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Abstract: In previous papers the authors established a method how to decide on the algebraic
independence of a set {y1, . . . , yn} when these numbers are connected with a set {x1, . . . , xn}
of algebraic independent parameters by a system fi(x1, . . . , xn, y1, . . . , yn) = 0 (i = 1, 2, . . . , n)
of rational functions. Constructing algebraic independent parameters by Nesterenko’s theorem,
the authors successfully applied their method to reciprocal sums of Fibonacci numbers and
determined all the algebraic relations between three q-series belonging to one of the sixteen
families of q-series introduced by Ramanujan.

In this paper we first give a short proof of Nesterenko’s theorem on the algebraic independence
of π, eπ

√
d and a product of Gamma-values Γ(m/n) at rational points m/n. Then we apply the

method mentioned above to various sets of numbers. Our algebraic independence results include
among others the coefficients of the series expansion of the Heuman-Lambda function, the values
P (qr), Q(qr), and R(qr) of the Ramanujan functions P,Q, and R, for q ∈ Q with 0 < |q| < 1
and r = 1, 2, 3, 5, 7, 10, and the values given by reciprocal sums of polynomials.

Keywords: algebraic independence, Ramanujan functions, Nesterenko’s theorem, complete el-
liptic integrals, Gamma function.

1. Introduction

In 1916, Ramanujan [19] defined the series

S2j+1(x) =
1

2
ζ(−2j − 1) +

∞∑
n=1

n2j+1xn

1− xn
(j = 0, 1, 2, . . . ),

where ζ(s) is the Riemann zeta function, and studied especially the first three

P (x) = −24S1(x), Q(x) = 240S3(x), R(x) = −504S5(x)

of them. In 1996 Nesterenko [15] proved the following.
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Theorem 1.1 (Nesterenko’s Theorem). For every x ∈ C with 0 < |x| < 1,
the set {

x, P (x), Q(x), R(x)
}

contains at least three numbers that are algebraically independent over Q.

Many important corollaries of the theorem are stated in [15], [16] and [17],
among others we refer the algebraic independence of π, eπ, Γ(1/4) (see Lemma 2.2
in Section 2). In this paper we deduce algebraic independence results from Nesteren-
ko’s theorem for various sets of numbers applying the following criterion.

Theorem 1.2 (Algebraic independence criterion [13]). Let x1, . . . , xn ∈ C
be algebraically independent over Q and let y1, . . . , yn ∈ C satisfy the system of
equations

fj(x1, . . . , xn, y1, . . . , yn) = 0 (1 6 j 6 n), (1.1)

where fj(t1, . . . , tn, u1, . . . , un) ∈ Q[t1, . . . , tn, u1, . . . , un] (1 6 j 6 n). Assume
that

det

(
∂fj
∂ti

(x1, . . . , xn, y1, . . . , yn)

)
̸= 0. (1.2)

Then the numbers y1, . . . , yn are algebraically independent over Q.

Corollary 1.1. Let x1, . . . , xn ∈ C be algebraically independent over Q and let
yj = gj(x1, . . . , xn), where gj(t1, . . . , tn) ∈ Q[t1, . . . , tn] (j = 1, . . . , n). Assume
that

det

(
∂gj
∂ti

(x1, . . . , xn)

)
̸= 0 .

Then the numbers y1, . . . , yn are algebraically independent over Q.

As far as we know, this criterion first appeared in [13, Lemma 3] (see also
[11, Lemma 6], [12, Lemma 3]) and was used together with Nesterenko’s theorem
to prove the following: Let F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn (n > 0) denote the
Fibonacci numbers. Then, for any distinct positive integers s1, s2, s3, the numbers

∞∑
n=1

1

F 2s1
n

,
∞∑
n=1

1

F 2s2
n

,
∞∑
n=1

1

F 2s3
n

are algebraically independent over Q if and only if at least one of si is even (see
[10] and [13]). The criterion was applied secondly to the Ramanujan functions
S2j+1(x), or the q-series

A2j+1(q) =

∞∑
n=1

n2j+1q2n

1− q2n
(j = 0, 1, 2, . . . )

(using the notation in [24]). Ramanujan [19] recorded the identity

A7(q) = A3(q) + 120A3(q)
2.
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Applying the criterion, the authors [11] proved that, for any q ∈ Q with 0 < |q| < 1,
the numbers A1(q), A2i+1(q), A2j+1(q) with 1 6 i < j and (i, j) ̸= (1, 3) are
algebraically independent over Q. Furthermore, the authors [12] determined all
the algebraic relations among three q-series belonging to one of the sixteen families
of q-series studied by Ramanujan [20, Chap. 17] (cf [7]).

This paper is organized as follows. In Section 2, we state two lemmas de-
rived from Nesterenko’s theorem, which are used in the proofs of our theorems.
In Section 3 we examine algebraic independence properties concerning the coeffi-
cients of the series expansion of the Heuman-Lambda function. In Section 4 we
prove the algebraic independence of values at algebraic arguments of two classes of
series introduced by Ramanujan [21] in connection with Dedekind’s eta-function
and its third power. The values P (qr), Q(qr), R(qr) with q ∈ Q, 0 < |q| < 1 for
r = 1, 2, 3, 5, 7, 10 are discussed in Section 5. In Section 6, we show algebraic in-
dependence results for reciprocal sums of polynomials and for other miscellaneous
numbers. Finally, in Section 7, we give a method how to check (1.2) when the
implicit system (1.1) cannot be solved for y1, . . . , yn.

All the results obtained in this paper are deduced from Nesterenko’s theo-
rem except that in Theorem 6.2 which is proved using Lindemann’s theorem.
Throughout this paper, we cite for brevity the algebraic independence criterion or
its corollary stated above as the AIC.

2. Preliminaries

Let K and E be the complete elliptic integrals of the first and second kind defined
by

K = K(k) :=

∫ 1

0

dt√
(1− t2)(1− k2t2)

, E = E(k) :=

∫ 1

0

√
1− k2t2

1− t2
dt

with k2 ∈ C \ ({0} ∪ [1,∞)), where the branch of each integrand is chosen so that
it tends to 1 as t→ 0. Furthermore, let

K ′ = K ′(k) := K(k′), k2 + (k′)2 = 1.

For each q ∈ C with 0 < |q| < 1, we can choose k such that

q = e−πc, c =
K ′

K
. (2.1)

Ramanujan [19] gave the expressions

P (q2) =

(
2K

π

)2(
3E

K
− 2 + k2

)
,

Q(q2) =

(
2K

π

)4 (
1− k2 + k4

)
,

R(q2) =

(
2K

π

)6
1

2
(1 + k2)(1− 2k2)(2− k2).
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Nesterenko’s theorem combined with them implies the following:

Lemma 2.1. If q = e−πc with c = K ′/K and 0 < |q| < 1, the set{
q, k,

K

π
,
E

π

}
contains at least three numbers that are algebraically independent over Q.

Using Lemma 2.1, we deduce

Lemma 2.2. (cf [16, p. 6]) Let −m be the discriminant of an imaginary quadratic
field. Then the numbers

π, eπ
√
m,

m−1∏
n=1

Γ
(
n/m

)(−m/n)
are algebraically independent over Q, where (−m/n) is the Kronecker symbol.

In Section 6 we apply the special case of Lemma 2.2 that, for any d ∈ N, the
numbers π and eπ

√
d are algebraically independent over Q.

Proof. Let c = K ′/K =
√
m in (2.1). Then q = e−π

√
m. Selberg and Chowla [22]

proved that

K = λc
√
π

(m−1∏
n=1

Γ(n/m)
(−m/n)

)w/4h
,

where λc is some algebraic number, h is the class number of the field Q(
√
−m),

and w is the number of roots of unity in the field. Since c2 ∈ Q, k becomes an
algebraic number by a theorem of Abel (cf [23, p. 525]) and E takes the form
E = π/(4cK) + βcK with βc ∈ Q (see [19] and [24, p. 195]). Thus we have from
Lemma 2.1 with k ∈ Q that

tr.d. Q Q
(
q, π,

m−1∏
n=1

Γ
(
n/m

)(−m/n))
= tr.d. Q Q

(
q, π,

m−1∏
n=1

Γ
(
n/m

)(−m/n)
,
K

π
,
E

π

)
> 3. �

For example, each of the following sets{
π, eπ,Γ(1/4)

}
,

{
π, eπ

√
3,Γ(1/3)

}
,{

π, eπ
√
3,Γ(1/6)

}
,

{
eπ

√
3,Γ(1/3),Γ(1/6)

}
is algebraically independent over Q. For the last two sets, we refer the formula

22/3πΓ2(1/6) = 3Γ4(1/3)

(cf [2, Table 3, (iv)]). As a result, the three numbers Γ(1/2),Γ(1/3),Γ(1/6) are
algebraically dependent over Q, and any two of them are algebraically independent
over Q.
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3. Heuman-Lambda function

We first state an algebraic independence result for the Weierstrass elliptic function
℘(z) = ℘(z, g2, g3) with invariants g2, g3. The function admits the series expansion

℘(z) = z−2 +

∞∑
j=1

bjz
2j

around z = 0. It is known that bj ∈ Q[g2, g3], for example,

b1 =
g2
20
, b2 =

g3
28
, b3 =

g22
1200

, b4 =
3g2g3
6160

, . . .

with b21 = 3b3. Applying the AIC (without Nesterenko’s theorem), the authors
and Tachiya [12] proved the following theorem: If g2 and g3 are algebraically
independent over Q, then, for every (i, j) ̸= (1, 3), i < j, the coefficients bi =
bi(g2, g3) and bj = bj(g2, g3) are algebraically independent over Q.

In this section we consider the Heuman-Lambda function Λ0(φ, k) defined by

Λ0(φ, k) =
2

π

(
E(k)F (φ, k′) +K(k)E(φ, k′)−K(k)F (φ, k′)

)
,

where

F (φ, k) =

∫ φ

0

dϑ√
1− k2 sin2 ϑ

,

E(φ, k) =

∫ φ

0

√
1− k2 sin2 ϑdϑ.

Let (t2m(φ))m>0 and (a2m(k))m>0 be defined by

t0(φ) = φ, t2m(φ) =
2m− 1

2m
t2m−2(φ)−

sin2m−1 φ cosφ

2m
(m > 1),

a0(k) = E, a2(k) =
1

2
(2K − E)k′

2
,

a2m(k) =
(2m− 3)!

22m−2m!(m− 2)!

(
2mK − (2m− 1)E

)
k′

2m
(m > 2).

Then we have the series expansion (see [6, formula 904.00 ])

Λ0(φ, k) =
2

π

(
a0(k)t0(φ)−

∞∑
m=1

a2m(k)t2m(φ)
) (

0 < φ <
π

2
, k2 < 1

)
,

or

Λ0(φ, k) =
∞∑
m=0

b2m(k)t2m(φ)
(
0 < φ <

π

2
, k2 < 1

)
,

where

b2m(k) =

{
2a0(k)/π if m = 0,

−2a2m(k)/π if m > 0.
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Theorem 3.1. Let q = e−πK
′/K ∈ Q with 0 < |q| < 1. Then, for any integers 0 6

m1 < m2 < m3, the three numbers b2m1(k), b2m2(k), and b2m3(k) are algebraically
independent over Q.

Furthermore, any four numbers b2m1(k), b2m2(k), b2m3(k), and b2m4(k) are al-
gebraically dependent over Q.

Example. Putting b2m = b2m(k) for brevity, we have

b20b
2
6 − 8b0b

3
4 + 2b32b6 − 3b22b

2
4 + 6b0b2b4b6 = 0.

Proof of Theorem 3.1. We divide into two cases m1 > 1 and m1 = 0.
Case 1: 1 6 m1 < m2 < m3. We define the polynomials

fi(t1, t2, t3) =
(2mi − 3)!

22mi−1mi!(mi − 2)!

(
2mit2 − (2mi − 1)t3

)
t2mi
1

= βi
(
2mit2 − (2mi − 1)t3

)
t2mi
1 (i = 1, 2, 3),

where β1 = 1 if m1 = 1, and

βi =
(2mi − 3)!

22mi−1mi!(mi − 2)!
if mi > 2.

Applying the determinant rules, we get

det
(∂fi
∂tj

)
16i,j63

=

∣∣∣∣∣∣∣∣∣∣
2β1m1

(
2m1t2 − (2m1 − 1)t3

)
t2m1−1
1 2β1m1t

2m1
1 −β1(2m1 − 1)t2m1

1

2β2m2

(
2m2t2 − (2m2 − 1)t3

)
t2m2−1
1 2β2m2t

2m2
1 −β2(2m2 − 1)t2m2

1

2β3m3

(
2m3t2 − (2m3 − 1)t3

)
t2m3−1
1 2β3m3t

2m3
1 −β3(2m3 − 1)t2m3

1

∣∣∣∣∣∣∣∣∣∣

= 4β1β2β3t
2(m1+m2+m3)−1
1 ·

∣∣∣∣∣∣∣∣∣∣
m1

(
2m1t2 − (2m1 − 1)t3

)
m1 1

m2

(
2m2t2 − (2m2 − 1)t3

)
m2 1

m3

(
2m3t2 − (2m3 − 1)t3

)
m3 1

∣∣∣∣∣∣∣∣∣∣
= 8β1β2β3t

2(m1+m2+m3)−1
1 (m2 −m1)(m3 −m1)(m3 −m2)(t3 − t2).
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Case 2: 0 = m1 < m2 < m3. Let f1(t1, t2, t3) = 2t3 and let f2(t1, t2, t3),
f3(t1, t2, t3) be defined as in Case 1. Then, we obtain

det
(∂fi
∂tj

)
16i,j63

=

∣∣∣∣∣∣∣∣∣∣
0 0 2

2β2m2

(
2m2t2 − (2m2 − 1)t3

)
t2m2−1
1 2β2m2t

2m2
1 −β2(2m2 − 1)t2m2

1

2β3m3

(
2m3t2 − (2m3 − 1)t3

)
t2m3−1
1 2β3m3t

2m3
1 −β3(2m3 − 1)t2m3

1

∣∣∣∣∣∣∣∣∣∣
= 2 ·

∣∣∣∣∣∣
2β2m2

(
2m2t2 − (2m2 − 1)t3

)
t2m2−1
1 2β2m2t

2m2
1

2β3m3

(
2m3t2 − (2m3 − 1)t3

)
t2m3−1
1 2β3m3t

2m3
1

∣∣∣∣∣∣
= 8β2β3m2m3t

2(m2+m3)−1
1 ·

∣∣∣∣∣∣
2m2t2 − (2m2 − 1)t3 1

2m3t2 − (2m3 − 1)t3 1

∣∣∣∣∣∣
= 16β2β3m2m3t

2(m2+m3)−1
1 (m3 −m2)(t3 − t2).

For t1 = k′, t2 = K/π, and t3 = E/π the determinant in both cases does
not vanish by Lemma 2.1. Applying the AIC, we may prove the first state-
ment in Theorem 3.1. The second statement follows from the fact that b2m ∈
Q[k′,K/π,E/π]. �

4. Two series introduced by Ramanujan in his lost notebook

Ramanujan [21, pp. 188, 369] introduced the two classes of series

T2k := T2k(q) := 1 +
∞∑
n=1

(−1)
n
{
(6n− 1)

2k
qn(3n−1)/2 + (6n+ 1)

2k
qn(3n+1)/2

}
,

F2k := F2k(q) :=

∞∑
n=1

(−1)
n−1

(2n− 1)
2k+1

qn(n−1)/2 (|q| < 1),

and expressed the functions

T2k(q)

(q; q)∞
=: f2k,

F2k(q)

(q; q)
3
∞

=: U2k

with

(q; q)∞ :=
∞∏
n=1

(1− qn)

as polynomials over Q in terms of the Ramanujan functions P,Q, and R. We refer
Ramanujan’s Lost Notebook [1, Chap. 14] for the proofs of Ramanujan’s claims
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which will be used in this section. For example,

f2 = P, f4 = 3P 2 − 2Q, f6 = 15P 3 − 30PQ+ 16R,

f8 = 105P 4 − 420P 2Q+ 448PR− 132Q2, . . . ;

U0 = 1, U2 = P, U4 =
1

3

(
5P 2 − 2Q

)
,

U6 =
1

3

(
35P 3 − 42PQ+ 16R

)
,

U8 =
1

3

(
35P 4 − 84P 2Q− 12Q2 + 64PR

)
, . . . .

(4.1)

We note that the formulas f2 = P and U0 = 1 are proved in [1] by using,
respectively, the pentagonal number theorem

(q; q)∞ = 1 +
∞∑
n=1

(−1)
n
{
qn(3n−1)/2 + qn(3n+1)/2

}
and Jacobi’s identity

(q; q)
3
∞ =

1

2

∞∑
n=−∞

(−1)
n
(2n+ 1)qn(n+1)/2.

In this section we prove the following theorems:

Theorem 4.1. Let q ∈ Q with 0 < |q| < 1. Then for three distinct positive
integers i, j, and k, the numbers T2i(q)/(q; q)∞, T2j(q)/(q; q)∞, and T2k(q)/(q; q)∞
are algebraically independent over Q.

Theorem 4.2. Let q ∈ Q with 0 < |q| < 1. Then for three distinct positive integers
i, j, and k, the numbers F2i(q)/(q; q)

3
∞, F2j(q)/(q; q)

3
∞, and F2k(q)/(q; q)

3
∞ are

algebraically independent over Q.

We first prove Theorem 4.2. The proof of Theorem4.1 is similar and much eas-
ier. The key to Ramanujan’s work on U2k(q) is the differential-recurrence relation

U2s+2(q) = P (q)U2s(q) + 8q
dU2s(q)

dq
(s > 0) (4.2)

with U0 = 1. From this he deduced the expressions

U2s =
∑

a,b,c>0
a+2b+3c=s

Ka,b,cP
aQbRc (s > 1), (4.3)

where Ka,b,c ∈ Q, using his differential equations

q
dP

dq
=
P 2 −Q

12
, q

dQ

dq
=
PQ−R

3
, q

dR

dq
=
PR−Q2

2
. (4.4)

For the proof of Theorem 4.2 we need the explicit values of the coefficients Ks,0,0,
Ks,1,0, and Ks,0,1, which can be deduced from the following:
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Lemma 4.1. The coefficients Ks,0,0,Ks,1,0, and Ks,0,1 satisfy the recurrence for-
mulas

Ks+1,0,0 =
2s+ 3

3
Ks,0,0 (s > 1), (4.5)

Ks−1,1,0 =
2s+ 7

3
Ks−2,1,0 −

2s

3
Ks,0,0 (s > 2), (4.6)

Ks−2,0,1 =
2s+ 9

3
Ks−3,0,1 −

8

3
Ks−2,1,0 (s > 3), (4.7)

where the initial values are given by

K1,0,0 = 1, K0,1,0 = −2

3
, K0,0,1 =

16

9
. (4.8)

Proof. By (4.3), U2s is written as

U2s = Ks,0,0P
s +Ks−2,1,0P

s−2Q+Ks−3,0,1P
s−3R+ u2s, (4.9)

where u2s ∈ Q[P,Q,R] with degP u2s 6 s − 4. Substituting this into (4.2) and
using (4.4), we get

U2s+2 = Ks,0,0P
s+1 +Ks−2,1,0P

s−1Q+Ks−3,0,1P
s−2R+ 8Ks,0,0sP

s−1P
2 −Q

12

+ 8Ks−2,1,0

(
(s− 2)P s−3P

2 −Q

12
Q+ P s−2PQ−R

3

)
+ 8Ks−3,0,1

(
(s− 3)P s−4P

2 −Q

12
R+ P s−3PR−Q2

2

)
+ 8q

du2s
dq

. (4.10)

We may regard P,Q, and R as independent variables, since they are algebraically
independent over Q by Nesterenko’s theorem with q ∈ Q. So we can equate the
coefficients of P s+1, P s−1Q, and P s−2R on the right-hand sides of (4.9) (with 2s
replaced by 2s+2) and (4.10). Thus we obtain (4.5), (4.6), and (4.7), respectively.
The initial values (4.8) follow from (4.1). �

The following values of Ks,0,0, Ks,1,0, and Ks,0,1 can be obtained from (4.5-4.8)
by using the formulas Γ(z + 1) = zΓ(z) and

Γ

(
s+

1

2

)
=

1 · 3 · 5 . . . (2s− 1)

2s
√
π (s = 0, 1, 2, . . . ).

Lemma 4.2. We have

Ks,0,0 = 2
2s

3s
√
π
Γ
(
s+

3

2

)
=

(2s+ 1)!

6ss!
(s > 1),

Ks,1,0 = − 8

45

(s+ 1)(s+ 2)2s

3s
√
π

Γ
(
s+

7

2

)
(s > 0),

Ks,0,1 =
128

2835

(s+ 1)(s+ 2)(s+ 3)2s

3s
√
π

Γ
(
s+

9

2

)
(s > 0).
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Proof of Theorem 4.2. We apply the AIC by showing that

∆ = ∆(i, j, k) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂U2i

∂P

∂U2i

∂Q

∂U2i

∂R

∂U2j

∂P

∂U2j

∂Q

∂U2j

∂R

∂U2k

∂P

∂U2k

∂Q

∂U2k

∂R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0.

Using (4.9), we see by a straightforward computation that

∆ =

∣∣∣∣∣∣∣∣∣∣
iKi,0,0P

i−1 Ki−2,1,0P
i−2 Ki−3,0,1P

i−3

jKj,0,0P
j−1 Kj−2,1,0P

j−2 Kj−3,0,1P
j−3

kKk,0,0P
k−1 Kk−2,1,0P

k−2 Kk−3,0,1P
k−3

∣∣∣∣∣∣∣∣∣∣
+ δ

=

∣∣∣∣∣∣∣∣∣∣
iKi,0,0 Ki−2,1,0 Ki−3,0,1

jKj,0,0 Kj−2,1,0 Kj−3,0,1

kKk,0,0 Kk−2,1,0 Kk−3,0,1

∣∣∣∣∣∣∣∣∣∣
P i+j+k−6 + δ

= CP i+j+k−6 + δ,

where δ = δ(i, j, k) ∈ Q[P,Q,R] with degP δ 6 i+j+k−7 and C = C(i, j, k) ∈ Q.
Note that ∆ is a polynomial over Q in independent variables P,Q, and R. By
Lemma4.2, we have

C =
64

525

(2
3

)i+j+k ijk(i− j)(i− k)(j − k)

π3/2
Γ
(
i+

3

2

)
Γ
(
j +

3

2

)
Γ
(
k +

3

2

)
̸= 0. �

Proof of Theorem 4.1. The function f2k satisfies the differential equation

f2k+2(q) = P (q)f2k(q) + 24q
df2k(q)

dq

with f2(q) = P (q), from which it follows that

f2k = (2k − 1)!!
(
P k − k(k − 1)

3
P k−2Q+

8k(k − 1)(k − 2)

45
P k−3R+ g2k

)
,

where (2k − 1)!! = 1 · 3 · · · (2k − 1) and g2k ∈ Q[P,Q,R] with degP g2k 6 k − 4
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(see [1, Chap. 14]). Hence we have

∆ = ∆(i, j, k) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f2i
∂P

∂f2i
∂Q

∂f2i
∂R

∂f2j
∂P

∂f2j
∂Q

∂f2j
∂R

∂f2k
∂P

∂f2k
∂Q

∂f2k
∂R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (2i− 1)!!(2j − 1)!!(2k − 1)!!

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i − i(i− 1)

3

8i(i− 1)(i− 2)

45

j −j(j − 1)

3

8j(j − 1)(j − 2)

45

k −k(k − 1)

3

8k(k − 1)(k − 2)

45

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
P i+j+k−6 + δ

=
8

135
(2i− 1)!!(2j − 1)!!(2k − 1)!!ijk(j − k)(j − i)(k − i)P i+j+k−6 + δ,

where δ = δ(i, j, k) ∈ Q[P,Q,R] with degP δ 6 i + j + k − 7. Therefore ∆ ̸= 0,
and the theorem follows from the AIC. �

5. Algebraic independence of P (qr), Q(qr), and R(qr)

In this section we turn our attention again to the Ramanujan functions P,Q, and
R. We already proved in [12, Corollary 2] that for q ∈ Q with |q| < 1 the numbers
in each of the sets{

P (q), P (q2)
}
,

{
Q(q), Q(q2)

}
,

{
R(q), R(q2)

}
are algebraically independent over Q. Application of the AIC leads to more general
results.

Theorem 5.1. Let q ∈ Q with 0 < |q| < 1. Then, any three numbers in the set{
P (q), P (q2), P (q5), P (q10)

}
are algebraically independent over Q and the four numbers are not. More precisely,
putting Pi = P (qi) (i = 1, 2, 5, 10), we have

P 2
1 + 4P 2

2 + 25P 2
5 + 100P 2

10 − 6P1P2

+ 6P1P5 − 2P1P10 − 2P2P5 + 24P2P10 − 150P5P10 = 0.
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Theorem 5.2. Let q ∈ Q with 0 < |q| < 1. Then, in the set{
Q(q), Q(q2), Q(q5), Q(q10)

}
any two numbers are algebraically independent over Q and any three are not.

Theorem 5.3. Let q ∈ Q with 0 < |q| < 1. Then, in the set{
R(q), R(q2), R(q5), R(q10)

}
any two numbers are algebraically independent over Q and any three are not.

Theorem 5.4. Let q ∈ Q with 0 < |q| < 1. Let X(qm) and Y (qn) (m,n ∈ {1, 3})
be two different numbers in the set {Q(q), Q(q3), R(q), R(q3)}. Then, each of the
sets{
P (q), P (q3), X(qm)

}
,

{
P (q), X(qm), Y (qn)

}
,

{
P (q3), X(qm), Y (qn)

}
is algebraically independent over Q.

Theorem 5.5. Let q ∈ Q with 0 < |q| < 1. Let X(qm) and Y (qn) (m,n ∈ {1, 7})
be two different numbers in the set {Q(q), Q(q7), R(q), R(q7)}. Then, each of the
sets{
P (q), P (q7), X(qm)

}
,

{
P (q), X(qm), Y (qn)

}
,

{
P (q7), X(qm), Y (qn)

}
is algebraically independent over Q.

We give a detailed proof only for the algebraic independence of P1, P2, and P5 in
Theorem 5.1. The remaining cases concerning the set {P (q), P (q2), P (q5), P (q10)}
in Theorem 5.1 can be treated similarly. For the proofs of Theorems 5.2-5.5 we
shall refer to suitable parameter expressions for the Ramanujan functions P,Q,R.
The details of computations for the nonvanishing of the determinant applying the
AIC are left to the reader.

Proof of the algebraic independence of P1, P2, P5 in Theorem 5.1.
Using the Rogers - Ramanujan continued fraction

r = r(q) = q1/5
∞∏
j=1

(1− q5j−4)(1− q5j−1)

(1− q5j−3)(1− q5j−2)
,

we define k, z, and y by

k = k(q) = r(q)r2(q2), z = z(q) = q
d

dq
log k, y = y(q) =

dz

dk
. (5.1)

From [9, Theorems 5.3, 5.5, and 5.6], we have the following expressions:

P1 = P (q) =
4(1 + k2)z

1− k2
+

(1 + k2)z

1 + k − k2
− 4(1 + k2)z

1− 4k − k2
+ 6ky, (5.2)

P2 =
5(1 + k2)z

2(1− k2)
− 2(1 + k2)z

1 + k − k2
+

(1 + k2)z

2(1− 4k − k2)
+ 3ky, (5.3)
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P5 = −4(1 + k2)z

5(1− k2)
+

(1 + k2)z

1 + k − k2
+

4(1 + k2)z

5(1− 4k − k2)
+

6

5
ky, (5.4)

P10 =
(1 + k2)z

10(1− k2)
+

2(1 + k2)z

5(1 + k − k2)
+

(1 + k2)z

2(1− 4k − k2)
+

3

5
ky, (5.5)

Q1 = Q(q)

=
z2(k12 − 236k11 + 1434k10 − 740k9 − 1905k8 + 3144k7 + 1196k6 − 3144k5)

(1− k2)
2
(1 + k − k2)

2
(1− 4k − k2)

2

+
z2(−1905k4 + 740k3 + 1434k2 + 236k + 1)

(1− k2)
2
(1 + k − k2)

2
(1− 4k − k2)

2 , (5.6)

R1 = R(q) = z3h(k)p1,2(k)p1,5(k)p1(k), (5.7)

where

h(k) :=
1 + k2

(1− k2)
3
(1 + k − k2)

3
(1− 4k − k2)

3 ,

p1,2(k) := k4 − 22k3 − 6k2 + 22k + 1,

p1,5(k) := k4 − 4k3 + 6k2 + 4k + 1,

p1(k) := k8 + 536k7 − 268k6 − 1192k5 + 470k4 + 1192k3 − 268k2 − 536k + 1.

From (5.2), (5.6), and (5.7) it follows that P1, Q1, and R1 are expressible as rational
functions in the three variables k, y, z. For q ∈ Q with 0 < |q| < 1, the numbers
P1, Q1, and R1 are algebraically independent over Q by Nesterenko’s theorem,
and so are the variables k, y, z. The algebraic relation among P1, P2, P5, and P10,
given in Theorem 5.1, can be computed from (5.2), (5.3), (5.4), and (5.5) by using
resultants.

Next, we define the following polynomials:

f1 = f1(z, k, y, α1, α2, α5)

:= (1− k2)(1 + k − k2)(1− 4k − k2)

×
(
α1 −

4(1 + k2)z

1− k2
− (1 + k2)z

1 + k − k2
+

4(1 + k2)z

1− 4k − k2
− 6ky

)
,

f2 = f2(z, k, y, α1, α2, α5)

:= 2(1− k2)(1 + k − k2)(1− 4k − k2)

×
(
α2 −

5(1 + k2)z

2(1− k2)
+

2(1 + k2)z

1 + k − k2
− (1 + k2)z

2(1− 4k − k2)
− 3ky

)
,

f5 = f5(z, k, y, α1, α2, α5)

:= 5(1− k2)(1 + k − k2)(1− 4k − k2)

×
(
α5 +

4(1 + k2)z

5(1− k2)
− (1 + k2)z

1 + k − k2
− 4(1 + k2)z

5(1− 4k − k2)
− 6

5
ky
)
.
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By definition they vanish if (α1, α2, α5) = (P1, P2, P5). Then,

∆ :=

∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂z

∂f1
∂k

∂f1
∂y

∂f2
∂z

∂f2
∂k

∂f2
∂y

∂f5
∂z

∂f5
∂k

∂f5
∂y

∣∣∣∣∣∣∣∣∣∣∣
= 6k(k4 − 1)(k2 − k − 1)(k2 + 4k − 1)

(
1680k4z + 96k3z − 234k4P1

+ 462k3P1 − 48k2P1 − 978k5P1 − 96k5z + 128k5P2 + 9P1 + 2064k4P2

+ 24kP1 + 96kz − 24P2 + 4570k5P5 − 208kP2 − 448k2P2 + 224k3P2 + 15P5

+ 400kP5 + 1360k2P5 − 2870k3P5 − 3990k4P5 − 72z + 192k6P1

+ 768k2z + 768k6z − 1664k6P2 + 3200k6P5 − 96k7z − 72k8z − 1970k7P5

− 585k8P5 + 30k9P5 + 416k7P2 + 72k8P2 − 48k9P2 + 186k7P1

+ 81k8P1 + 18k9P1

)
.

Substituting the rational expressions (5.2-5.4) into this polynomial, we find

∆ = −144kz(k2 + 1)(k2 − k − 1)
(
3k12 + 16k11 − 22k10 − 144k9 − 3k8

− 160k7 + 44k6 + 160k5 − 3k4 + 144k3 − 22k2 − 16k + 3
)
̸= 0,

which implies the algebraic independence of P1, P2, and P5. �

For the proofs of Theorems 5.2 and 5.3 we use the same algebraically indepen-
dent parameters k, y, z in (5.1) as in the proof of Theorem 5.1, and we express the
Ramanujan functions at points qr under consideration using additional identities
given by [9, Theorems 5.5 and 5.6].

The parameters applied in the proof of Theorem 5.5 are

x = q
∞∏
j=1

(1− q7j)
4

(1− qj)
4 , z =

∞∏
j=1

(1− qj)
7

1− q7j
, y =

dz

dx
.

By [8, (3.5),(3.7),(3.10)] we express P 3(q) and P 3(q7) as rational functions in
Q(x, y, z), whereas we use [8, (3.5), Theorem 3.4] for Q3(q), Q3(q7), R(q), R(q7) ∈
Q[x, z]. For q ∈ Q with 0 < |q| < 1 the parameters x, y, z are algebraically
independent over Q by Nesterenko’s theorem and the above identities involving
P 3(q), Q3(q), and R(q). Then, applying the AIC on three of the above mentioned
identities corresponding to three numbers occasionally chosen in Theorem 5.5, we
complete the proof of the theorem.

For the proof of Theorem 5.4 we refer to [4, ch. 33, §4] on the Eisenstein series
P,Q, and R, which in [4] are denoted by L,M , and N , respectively. We introduce
the parameters

x = k2, z =
2K

π
, y =

dz

dx
,
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where K is the complete elliptic integral of the first kind already mentioned in Sec-
tion 2. The algebraic independence of these parameters follows from [4, Lemma 4.1,
Theorems 4.2-3]. Then we deduce Theorem 5.4 using the expressions [4, (13.17),
Lemma 4.1, Theorems 4.2-5] and the AIC.

6. Reciprocal sums of quadratic polynomials and some other numbers

In this section we give algebraic independence results for the numbers stated in
the title.

Theorem 6.1. Let a and b be positive integers with a2 − 4b < 0. Then, any two
of the numbers

∞∑
n=0

1

n2 + acn+ bc2
(c = 1, 2, 3, . . . )

are algebraically independent over Q and any three of them are not.

Example. Let a = b = 1. Then xc =
∑∞
n=0 (n

2 + cn+ c2)
−1

(c = 1, 2, 3) satisfy

7x21 − 4x1 + 6x2 + 7x3 + 21(x1x3 + 2x2x3 − 2x1x2) + 1 = 0.

Proof of Theorem 6.1. Let ψ = Γ′/Γ. It is known that

S :=
∞∑
n=0

1

n2 + an+ b
=

1

i
√
d

(
ψ(α)− ψ(β)

)
,

where α := (a + i
√
d)/2, β := (a − i

√
d)/2, and −d = a2 − 4b < 0. Using the

functional equation

ψ(z + n) =
1

z
+

1

z + 1
+ · · ·+ 1

z + n− 1
+ ψ(z) (z ∈ C, n ∈ N ∪ {0})

with β = (1− α) + (a− 1), we have

ψ(α)− ψ(β) = ψ(α)−
( 1

1− α
+

1

2− α
+ · · ·+ 1

a− 1− α
+ ψ(1− α)

)
= −π cot(πα)−

a−1∑
k=1

1

k − α
.

Here,

cot(πα) =


− tan

( iπ
2

√
d
)
= −i e

π
√
d − 1

eπ
√
d + 1

if a ≡ 1 (mod 2),

cot
( iπ
2

√
d
)
= −i e

π
√
d + 1

eπ
√
d − 1

if a ≡ 0 (mod 2),
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and

a−1∑
k=1

1

k − α
=

1

2

a−1∑
k=1

2k − a

k2 − ak + b
+
i
√
d

2

a−1∑
k=1

1

k2 − ak + b
=
i
√
d

2

a−1∑
k=1

1

k2 − ak + b
.

Thus we obtain

S =
π√
d

eπ
√
d + (−1)

a

eπ
√
d − (−1)

a − 1

2

a−1∑
k=1

1

k2 − ak + b
. (6.1)

We note that the two numbers x1 = π/
√
d and x2 = eπ

√
d are algebraically in-

dependent over Q by Lemma2.2. Now let c1, c2 be distinct positive integers. We
put

Si :=
∞∑
n=0

1

n2 + acin+ bc2i
, ri :=

1

2

aci−1∑
k=1

1

k2 − acik + bc2i
(i = 1, 2).

We divide into three cases: Case 1 . ac1c2 ≡ 1 (mod 2), Case 2 . ac1 ≡ 0 (mod 2)
and ac2 ≡ 1 (mod 2), Case 3 . a ≡ 0 (mod 2).
Case 1. ac1c2 ≡ 1 (mod 2). Using (6.1) for odd a we have

S1 =
x1(x

c1
2 − 1)

c1(x
c1
2 + 1)

− r1, S2 =
x1(x

c2
2 − 1)

c2(x
c2
2 + 1)

− r2. (6.2)

We define two polynomials

f1(t1, t2, u1, u2) := c1(t
c1
2 + 1)u1 − t1(t

c1
2 − 1) + c1r1(t

c1
2 + 1),

f2(t1, t2, u1, u2) := c2(t
c2
2 + 1)u2 − t1(t

c2
2 − 1) + c2r2(t

c2
2 + 1),

which satisfy

fi(x1, x2, y1, y2) = 0, yi = Si (i = 1, 2).

To apply the AIC we introduce the determinant

∆ := det

(
∂fi
∂tj

)
16i,j62

=

∣∣∣∣∣∣
1− tc12 c21t

c1−1
2 u1 − c1t1t

c1−1
2 + c21r1t

c1−1
2

1− tc22 c22t
c2−1
2 u2 − c2t1t

c2−1
2 + c22r2t

c2−1
2

∣∣∣∣∣∣ .
Computing ∆ and substituting (t1, t2, u1, u2) = (x1, x2, y1, y2) with yi = Si given
by (6.2), we obtain

∆ =
2x1(c1x

c1
2 − c2x

c2
2 − c1x

c1+2c2
2 + c2x

c2+2c1
2 )

x2(x
c1
2 + 1)(xc22 + 1)

,

which does not vanish, since x1 and x2 are algebraically independent over Q.
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Case 2. Let ac1 ≡ 0 (mod 2) and ac2 ≡ 1 (mod 2). We use (6.1) for S1 and
S2, respectively. The polynomials f1 and f2 in this case are given by

f1(t1, t2, u1, u2) := c1(t
c1
2 − 1)u1 − t1(t

c1
2 + 1) + c1r1(t

c1
2 − 1),

f2(t1, t2, u1, u2) := c2(t
c2
2 + 1)u2 − t1(t

c2
2 − 1) + c2r2(t

c2
2 + 1).

The corresponding determinant ∆ with (t1, t2, u1, u2) = (x1, x2, y1, y2) as above is

∆ =
2x1(−c1xc12 − c2x

c2
2 + c1x

c1+2c2
2 + c2x

c2+2c1
2 )

x2(x
c1
2 − 1)(xc22 + 1)

̸= 0.

Case 3. Let a ≡ 0 (mod 2). The values of S1 and S2 are again given by (6.1).
Defining

f1(t1, t2, u1, u2) := c1(t
c1
2 − 1)u1 − t1(t

c1
2 + 1) + c1r1(t

c1
2 − 1),

f2(t1, t2, u1, u2) := c2(t
c2
2 − 1)u2 − t1(t

c2
2 + 1) + c2r2(t

c2
2 − 1),

we get

∆ =
2x1(−c1xc12 + c2x

c2
2 + c1x

c1+2c2
2 − c2x

c2+2c1
2 )

x2(x
c1
2 − 1)(xc22 − 1)

̸= 0.

In any case we find ∆ ̸= 0, which implies by the AIC that the two numbers y1 = S1

and y2 = S2 are algebraically independent over Q. The second statement of the
theorem follows from (6.1). �

In the following we state some algebraic independence results without proofs.
• Gun, Murty, and Rath [14, Theorem 4.1(1)] deduced the transcendence of

each of the sums
∞∑
n=1

1

n2 + bα2
(b ∈ N, α ∈ Q \ {0}) (6.3)

from Lemma 2.2 by showing the expression

∞∑
n=1

1

n2 + bα2
= − 1

2bα2
− π

2α
√
b

(1 + e2πα
√
b

1− e2πα
√
b

)
.

Using the AIC, we can prove that, for a fixed b ∈ N, any two sums in (6.3)
with distinct α1, α2 ∈ Q \ {0} are algebraically independent over Q.

• Ramanujan [18] (see also [3, p. 231, Corollary (i),(ii)]) proved that for any
n ∈ N

∞∏
k=1

(
1 +

( 2n

n+ k

)3)
=

Γ3(n+ 1) sinh(πn
√
3)

Γ(3n+ 1)πn
√
3

,

∞∏
k=1

(
1 +

(2n+ 1

n+ k

)3)
=

Γ3(n+ 1) cosh(π(n+ 1/2)
√
3)

Γ(3n+ 2)π
.
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Then in the set{ ∞∏
k=1

(
1 +

( 2m

m+ k

)3)
,

∞∏
k=1

(
1 +

(2n+ 1

n+ k

)3)
; m,n = 1, 2, 3, . . .

}
any two numbers are algebraically independent over Q and any three of them
are not.

• Any two numbers in the set{
πα coth(πα) |α ∈ Q \ {0}

}
are algebraically independent over Q and any three of them are not. In
particular, any two of the following continued fractions given by Ramanujan
([4, p. 59, Entry 34])

1 +
n2

1 +
12(n2 + 12)

3 +
22(n2 + 22)

5 +
32(n2 + 32)

7 + . . .

=
πn

2
coth

(πn
2

)
(n = 1, 2, 3 . . . )

are algebraically independent over Q. 1979 Bundschuh in [5] remarked that
the number

∞∑
n=2

1

n4 − 1
=

7

8
− π

4
coth(π)

is transcendental if π and eπ are algebraically independent over Q.
In the AIC, the ring Q[t1, . . . , tn, u1, . . . , un] may be replaced by Q[t1, . . . , tn,
u1, . . . , un]. As an example we have the following result, which relies on
[14, Theorem 4.2(1)] and Lindemann’s theorem.

Theorem 6.2. For r > 2, let P1(x), . . . , Pr(x), Q(x) be polynomials with algebraic
coefficients satisfying r = degQ. Suppose that degPj 6 r − 1 for j = 1, . . . , r and
that Q has simple zeros α2

1, . . . , α
2
r such that α1, . . . , αr are linearly independent

over Q. Moreover, we assume that

det
(
Pi(α

2
j )
)
16i,j6r

̸= 0.

Then the r numbers

yj :=
∞∑
n=1

Pj(π
2n2)

Q(π2n2)
(j = 1, . . . , r)

are algebraically independent over Q.

Gun, Murty, and Rath [14, Theorem 4.2(1)] proved the transcendence of yj .
(Note that we have removed some unnecessary conditions from [14, Theorem 4.2(1)]
and that we have corrected misprints.)
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Corollary 6.1. Suppose that α1, . . . , αr ∈ Q with r > 2 are linearly independent
over Q. Then the r numbers

yj :=

∞∑
n=1

(π2n2)
j−1

(π2n2 − α2
1) . . . (π

2n2 − α2
r)

(j = 1, . . . , r)

are algebraically independent over Q.

7. Remarks on the application of the AIC

In this paper, we applied the Corollary of the AIC with some modifications in
the proofs of Theorems 5.1 - 5.5, which are necessarily because the expressions of
the parameters are rational functions, but not polynomials. It may happen that
the system of equations (1.1) is not solvable for y1, . . . , yn. How shall we then
check the nonvanishing of the determinant (1.2)? To overcome this point we use
resultants. We start with the equations (1.1) and set

fn+1(t1, . . . , tn, u1, . . . , un) := det
(∂fj
∂ti

)
16i,j6n

∈ Q[t1, . . . , tn, u1, . . . , un].

We may assume that fn+1 is a nonzero polynomial, since otherwise we cannot
apply the AIC. We compute recursively the following n(n+ 1)/2 resultants:

fi,0 := fi (i = 1, . . . , n+ 1),

fi,j := Res uj

(
f1,j−1, fi+1,j−1

)
for j = 1, . . . , n and i = 1, . . . , n+ 1− j .

(7.1)

It is clear that f1,n ∈ Q[t1, . . . , tn]. The AIC works successfully if f1,n turns
out to be a nonzero polynomial. Indeed, if fn+1(x1, . . . , xn, y1, . . . , yn) = 0, then
f1,n(x1, . . . , xn) = 0 by the definition of the iterated resultants (Note that fn+1 =
fn+1,0). But this contradicts the algebraic independence over Q of x1, . . . , xn, and
therefore that of y1, . . . , yn follows.

Example. Let x1, x2, x3 ∈ C be algebraically independent over Q and let
y1, y2, y3 ∈ C be any solution of the system fj(x1, x2, x3, y1, y2, y3) = 0 (j = 1, 2, 3),
where

f1,0 = f1(t1, t2, t3, u1, u2, u3) = t1u1 + t2u2 + t3u3 − 1,

f2,0 = f2(t1, t2, t3, u1, u2, u3) = (t1u1)
2
+ (t2u2)

2
+ (t3u3)

2 − 2,

f3,0 = f3(t1, t2, t3, u1, u2, u3) = (t1u1)
4
+ (t2u2)

4
+ (t3u3)

4 − 3.
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We put

f4,0 = f4(t1, t2, t3, u1, u2, u3) := det

(
∂fi
∂tj

)
16i,j63

=

∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

2t1u
2
1 2t2u

2
2 2t3u

2
3

4t31u
4
1 4t32u

4
2 4t33u

4
3

∣∣∣∣∣∣∣∣∣∣
= 8u1u2u3(t1u1 − t2u2)(t1u1 − t3u3)(t3u3 − t2u2)(t1u1 + t2u2 + t3u3).

We then compute recursively the resultants (7.1) for j = 1, 2, 3 and i = 1, . . . , 4−j,
namely,

f1,1 = Res u1

(
f1,0, f2,0

)
, f2,1 = Res u1

(
f1,0, f3,0

)
, f3,1 = Res u1

(
f1,0, f4,0

)
,

f1,2 = Res u2

(
f1,1, f2,1

)
, f2,2 = Res u2

(
f1,1, f3,1

)
,

f1,3 = Res u3

(
f1,2, f2,2

)
= 290 · 518 · t2881 t1442 t603 ̸≡ 0,

which imply the algebraic independence of y1, y2, y3 over Q.
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