the sum on the left hand side runs through all zeros of L(s, χ) in the strip
0 6 σ 6 1 with relevant multiplicity, and where we have set

a := a(χ) :=

{
0, if χ(−1) = 1,

1, if χ(−1) = −1.
(3)

The proof can be established in the same way as Theorem 5.12, p. 108, in
the book [2] of Iwaniec and Kowalski. It uses the Mellin transform, the explicit
formula for L′

L (s, χ) and the residue theorem, where one has to take care of the
trivial zero of L(s, χ) at s = 0 if χ(−1) = 1.

An estimate of the integral in Proposition 2 gives the next proposition:

Proposition 3. Let t > 25, ∆ > 1, 0 < h 6
√
t, F± as in Proposition 1,

χ a character mod q. Then it holds that

∞∫
−∞

F±(u− t)ℜ
Γ′

Γ

(
1

4
+

a+ it

2

)
du =

(
2h± 1

∆

)
log

t

2
+ O(1),

where a is defined in (3).

The proof can be obtained as in [1]. It uses Stirling’s formula and the properties
of F± from Proposition 1 after splitting the integral at t− 4

√
t and t+ 4

√
t.

We make also use of the following result of Maier and Montgomery in [4]
concerning moments of Dirichlet polynomials:

Proposition 4. Consider a Dirichlet polynomial P (s) =
∑

p6N a(p)p−s. For
T > 3 and α ∈ R let s1, ..., sR ∈ C with 1 6 |ℑ(si − sj)| 6 T for i ̸= j, and
ℜsi > α for 1 6 i 6 R.

Then, for every positive integer k with Nk 6 T , it holds that

R∑
r=1

|P (sr)|2k ≪ T (log T )2k!
( ∑

p6N

|a(p)|2p−2α
)k
.

Our result relies further on the estimate in the following proposition.
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Proposition 5. Let T > ee
33

, (log log T )
2 6 V 6 log T

log log T , η = 1
log V and

k =
⌊

2V
3(1+η)

⌋
.

Then we have

k (log(k log log T )− 2 log(ηV )) 6 −2

3
V log

V

log log T
+

4

3
V log log V +

2

3
V.

The proof is completely analogous to the elementary proof in [5], there Propo-
sition 14 on page 11 and 12.

Now using Proposition 2, we can give an upper and lower bound for the number
of zeros in a certain region around ordinate t.

Proposition 6. (GRH) Let t > 25, ∆ > 2, 0 < h 6
√
t and χ be a primitive

character mod q. Then

− log(qt)

2π∆
− 1

π
ℜ
∑

p6e2π∆

χ(p) log(p)

p
1
2+it

F̂−

(
log p

2π

)
+O(log∆)

6 N(t+ h, χ)−N(t− h, χ)− h

π
log

qt

2π

and
N(t+ h, χ)−N(t− h, χ)− h

π
log

qt

2π

6 log(qt)

2π∆
− 1

π
ℜ
∑

p6e2π∆

χ(p) log(p)

p
1
2+it

F̂+

(
log p

2π

)
+O(log∆).

Proof. We only show the upper bound, the lower bound estimate can be done in
a complete analogous way.

We use the functions of Proposition 1 and the results from Propositions 2 and 3,
we see analogously to [5] (there Proposition 15 from page 12 on):

N(t+ h, χ)−N(t− h, χ) 6
(
2h+

1

∆

)
1

2π
log

qt

2π

+O(1)− 1

π
ℜ
∑

n6e2π∆

Λ(n)χ(n)

n
1
2+it

F̂+

(
log n

2π

)
.

Here
1

π
ℜ
∑

n6e2π∆

Λ(n)χ(n)

n
1
2+it

F̂+

(
log n

2π

)
=

1

π
ℜ
∑

p6e2π∆

log p χ(p)

p
1
2+it

F̂+

(
log p

2π

)

+
1

π
ℜ
∑

p6eπ∆

log p χ(p)2

p1+2it
F̂+

(
log p

π

)
+O(1)

=
1

π
ℜ
∑

p6e2π∆

log p χ(p)

p
1
2+it

F̂+

(
log p

2π

)
+O(log∆),

and this finishes the proof. �
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3. V-typical ordinates

The method of Soundararajan in [7] relies on the notion of V -typical ordinates.
We modify this definition for our purposes and define V(δ,χ,q)-typical ordinates as
follows.

Definition 1 (V(δ,χ,q)-typical). Let q ∈ N and χ a character mod q. If χ is
nonprincipal, let it be induced by χ1 mod q1, let T > e and 0 < δ 6 1. Let

V ∈
[
(log log T )2,

log T

log log T

]
.

An ordinate t ∈ [T, 2T] is called V(δ,χ,q)-typical of order T , if the following
properties hold:

(i) ∀σ > 1
2 :
∣∣∣∑
n6x

χ1(n)Λ(n)

nσ+it log n

log
(
x
n

)
log x

∣∣∣ 6 2V with x = T
1
V ,

(ii) ∀t′ ∈ (t−1, t+1): N(t′+h, χ)−N(t′−h, χ) 6 (1+δ)V with h =
δπV

log(q1T )
and [t′ − h, t′ + h] ⊆ [t− 1, t+ 1],

(iii) ∀t′ ∈ (t−1, t+1): N(t′+h, χ)−N(t′−h, χ) 6 V with h =
πV

log V log(q1T )
and [t′ − h, t′ + h] ⊆ [t− 1, t+ 1].

If at least one of the three properties does not hold, we call t a V(δ,χ,q)-untypical
ordinate of order T .

In what follows, the meaning of χ, q and δ is often clear from the context, then
we will write simply V -typical instead of V(δ,χ,q)-typical of order T .

4. V such that all t ∈ [T, 2T ] are V -typical

Proposition 7. Let t be sufficiently large and let 0 < h 6
√
t, let χ be a primitive

character mod q. Then∣∣∣∣N(t+ h, χ)−N(t− h, χ)− h

π
log

qt

2π

∣∣∣∣
6 log(qt)

2 log log(qt)
+

(
1

2
+ o (1)

)
log(qt) log log log(qt)

(log log(qt))2
for t→∞.

Proof. As in [5], we estimate the sum of Proposition 6 as follows:∣∣∣∣∣∣ 1πℜ
∑

p6e2π∆

log pχ(p)

p
1
2+it

F̂+

(
log p

2π

)∣∣∣∣∣∣≪
∑

p6e2π∆

1
√
p
≪ eπ∆

∆
. (4)
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Now set ∆ =
1

π
log

log(qt)

log log(qt)
. By estimate (4), we obtain

∣∣∣N(t+ h, χ)−N(t− h, χ)− h

π
log

qt

2π

∣∣∣
6 log(qt)

2(log log(qt)− log log log(qt))
+ O

( log(qt)
log log(qt)

log log(qt)− log log log(qt)

)

=
log(qt)

2 log log(qt)

∞∑
k=0

(
log log log(qt)

log log(qt)

)k

+O

(
log(qt)

(log log(qt))2

)
=

log(qt)

2 log log(qt)
+

log(qt) log log log(qt)

2(log log(qt))2
(1 + o(1))

with an o(1)-term not depending on q, more precise, it is O((log log log t)−1). �

Proposition 8. Let χ be a character mod q, q1 be the conductor of χ and
0 < δ 6 1. Further let T be sufficiently large, at least T > max{q2, ee9}, and
let V be such that

3

4
+

log log log T

log log T
6 V

log log T

log T
6 1

holds. Then all ordinates t ∈ [T, 2T ] are V -typical of order T .

As a consequence of this proposition, we conclude that V -typical ordinates
exist.

Proof. We have to verify properties (i), (ii) and (iii) from Definition 1.
Ad (i): Let f(u) :=

∑
26n6u

Λ(n)χ1(n)√
n logn

, u > 2. Then (see [5], page 16):

|f(u)| 6
∑

26n6u

Λ(n)√
n log n

≪
√
u

log u
,

and from this we obtain∑
n6x

Λ(n)χ1(n)√
n logn

log
x

n
=

∫ x

1

f(u)

u
du≪

√
x

log x
.

Since x = T
1
V 6 T

4 log log T
3 log T 6 (log T )2, we have∣∣∣∣∣∣

∑
n6x

χ1(n)Λ(n)

nσ+it log n

log
(
x
n

)
log x

∣∣∣∣∣∣≪
√
x

(log x)2
≪ log T

(log log T )2
= o(V ).

Ad (ii): Let t′ ∈ [t − 1, t + 1] and h = δπV
log(q1T ) . Since h = δπV

log(q1T ) 6 πV 6
log T <

√
T , we can apply Proposition 7 on the primitive character χ1 mod q1
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that induces χ. We obtain, using q2 6 T , that

N(t′ + h, χ)−N(t′ − h, χ)

6 h

π
log

q1t
′

2π
+

log(q1t
′)

2 log log(q1t′)
+
(1
2
+ o(1)

) log(q1t′) log log log(q1t′)
(log log(q1t′))2

6 h

π
log

q1T

π
+

log(2qT )

2 log log T
+
(1
2
+ o(1)

) log(2qT ) log log log T
(log log T )2

6 δV +
log T 3/2

2 log log T
++

(1
2
+ o(1)

) log T 3/2 log log log T

(log log T )2

= δV +
3 log T

4 log log T
+
(3
4
+ o(1)

) log T log log log T

(log log T )2

6 δV +
3 log T

4 log log T
+

log T log log log T

(log log T )2

6 (1 + δ)V.

Ad (iii): Let t′ ∈ [t− 1, t+ 1] and h = πV
log V log(q1T ) , then

N(t+ h, χ)−N(t− h, χ)

6 h

π
log

q1t
′

2π
+

log(q1t
′)

2 log log(q1t′)

+
(1
2
+ o(1)

) log(q1t′) log log log(q1t′)
(log log(q1t′))2

by Prop. 7

6 V

log V
+

3 log T

4 log log T

+
(3
4
+ o(1)

) log T log log log T

(log log T )2
analogously to (ii)

=
3 log T

4 log log T
+
(3
4
+ o(1)

) log T log log log T

(log log T )2

6 3 log T

4 log log T
+

log T log log log T

(log log T )2
6 V. �

5. The number of V -untypical, well separated ordinates

Proposition 9. Let χ ̸= χ0 be a character mod q and q1 be the conductor of χ.
Further let

1. T be large, at least T > q2,
2. 0 < h 6

√
T ,

3. (log log T )2 6 V 6 log T

log log T
,

4. T 6 t1 < t2 < · · · < tR 6 2T and tr+1 − tr > 1 for 1 6 r < R,

5. N(tr + h, χ)−N(tr − h, χ)−
h

π
log

q1tr
2π

> V +O(1) for 1 6 r 6 R.
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Then
R≪ T exp

(
− 2

3
V log

V

log log T
+

4

3
V log log V +O(V )

)
.

Proof. If q1 = q, then χ is primitive. If q1 < q, then χ is induced by a primitive
character χ1 mod q1, and we have

N(t, χ) = N(t, χ1).

Therefore we can apply the results from Proposition 6 for χ1 and q1. By the
estimate from Proposition 6 we obtain

V +O(1) 6 N(tr + h, χ1)−N(tr − h, χ1)−
h

π
log

q1tr
2π

6 log(2qT )

2π∆
+

∣∣∣∣∣∣ 1π
∑

p6e2π∆

χ(p) log p

p
1
2+itr

F̂+

(
log p

2π

)∣∣∣∣∣∣+O(log∆), ∆ > 2.

If we define a(p) := χ(p) log p
π F̂+

(
log p
2π

)
, we have:∣∣∣∣∣∣

∑
p6e2π∆

a(p)

p
1
2+itr

∣∣∣∣∣∣ > V − log(2qT )

2π∆
+O(log∆) + O(1),

where |a(p)| 6 4 holds by Proposition 1.
Let

η =
1

log V
and ∆ =

(1 + η) log(qT )

2πV
.

Then we have

exp(2π∆) = (qT )
1+η
V 6 T

3(1+η)
2V since q 6

√
T ,

hence
log∆≪ log log T 6

√
V .

We obtain

V − log(2qT )

2π∆
+O(log∆) + O(1) = V − V log(2qT )

(1 + η) log(qT )
+ O

(√
V
)

> ηV

1 + η
− log 2

(1 + η) log log T
+O

(√
V
)
> 1

2
ηV.

So we have ∣∣∣∣∣ ∑
p6e2π∆

a(p)

p
1
2+itr

∣∣∣∣∣ > 1

2
ηV for 1 6 r 6 R.

Let k ∈ N with k 6
⌊

2V
3(1+η)

⌋
. Then we can apply Proposition 4 with N =

(qT )(1+η)/V since (qT )k
1+η
V 6 T k

3(1+η)
2V 6 T for q2 6 T .
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Raising to the 2k-th power and summing over all r = 1, . . . , R, applying Propo-
sition 4 for α = 1

2 and N =
⌊
(qT )

1+η
V

⌋
, we obtain analogously to [5] (page 15):

R
(ηV

2

)2k
6

R∑
r=1

∣∣∣∣∣ ∑
p6(qT )

1+η
V

a(p)

p
1
2+itr

∣∣∣∣∣
2k

≪ T (log T )2(Ck log log T )k

with an absolute constant C > 0. So we have by now

R≪ T (log T )2(4C)k
(k log log T

η2V 2

)k
.

Now set k = ⌊ 2V
3(1+η)⌋, and we obtain by Proposition 5:

(k log log T
η2V 2

)k
6 exp

(
− 2

3
V log

V

log log T
+

4

3
V log log V +

2

3
V
)
.

With
(log T )2(4C)k = exp(O(V )), see [5],

we get the assertion with an absolute O-constant. �

Proposition 10. (GRH) Let χ be a character mod q with conductor q1. Further
let T be large, let

2(log log T )2 6 V 6 log T

log log T
,

and let T 6 t1 < t2 < · · · < tR 6 2T be V -untypical ordinates with tr+1 − tr > 1
for all 1 6 r < R. Then

R≪ T exp
(
−2

3
V log

V

log log T
+

4

3
V log log V +O(V )

)
with an O-constant independent of q and χ.

Proof. If t is a V -untypical ordinate, then at least one of the criteria of Definition 1
is false. For each criterion that is hurt, we give estimates for the corresponding
number R1, R2 and R3 of such well-separated ordinates being counted in the
Proposition.

If criterion (i) is false for tr, then there exists a σr > 1
2 such that∣∣∣∣∣∑

n6x

Λ(n)χ1(n)

nσr+itr log n

log x
n

log x

∣∣∣∣∣ > 2V,

note here that x = T
1
V .
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The size of the sum over n = pα with α > 2 is∣∣∣∣∣ ∑
n=pα6x

α>2

Λ(n)χ1(n)

nσr+itr log n

log x
n

log x

∣∣∣∣∣ 6 ∑
p6√

x

1

p
+
∑
pα6x
α>3

1

p
α
2

≪ log log x≪ log log T ≪
√
V .

So if we count the ordinates tr with∣∣∣∣∣∑
p6x

χ1(p)

pσr+itr

log x
p

log x

∣∣∣∣∣ > V,

where again x = T
1
V , we get an upper bound for R1.

Now we apply Proposition 4 of Maier and Montgomery, we obtain

R1V
2k 6

∑
r6R

∣∣∣∣∣∑
p6x

χ1(p)

pσr+itr

log x
p

log x

∣∣∣∣∣
2k

≪ T (log T )2k!

(∑
p6x

log2 x
p

p log2 x

)k

,

where xk 6 T holds for every k 6 V .
Now ∑

p6x

log2 x
p

p log2 x
6
∑
p6x

1

p
≪ log log x 6 log log T.

As in [5], we obtain with k = ⌊V ⌋:

R1 ≪ T (log T )2
(Ck log log T

V 2

)k
= T exp

(
− V log

V

log log T
+O(V )

)
.

Now let (ii) be false, i. e. for tr there exists a t′r with |tr − t′r| 6 1 and

N
(
t′r +

πδV

log(q1T )
, χ
)
−N

(
t′r −

πδV

log(q1T )
, χ
)
> (1 + δ)V.

With

δV =
δV

log(q1T )
log

(
q1t

′
r

2π

)
+ o(1) for T →∞

we obtain

N
(
t′r +

πδV

log(q1T )
, χ
)
−N

(
t′r −

πδV

log(q1T )
, χ
)
− δV

log(q1T )
log
(q1t′r

2π

)
> V +O(1).

Now we can apply Proposition 9, if the t′r have a sufficiently large distance
from another. So instead of the sequence t′r being induced from tr for 1 6 r 6 R2,
consider the three subsequences t′3s+ℓ with ℓ ∈ {1, 2, 3}, 0 6 s 6

⌊
R2−ℓ

3

⌋
, they
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have the property t′3(s+1)+ℓ− t
′
3s+ℓ > 1. We can apply Proposition 9 on any of the

three subsequences and obtain

R2 6 3
(⌊R2

3

⌋
+ 1
)
+ 2≪ T exp

(
− 2

3
V log

( V

log log T

)
+

4

3
V log log V +O(V )

)
.

For R3 we obtain, analogously as in [5], the same bound with a similar calcu-
lation. �

6. Logarithmic derivative of L(s, χ)

In this section, we consider only primitive characters.

Proposition 11. Let χ be a primitive character mod q, T be sufficiently large,
1
2 6 σ 6 2, T 6 t 6 2T and L(σ + it, χ) ̸= 0. Then

ℜL
′

L
(σ + it, χ) = F (σ + it, χ)− 1

2
log(qT ) + O(1),

where F (s, χ) :=
∑
ρ

ℜ 1

s− ρ
and the sum runs through all nontrivial zeros of

L(s, χ).

Proof. We use the formula
L′

L
(s, χ) = −1

2
log

q

π
− 1

2

Γ′

Γ

(
s+ a

2

)
+B(χ) +

∑
ρ

(
1

s− ρ
+

1

ρ

)
that holds for primitive characters, where ℜB(χ) = −

∑
ρ
ℜ( 1ρ ) and the sum runs

through all nontrivial zeros ρ of L(s, χ). By Stirling’s formula we obtain

ℜL
′

L
(σ + it, χ) = −1

2
log

q

π
− 1

2
ℜΓ

′

Γ

(
σ + it+ a

2

)
+ ℜB(χ)

+
∑
ρ

ℜ
(

1

σ + it− ρ
+

1

ρ

)
= −1

2
log q − 1

2
log |σ + it+ a|+ F (σ + it, χ)

+ O(|σ + it+ a|−1) + O(1)

= F (σ + it, χ)− 1

2
log(qT ) + O(1). �

Proposition 12. Let χ be a primitive character mod q. Let x > 1, and consider
z ∈ C that is not a pole of L′

L (z, χ). Then∑
n6x

χ(n)Λ(n)

nz
log
(x
n

)
= −L

′

L
(z, χ) log x−

(L′

L

)′
(z, χ)

−
∑
ρ

xρ−z

(ρ− z)2
−
∑
n>0

x−2n−a−z

(z + 2n+ a)2
.
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Proof. Since

L′

L
(s, χ)≪ log(q|s|) for ℜs 6 −1

2
and |s+m| > 1

4
for all m ∈ N,

the proof works analogously to [5], where the term coming from the pole at s = 1
is removed and the sum over the trivial zeros has been adjusted. �

Estimating the last sum analogously to [5], we obtain:

Proposition 13. Let χ be a primitive character mod q, T > 1 and 1 6 x 6 T .
Let z ∈ C, ℜz > 0, T 6 ℑz 6 2T , and let z be not a pole of L′

L (z, χ).
Then∑

n6x

χ(n)Λ(n)

nz
log
(x
n

)
= −L

′

L
(z, χ) log x−

(L′

L

)′
(z, χ)−

∑
ρ

xρ−z

(ρ− z)2
+O(T−1).

(5)

7. Lower bound for log |L(s, χ)|

With the aid of V -typical ordinates, we estimate logL(s, χ) from below.

Proposition 14 (GRH). Let χ be a nonprincipal character mod q induced by χ1

mod q1. Let T be sufficiently large and T 6 t 6 2T .
Then for all 1

2 6 σ 6 2 and 2 6 x 6 T it holds that

log |L(σ + it, χ)| > ℜ
(∑
n6x

Λ(n)χ1(n)

nσ+it log n

log x
n

log x

)

−
(
1 +

x
1
2−σ

(σ − 1
2 ) log x

)F (σ + it, χ)

log x
+O

(√ log q

log log q

)
,

where F is the function from Proposition 11.

Proof. At first, let χ be primitive. By integrating equation (5) from z = σ + it
to z = 2 + it, we obtain analogously to [5]:

log |L(σ + it, χ)| > ℜ
(∑
n6x

Λ(n)χ(n)

nσ+it logn

log x
n

log x

)
−
(
1 +

x
1
2−σ

(σ − 1
2 ) log x

)F (σ + it, χ)

log x
+O(1).

Now let χ mod q be not primitive and induced by the primitive character χ1

mod q1.
Then we have

L(s, χ) = L(s, χ1)
∏
p|q

(
1− χ1(p)

ps

)
. (6)
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We obtain with equation (6):

log
∣∣∣L(s, χ)∣∣∣ = log |L(s, χ1)|+

∑
p|q

log

∣∣∣∣1− χ1(p)

ps

∣∣∣∣
> ℜ

(∑
n6x

Λ(n)χ1(n)

nσ+it logn

log x
n

log x

)
−
(
1 +

x
1
2−σ

(σ − 1
2 ) log x

)F (σ + it, χ1)

log x

+O(1) +
∑
p|q

log

∣∣∣∣1− χ(p)

ps

∣∣∣∣ .
For the last sum we get

∑
p|q

log

∣∣∣∣1− χ(p)

ps

∣∣∣∣ 6∑
p|q

1

p1/2
6

2 log q∑
j=1

1

p
1/2
j

≪

√
log q

log log q
. (7)

From equation (6) we see further that

F (s, χ) = F (s, χ1),

so we get the stated bound. �

Now we would like to give an estimate for L(s, χ) in the interval ℜ(s) ∈
(
1
2 , 2
)
.

For this, we split the interval at 1
2 + V

log T and give a bound for each part. This is
done in the next two propositions.

Proposition 15 (GRH). Let χ be a nonprincipal character mod q, and further
let T be sufficiently large, at least T > q, let V ∈ [(log log T )2, log T

log log T ] and let
t ∈ [T, 2T ] be Vδ,χ,q-typical of order T .

Then it holds for 1
2 + V

log T 6 σ 6 2, that

log |L(σ + it, χ)| > fδ,q(V, σ + it),

where fδ,q : R× C→ R, fδ,q(V, σ + it) = O
(

V
δ +

√
log q

log log q

)
.

Proof. In Proposition 14 we set x = T
1
V . Then 2 6 x 6 T , and since 1

2+
V

log T 6 σ,
we have

x
1
2−σ

(σ − 1
2 ) log x

6
exp(−V log x

log T )

V log x
log T

= e−1 6 1.

Applying now Proposition 14, we obtain:

log |L(σ + it, χ)| > −2V − 2
V

log T
F (σ+ it, χ) +O

(√
log q

log log q

)
=: fδ,q(V, σ+ it),

since t is V -typical.



Partial sums of the Möbius function in arithmetic progressions assuming GRH 77

We aim to majorize F (σ+ it, χ) independent from q and χ. As in [5], we divide
the region of the zero-ordinates in two parts as follows.

(i) γ with 2πnδV
log(q1T ) 6 |t− γ| 6

2π(n+1)δV
log(q1T ) for 0 6 n 6 N =

⌊
log(q1T )
4πδV

⌋
,

(ii) γ with {γ : |γ − t| > 1
2}, where q1 denotes the conductor of χ mod q.

Consider the set of γ from (i):∑
γ from (i)

ℜ 1

σ + it− 1
2 − iγ

= 2
∑

γ from (i)

(σ − 1
2 )

(σ − 1
2 )

2 + (t− γ)2

6 2(1 + δ)V

N∑
n=0

(σ − 1
2 )

(σ − 1
2 )

2 +
(

2πnδV
log(q1T )

)2 since t is V -typical, (ii),

6 4V
( 1

σ − 1
2

+
log(q1T )

4δV

)
,

since for a, c ∈ R>0 and N ∈ N we have
N∑

n=0

a
a2+(cn)2 6 1

a +
π
2c , see [5] Prop. 6, and

we continue with

6 4 log(q1T ) +
log(q1T )

δ
6 5

log(qT )

δ
.

For the sum over γ with (ii) we work with the known formula∑
ρ∈N (χ)

1

1 + (t−ℑ(ρ))2
≪ log(q(2 + |t|)) (8)

holding for primitive characters mod q. Since N (χ) = N (χ1) if χ mod q is induced
by χ1 mod q1 6 q, we can use this formula also in the case of a nonprimitive
character mod q.

For 0 6 σ − 1
2 6 3

2 and |t− γ| > 1
2 we have

σ − 1
2

(σ − 1
2 )

2 + (t− γ)2
6 8

1 + (t− γ)2
, (9)

therefore we can estimate the sum over γ with (ii) using (9) and (8) as follows:∑
|t−γ|> 1

2

ℜ
( 1

σ + it− 1
2 − iγ

)
=

∑
|t−γ|> 1

2

σ − 1
2

(σ − 1
2 )

2 + (t− γ)2

6
∑

|t−γ|> 1
2

8

1 + (t− γ)2
6

∑
ρ∈N (χ)

8

1 + (t−ℑ(ρ))2

≪ log(qt).

Now consider g(x) := log(qx)
log x , we see that g(x) is monotonously decreasing for

x > 1, and so for x > q we have g(x) 6 g(q) = 2.
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We resume the two results for the regions (i) and (ii) as follows:∣∣∣2 V

log T
F (σ + it, χ)

∣∣∣≪ log(qT )

log T

V

δ
≪ V

δ
since q 6 T,

which gives the asserted bound for fδ,q(V, σ + it). �

Proposition 16 (GRH). Let χ be a character mod q, let T be sufficiently large,
V ∈ [(log log T )2, log T

log log T ] and t ∈ [T, 2T ] be V -typical (of order T ).
Then we have for all 1

2 < σ 6 σ0 = 1
2 + V

log T :

log |L(σ + it, χ)| > log |L(σ0 + it, χ)| − V log
σ0 − 1

2

σ − 1
2

− 2(1 + δ)V log log V +O
( V
δ2

+

√
log q

log log q

)
.

Proof. Consider at first a primitive character χ mod q, i. e. q1 = q. We work as
in [5], p. 8, and get:

log |L(σ0 + it, χ)| − log |L(σ + it, χ)| 6 1

2

∑
γ

log
(σ0 − 1

2 )
2 + (t− γ)2

(σ − 1
2 )

2 + (t− γ)2
.

In order to estimate the sum, we divide the set of γ in three subsets such that
we can make use of the fact that t is a V -typical ordinate.

The division of the γ is as follows.
(a) γ with |t− γ| 6 πV

log V log(qT ) ,
(b) γ with

(
2πδn + π

log V

)
V

log(qT ) 6 |t − γ| 6
(
2πδ(n + 1) + π

log V

)
V

log(qT )(
0 6 n 6 N =

⌊ log(qT )
4πδV

⌋)
,

(c) γ with {γ : |t− γ| > 1
2}.

Since σ 6 σ0, we have

(σ0 − 1
2 )

2 + (t− γ)2

(σ − 1
2 )

2 + (t− γ)2
6

(σ0 − 1
2 )

2

(σ − 1
2 )

2
.

For the γ from (a) we use property (iii) from the definition of V -typical and
obtain

1

2

∑
|t−γ|6 πV

log V log(qT )

log
(σ0 − 1

2 )
2 + (t− γ)2

(σ − 1
2 )

2 + (t− γ)2
6 1

2

∑
|t−γ|6 πV

log V log(qT )

log
(σ0 − 1

2 )
2

(σ − 1
2 )

2

6 V log
σ0 − 1

2

σ − 1
2

.

We use the fact that (σ0− 1
2 )

2+(t−γ)2

(σ− 1
2 )

2+(t−γ)2
is decreasing in |t − γ|. With this, we

estimate the set of γ in (b) using property (ii) in the definition of V -typical. For
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the γ with (c) we use the general zero estimate for L(s, χ) and obtain in the same
way as in [5]:

1

2

∑
γ’s in (b)

log
(σ0 − 1

2 )
2 + (t− γ)2

(σ − 1
2 )

2 + (t− γ)2
6 2(1 + δ)V log log V +O

(
V

δ2

)
and

1

2

∑
|γ−t|> 1

2

log
(σ0 − 1

2 )
2 + (t− γ)2

(σ − 1
2 )

2 + (t− γ)2
≪ V

log log T
.

This gives the assertion for primitive characters.
Now if χ is not primitive mod q and induced by the primitive character χ1

mod q1, we use equation (7) and obtain

log |L(σ + it, χ)| = log |L(σ + it, χ1)|+O
(√ log q

log log q

)
> log |L(σ0 + it, χ1)| − V log

σ0 − 1
2

σ − 1
2

− 2(1 + δ)V log log V

+O(
V

δ2
) + O

(√ log q

log log q

)
= log |L(σ0 + it, χ))|+−V log

σ0 − 1
2

σ − 1
2

− 2(1 + δ)V log log V

+O
( V
δ2

+

√
log q

log log q

)
. �

At the end of this section we combine the results from propositions 8, 15 and
16. With these, we obtain a lower bound for the whole stripe ℜ(s) ∈

(
1
2 , 2
)
.

Proposition 17 (GRH). Let χ be a character mod q, |t| be sufficiently large, at
least |t| > q, and 1

2 < σ 6 2. Then

log |L(σ + it, χ)| > − log |t|
log log |t|

log
1

(σ − 1
2 )
− 3

log |t| log log log |t|
log log |t|

.

Proof. As in [5], we choose

V =
log |t|

log log |t|
and δ =

1

2
,

note that then O
(

V
δ2 +

√
log q

log log q

)
= O(V ). �

By now, we gave estimates for L(s, χ) in a region for sufficiently large ℑ(s).
We also need an estimate for L(s, χ) in the remaining region, which we give in the
next Proposition.
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Proposition 18 (GRH). Let x be large, c > 0. Further let T0(x) := T0 :=

2⌊(log x)3/5(log log x)c⌋, and σ = 1
2 + 1

log x . Then there exists a C > 0, such that for
all |t| 6 T0, q 6

√
T0 and a nonprincipal character χ mod q we have

|L(σ + it, χ)| > T−C log log x
0 .

Proof. At first, let χ be a primitive character mod q, and q 6
√
T0. By the

explicit formula for the logarithmic derivation of L we obtain

2+it∫
σ+it

L′

L
(s+ it, χ)ds =

2+it∫
σ+it

( ∑
ρ∈N (χ)

|ℑ(s)−ℑ(ρ)|61

1

s− ρ
+O(log(q(2 + |ℑ(s)|)))

)
ds,

hence

logL(2 + it, χ)− logL(σ + it, χ) =
∑

ρ∈N (χ)
|t−ℑ(ρ)|61

log(2 + it− ρ)

−
∑

ρ∈N (χ)
|t−ℑ(ρ)|61

log(σ + it− ρ) + O(log(q(2 + |t|))).

Considering the real parts, it follows that

log |L(σ + it, χ)|−1 =
∑

ρ∈N (χ)
|t−ℑ(ρ)|61

log

∣∣∣∣32 + i(t−ℑ(ρ))
∣∣∣∣

+
∑

ρ∈N (χ)
|t−ℑ(ρ)|61

log
1

|σ + it− ρ|
+O(log(q(2 + |t|))).

To give an estimate of the first sum, we have∣∣∣∣32 + i(t−ℑ(ρ))
∣∣∣∣ 6 5

2
for |t−ℑ(ρ)| 6 1,

hence ∑
|t−ℑ(ρ)|61

log

∣∣∣∣32 + i(t−ℑ(ρ))
∣∣∣∣≪ log(qt),

and to give an estimate of the second sum, we have

|σ + it− ρ|−1 =

∣∣∣∣ 1

log x
+ i(t−ℑ(ρ))

∣∣∣∣−1

6 log x,

hence ∑
|t−ℑ(ρ)|61

log
1

|σ + it− ρ|
≪ log(qt) log log x.
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Therefore we obtain

log |L(σ + it, χ)|−1 ≪ log(qt) log log x.

If we note that t 6 T0 and q 6
√
T0, we obtain

log |L(σ + it, χ)|−1 ≪ log T0 log log x.

This gives the assertion for primitive characters.
Now let χ be a nonprimitive character mod q and induced by χ1 mod q1. We

conclude:

log |L(σ + it, χ)|−1 = log |L(σ + it, χ1)|−1 −
∑
p|q

log
∣∣∣1− χ(p)

ps

∣∣∣
= log |L(σ + it, χ1)|−1 +O

(√ log T0
log log T0

)
≪ log T0 log log x

(
1 + O

( 1√
log T0 log log T0 log log x

))
≪ log T0 log log x. �

8. Majorant of
∣∣xzL(z, χ)−1

∣∣
In this section we give a majorant of

∣∣xzL(z, χ)−1
∣∣ for certain z. It is a consequence

of Propositions 15 and 16.

Proposition 19 (GRH). Let χ be a character mod q. Further let t be sufficiently
large (at least t > q), x > t, V ′ ∈

[
(log log t)2, log(t/2)

log log(t/2)

]
, V > V ′, t be V ′-typical

of order T ′.
Then for V ′ 6 (ℜz − 1

2 ) log x 6 V , |ℑz| = t, we have∣∣∣xzL(z, χ)−1
∣∣∣

6
√
x exp

(
V log

log x

log t
+ 2(1 + δ)V log log V +O

(
V δ−2 +

√
log x

log log x

))
.

Proof. By taking notion of the changed error term, everything remains as in [5],
see Proposition 22 there. �

9. Upper bound for M(x, q, a)

We need some preliminaries for the proof of the theorem.
For a character χ mod q, let

A(x, χ, q) :=
1

2πi

1+ 1
log x+i2K∫

1+ 1
log x−i2K

xs

L(s, χ)s
ds, where K :=

[
log x

log 2

]
,
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and by Perron’s formula we have:

M(x, q, a) =
1

φ(q)

∑
χ(q)

χ(a)A(x, χ, q) + O(log x). (10)

We aim to give a good upper bound for A(x, χ, q).
Further we assume w.l.o.g., that x > q2, as otherwise we can estimate trivially.
Now we give some definitions being valid during this section.

Definition 2.

K :=

[
log x

log 2

]
, κ :=

⌊
(log x)3/5(log log x)c

⌋
,

Tk := 2k for κ 6 k 6 K, so q2 6 Tκ 6 Tk.

For k with κ 6 k < K and for n ∈ N∩ [Tk, 2Tk), we define the integer Vn to be the
smallest integer in the interval

[
(log log Tk)

2 + 1, log Tk

log log Tk

]
, such that all points in

[n, n+1] are Vn-typical ordinates of order Tk. The existence of these Vn is obtained
by Proposition 8.

Lemma 1. Let x > 2, c > 1, q ∈ N and 1 < q 6 2κ/2. Further let χ be
a nonprincipal character mod q and δ ∈ (0, 1]. Then

A(x, χ, q)√
x

≪δ exp
(
(log x)3/5(log log x)c+1+δ

)
+B(x, χ, q),

where

B(x, χ, q) =

TK−1∑
n=Tκ

1

n
exp

(
Vn log

( log x
log n

)
+ 2(1 + 2δ)Vn log log Vn +D

√
log x

log log x

)

with an absolute constant D > 0.

Proof. We choose the following path of integration S(x, χ, q), we describe it for
the upper half plane ℑ(z) > 0, it passes out analogously in the lower half plane.

1. A vertical segment
[
1

2
+

1

log x
,
1

2
+

1

log x
+ iTκ

]
.

2. Further vertical segments
[
1

2
+

Vn
log x

+ in,
1

2
+

Vn
log x

+ i(n+ 1)

]
.

3. A horizontal segment
[
1

2
+

1

log x
+ iTκ,

1

2
+

VTκ

log x
+ iTκ

]
.

4. Additional horizontal segments for Tκ 6 n 6 TK − 2, namely[
1

2
+

Vn
log x

+ i(n+ 1),
1

2
+
Vn+1

log x
+ i(n+ 1)

]
.
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5. The last horizontal segment
[
1

2
+
VTK−1

log x
+ iTK , 1 +

1

log x
+ iTK

]
.

Hence

|A(x, χ, q)| = 1

2π

∣∣∣∣∣
∫

S(x,χ,q)

xs

L(s, χ)s
ds

∣∣∣∣∣.
We consider just the first segment more accurate, the others can be estimated

analogously to [5]:
Ad 1.:

1

2π

∣∣∣∣∣
∫

S(x,χ,q)
|ℑ(z)|6Tκ

xs

L(s, χ)s
ds

∣∣∣∣∣ 6 1

2π
x

1
2+

1
log x

Tκ∫
−Tκ

∣∣∣L(1
2
+

1

log x
+ it, χ

)∣∣∣−1 dt√
1
4 + t2

6 e

2π

√
xmax
|t|6Tκ

∣∣∣L(1
2
+

1

log x
+ it, χ

)∣∣∣−1
Tκ∫
−Tκ

dt√
1
4 + t2

6
√
xmax
|t|6Tκ

∣∣∣L(1
2
+

1

log x
+ it, χ

)∣∣∣−1
Tκ∫
0

dt√
1
4 + t2

6 2
√
xmax
|t|6Tκ

∣∣∣L(1
2
+

1

log x
+ it, χ

)∣∣∣−1

log Tκ

≪
√
x (log Tκ)T

C log log x
κ by Prop. 18

6
√
xTC1 log log x

κ with C1 = C + 1.

Ad 2.:

1

2π

∣∣∣∣∣
1
2+

Vn
log x+i(n+1)∫

1
2+

Vn
log x+in

xs

L(s, χ)s
ds

∣∣∣∣∣ 6 1

2πn
max

z∈{ 1
2+

Vn
log x+it;

t∈[n,n+1]}

∣∣∣xzL(z, χ)−1
∣∣∣ as |s| > |n|

6 1

n

√
x exp

(
Vn log

( log x
log n

)
+ 2(1 + δ)Vn log log Vn

+D
(Vn
δ2

+

√
log x

log log x

))
,

where D > 0 is an absolute constant, see Proposition 19.
Ad 3.:

1

2π

∣∣∣∣∣
1
2+

VTκ
log x+iTκ∫

1
2+

1
log x+iTκ

xs

L(s, χ)s
ds

∣∣∣∣∣ 6 √xT 3
κ by Prop. 17.
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Ad 4.: Here we use Proposition 19 for n with Tκ 6 n 6 TK − 2:

∣∣∣∣∣
1
2+

Vn+1
log x +i(n+1)∫

1
2+

Vn
log x+i(n+1)

xs

L(s, χ)s
ds

∣∣∣∣∣
6 1

n

√
x exp

(
Vn log

( log x
log n

)
+ 2(1 + δ)Vn log log Vn +D

(Vn
δ2

+

√
log x

log log x

))
+

1

n+ 1

√
x exp

(
Vn+1 log

( log x

log(n+ 1)

)
+ 2(1 + δ)Vn+1 log log Vn+1

+D
(Vn+1

δ2
+

√
log x

log log x

))
.

Ad 5.: We obtain using Proposition 15:

1

2π

∣∣∣∣∣
1+ 1

log x+iTK∫
1
2+

VTK−1

log x +iTK

xs

L(s, χ)s
ds

∣∣∣∣∣ 6δ

√
x. �

The following proposition is similar to Proposition 23 in [5], the modification
here is necessary, but the proof works analogously.

Proposition 20. Let A,C > 0 and let A > 4C4 + 1, then for V > e3C/2 it holds
that

AV − 2

3
V log V + CV log log V 6 e3A/2

(3
2
A
)3C/2

.

Lemma 2. Under the conditions of Lemma 1 we have

B(x, χ, q)≪δ exp
(
(log x)3/5(log log x)13/2−3c/2+8δ

)
.

Proof. We define for κ 6 k < K:

B(Tk, x, χ, q) :=
∑

Tk6n<2Tk

1

n
exp

(
Vn log

( log x
log n

)
+ 2(1 + 2δ)Vn log log Vn

)
,

then

B(x, χ, q) 6 K max
κ6k<K

B(Tk, x, χ, q) exp
(
D

√
log x

log log x

)
≪ log x max

κ6k<K
B(Tk, x, χ, q) exp

(
D

√
log x

log log x

)
,

so it remains to estimate B(Tk, x, χ, q).
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To simplify the notation, we write now Tk = T , a(T ) := (log log T )2, b(T ) :=
log T

log log T and V(V, T ) := {n ∈ N; T 6 n < 2T, Vn = V }.
We sort the summands corresponding to the values of the Vn:

B(T, x, χ, q) =
∑
V ∈N

a(T )6V6b(T )

∑
T6n<2T
Vn=V

1

n
exp

(
V log

( log x
log n

)
+ 2(1 + 2δ)V log log V

)

6 1

T

∑
V ∈N

a(T )6V6b(T )

exp
(
V log

( log x
log T

)
+ 2(1 + 2δ)V log log V

)
cardV(V, T ).

(11)

Now we split the sum over V . For V 6 2a(T ) + 1 we use the trivial estimate

card{n ∈ N; T 6 n < 2T, Vn = V } 6 T. (12)

Then we estimate the corresponding sum for this part:

1

T

∑
V ∈N

a(T )6V62a(T )+1

exp
(
V log

( log x
log T

)
+ 2(1 + 2δ)V log log V

)
cardV(V, T )

= exp
(
O((log log x)3)

)
. (13)

Now consider V ∈ N with 2a(T ) + 1 < V 6 b(T ), we split

V(V, T ) = {n ≡ 0 mod 2; n ∈ V(V, T )} ∪ {n ≡ 1 mod 2; n ∈ V(V, T )}
=: V0(V, T ) ∪ V1(V, T ).

Consider a number n ∈ V(V, T ) for a fixed V with 2a(T ) + 1 < V 6 b(T ). Since
Vn = V is the smallest integer such that all t ∈ [n, n + 1] are Vn-typical of order
T , there exists at least one tn ∈ [n, n+ 1] being (Vn − 1)-untypical of order T .

So choose for any n ∈ V(V, T ) a tn ∈ [n, n + 1] being (V − 1)-untypical. This
assignment gives a bijection between V(V, T ) and the set

U(V, T ) := {tn; n ∈ V(V, T ), tn ∈ [n, n+ 1] and tn is (V − 1)-untypical}

of (V − 1)-untypical ordinates. Hence the cardinalities of both sets are equal, and
in U(V, T ) all elements are (V − 1)-untypical of order T .

Further we define for h ∈ {0, 1} the set

Uh(V, T ) := {tn ∈ U(V, T ); n ∈ Vh(V, T )}.

For tn ̸= tm with tn, tm ∈ Uh(V, T ) we have |tn − tm| > 1: If w.l.o.g. n < m,
then tm − tn > m− (n+ 1) > 1 since tn ∈ [n, n+ 1], tm ∈ [m,m+ 1] and n ≡ m
mod 2. So the sets Uh(V, T ) are sets of well distanced (V − 1)-untypical ordinates
in the sense of Proposition 10.
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Since cardV(V, T ) = cardU(V, T ) = cardU0(V, T ) + cardU1(V, T ), we can
estimate the cardinality measure of the set V(U, T ) using Proposition 10, we obtain

cardV(V, T )≪ T exp
(
− 2

3
(V − 1) log

( V − 1

log log T

)
+

4

3
(V − 1) log log(V − 1) + O(V )

)
(14)

≪δ T exp
(
− 2

3
V log

( V

log log T

)
+
(4
3
+ δ
)
V log log V

)
.

This leads to the following result:

B(T, x, χ, q) 6 exp
(
O((log log x)3)

)
+

∑
V ∈N

2a(T )+16V6b(T )

1

T
exp

(
V log

( log x
log T

)

+ 2(1 + 2δ)V log log V
)
cardV(V, T ) by (11) and (13)

≪δ exp
(
O((log log x)3)

)
+

∑
V ∈N

2a(T )+16V6b(T )

exp
(
V log

( log x (log log T )2/3
log T

)

− 2

3
V log V +

(10
3

+ 5δ
)
V log log V

)
(15)

≪δ exp
(
O((log log x)3)

)
+

∑
V ∈N

2a(T )+16V6b(T )

exp
(
V log

( log x log log T

log T

)

− 2

3
V log V +

(10
3

+ 5δ
)
V log log V

)
, (16)

where in (15) the implicit constant in the estimate depends on δ since we used
equation (14).

In order to majorize the last sum (16), we use Proposition 20 with the following
parameters:

A := log
( log x log log T

log T

)
and C :=

10

3
+ 5δ.

(Then A > 4C4 + 1 and V > e3C/2 hold if x is large enough.)
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We obtain∑
V ∈N

2a(T )+16V6b(T )

exp
(
V log

( log x log log T

log T

)
− 2

3
V log V +

(10
3

+ 5δ
)
V log log V

)

6 log T

log log T
exp

((
log x

log log T

log T

)3/2(3
2
log
(
log x

log log T

log T

))5+15δ/2)
. (17)

Since

log log T

log T
=

log log Tk
log Tk

6 log log Tκ
log Tκ

≪ log log x

(log x)3/5(log log x)c
6 (log x)−3/5,

we have(
log x

log log T

log T

)3/2
6
(
(log x)2/5(log log x)1−c

)3/2
= (log x)3/5(log log x)3/2−3c/2,

and as c > 1, we obtain further(3
2
log
(
log x

log log T

log T

))5+15δ/2

6 (log log x)5+15δ/2.

Using these estimates, we continue the estimation of (17) with

6 exp
(
log log x+ (log x)3/5(log log x)3/2−3c/2+5+15δ/2

)
= exp

(
(log x)3/5(log log x)13/2−3c/2+15δ/2 + log log x

)
≪δ exp

(
(log x)3/5(log log x)13/2−3c/2+8δ

)
.

Now we resume everything including the term exp
(
D
√

log x
log log x

)
again, we

obtain

B(x, χ, q)≪δ exp
(
(log x)3/5(log log x)13/2−3c/2+8δ

)
exp

(
(D + 1)

√
log x

log log x

)
,

and using the estimate

(log x)3/5(log log x)13/2−3c/2+8δ + (D + 1)

√
log x

log log x

≪ (log x)3/5(log log x)13/2−3c/2+8δ
(
1 + log(x)−1/10(log log x)3c/2

)
≪ (log x)

3
5 (log log x)13/2−3c/2+8δ,

we obtain finally

B(x, χ, q)≪δ exp
(
(log x)3/5(log log x)13/2−3c/2+8δ

)
. �
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Now we still have to consider the principal character mod q, for this we use
the result of the zeta-function.

Lemma 3. Let q ∈ N, x > q > 1, then we have for the principal character χ0

mod q the estimate

A(x, χ0, q)≪δ

√
x exp

(
(log x)1/2(log log x)5/2+4δ

)
.

Proof. Due to the formula

L(s, χ0) = ζ(s)
∏
p|q

(
1− 1

ps

)
,

we use the estimate for the zeta-integral. So we estimate the product∣∣∣∏p|q(1− p−s)−1
∣∣∣ for σ > 1

2 .
For this, consider the logarithm of the product and include the series expansion

of the logarithm:∣∣∣∑
p|q

− log
(
1− 1

ps

)∣∣∣ = ∣∣∣∑
p|q

−
∑
k∈N

(−1)k+1 (−p−s)k

k

∣∣∣ = ∣∣∣∑
p|q

∑
k∈N

(−1)2k+2 1

kpks

∣∣∣
6
∑
p|q

∑
k∈N

1

kpk/2
=
∑
p|q

1

p1/2
+

1

2

∑
p|q

1

p
+
∑
p|q

∑
k>2

1

kpk/2

6
2 log q∑
i=1

1

p
1/2
i

+
1

2

∑
p6q

1

p
+O(1)

≪

√
log q

log log q
+ log log q +O(1).

We conclude

|L(s, χ0)|−1 ≪ |ζ(s)|−1 exp

(
D

√
log q

log log q

)

for an absolute constant D > 0.
Since

√
log q

log log q is monotonic increasing in q, we have for x > q

L(s, χ0)
−1 ≪ ζ(s)−1 exp

(
D

√
log x

log log x

)
.

Now the additional term
√

log x
log log x does not disturb the magnitude of the ex-
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ponent in the final result, since we have∣∣∣∣∣
∫

S(x,χ,q)

L(z, χ0)
−1x

z

z
dz

∣∣∣∣∣≪
∫

S(x,χ,q)

∣∣∣ζ(z)−1x
z

z

∣∣∣dz exp(D√ log x

log log x

)

≪δ

√
x exp

(
(log x)1/2(log log x)5/2+4δ +D

√
log x

log log x

)
≪
√
x exp

(
(log x)1/2(log log x)5/2+4δ

)
,

where we have set c = 5
2 + 3δ in the estimate at the end of the paper of [5]. �

Proof of Theorem 1. Let q > 2, since for q = 2 there is only the principal
character and we can use then the sharper result from Lemma 3.

We use equation (10), Lemma 1 and Lemma 2 and set c = 11
5 + 16

5 δ, together
with Lemma 3 we obtain∣∣∣M(x, a, q)

∣∣∣ 6 1

φ(q)

∑
χ(q)

∣∣∣∑
n6x

χ(n)µ(n)
∣∣∣ = 1

φ(q)

∑
χ(q)

∣∣∣A(x, χ, q)∣∣∣+O(log x)

=
1

φ(q)
|A(x, χ0, q)|+

1

φ(q)

∑
χ(q)
χ̸=χ0

∣∣∣A(x, χ, q)∣∣∣+O(log x)

≪δ
1

φ(q)

√
x exp

(
(log x)1/2(log log x)5/2+4δ

)
+
φ(q)− 1

φ(q)

√
x exp

(
(log x)3/5(log log x)16/5+16δ/5

)
≪
√
x exp

(
(log x)3/5(log log x)16/5+16δ/5

)
.

Since δ ∈ (0, 1] can be chosen arbitrary, we get the assertion with the choice
δ = 5

16ε. �
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