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HEIGHT REDUCING PROBLEM ON ALGEBRAIC INTEGERS

Shigeki Akiyama, Paulius Drungilas, Jonas Jankauskas

Abstract: Let α be an algebraic integer and assume that it is expanding, i.e., its all conjugates
lie outside the unit circle. We show several results of the form Z[α] = B[α] with a certain finite
set B ⊂ Z. This property is called height reducing property, which attracted special interest in
the self-affine tilings. Especially we show that if α is quadratic or cubic trinomial, then one can
choose B = {0, ±1, . . . , ± (|N(α)| − 1)}, where N(α) stands for the absolute norm of α over Q.
Keywords: expanding algebraic integer, height reducing property, canonical number system.

1. Introduction

Let α be an algebraic integer with conjugates α1 = α, α2, . . . , αd lying outside
the unit circle (including α itself). Such numbers are called expanding algebraic
numbers. We are interested in the height reducing property of α, that is

Z[α] = B[α]

for a certain finite set B ⊂ Z. We note that

Lemma 1. If an algebraic integer α, |α| > 1, has height reducing property, then
α is expanding.

Proof. Suppose α has height reducing property with a finite set B ⊂ Z. First
assume it has a conjugate β with |β| < 1. Set B = maxb∈B |b| and take an integer
K > B

1−|β| . Then K has an expression K =
∑n
i=0 biα

i for some integer n. Taking
conjugate, we have

K <
∞∑
i=0

B|β|i

which gives a contradiction. Therefore all the conjugates of α must be not less
than one in modulus. Assume that there is a conjugate β with |β| = 1. Then β
must be a complex number and ββ′ = 1 where β′ is a complex conjugate of β. By
taking conjugate map which sends β to α, we get a contradiction. �
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Note that roots of unity (with all their conjugates on the unit circle) also have
height reducing property with a set B = {−1, 0, 1}.

When α is expanding, it is of interest whether it has height reducing property,
and how small the set B we can take. Denote by N(α) the absolute norm of α
over Q, i.e., N(α) = α1 · α2 . . . αd. If we can choose B = {0, 1, . . . , |N(α)| − 1},
we say (α,B) forms a canonical number system (CNS for short). The question of
finding all α which gives CNS is studied by many authors. The early studies are
found in [13, 14, 11]. Readers may consult [3, 2] for recent developments to solve
the problem in a general frame work called shift radix system.

However not every expanding algebraic integer α generates a CNS. Indeed, if
there is a positive conjugate β of α, one sees that −1 can not be in B[α] which is
shown by taking conjugate.

For the rest of the paper let B = {0, ±1, . . . , ± (|N(α)| − 1)}.
Kirat and Lau [16] introduced a slightly different height reducing property for

expanding polynomials (all roots in |z| > 1, not necessarily irreducible) to consider
the connectedness of a class of self-affine tiles. In our notation, they are interested
in N(α) ∈ B[α] (see [17] for details).

In this paper we are mainly concerned with the following type of height reducing
problem:

Question. Does the equality Z[α] = B[α] hold for any expanding algebraic inte-
ger?

In the study of self-affine tilings, Lagarias and Wang [21] answered this ques-
tion in affirmative manner using wavelet analysis by extending the result of [12].
To read this result out of their consecutive works, see Corollary 6.2 in [21] and
Theorem 1.2 (ii) of [20]. However their proof is rather indirect and intricate, al-
though the statement itself looks simple in nature. The first author [1] asked for
a direct proof of Z[α] = B[α] (see problem 12). In this paper we shall give several
attempts to solve this question. For the moment, it is far from satisfactory but we
hope this paper gives a starting point for other trials. First we show

Theorem 2. For any expanding quadratic algebraic integer α the equality Z[α] =
B[α] holds.

Theorem 2 is derived from Theorem 4. We obtain a similar result for expanding
cubic trinomials.

Theorem 3. Let α be an expanding cubic algebraic integer whose minimal poly-
nomial is a trinomial (i.e., polynomial of the form x3 + ax2 + c or x3 + bx + c).
Then Z[α] = B[α].

The set of expanding cubic trinomials splits into two disjoint subsets, say, A
and B. For the trinomials from A we apply Theorem 4. The subset B consists
of trinomials of the form x3 − cx ± c, c > 2, c ̸= 8. Theorem 10 (see Section 3)
shows that in case of a trinomial from B it is impossible to derive Theorem 3 from
Theorem 4. Theorem 3 for trinomials from B is proved by constructing certain
finite automaton, the so called counting automaton (see Section 5).
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In general, we have the following result.

Theorem 4. Suppose that an expanding algebraic integer α is a root of a polyno-
mial

P (x) = xd + ad−1x
d−1 + · · ·+ a0 ∈ Z[x]

with
|a0| > |a1|+ |a2|+ . . .+ |ad−1|+ 1.

Then Z[α] = B̃[α] with B̃ = {0, ±1, . . . , ± (|a0| − 1)} .

Theorem 4 follows from Proposition 3.1 of [9]. Nevertheless we present an
alternative proof of Theorem 4 in Section 3.

Note that the strict inequality |a0| > |a1|+ |a2|+ . . .+ |ad−1|+ 1 would imply
that all the roots of P (x) are expanding algebraic integers.

Unfortunately, not every expanding algebraic integer α possesses a polynomial
P (x) satisfying the conditions of the theorem with P (0) = ±N(α). In the Note
at the end of Section 3, we provide an infinite family of such algebraic numbers
whose minimal polynomials over Q are certain cubic trinomials. Such examples
are minimal in terms of degree and the number of non-zero coefficients.

The best result we could obtain using Theorem 4 for a general expanding
algebraic integer is the following:

Theorem 5. Let α be an expanding algebraic integer of degree d (over Q). Suppose
that α1 is a conjugate of α of least modulus. Then for any integer n > − log(21/d−
1)/ log |α1| we have

Z[α] = Bn[α]

with Bn = {0, ±1, . . . , ± (|N(α)|n − 1)} .

The upper bound |N(α)|n − 1 for the size of digits in Bn is large. By using
more sophisticated division procedure, we were able to prove the next result.

Theorem 6. Let α be an expanding algebraic integer of degree d whose conjugates
are α1 = α, α2, . . . , αd. For any β ∈ Z[α] there exists a nonzero polynomial P (x) ∈
Z[x] of height at most

max

{
|N(α)|
2
√
D(α)

d∑
i=1

√
|αi|2 − 1

(|αi| − 1)
√
|αi|2d − 1

d∏
j=1

√
|αj |2d − 1

|αj |2 − 1
, |N(α)|/2

}

such that β = P (α). Here D(α) stands for the discriminant of α.

The bound in our Theorem 6 seems to be much smaller than that of Theo-
rem 5, however, there is no way of direct comparison. Nevertheless, in the division
algorithm used in Theorem 6 we prove that in order to find the representations of
elements of Z[α] with smallest possible digits, it suffices to find the expansions of
finitely many elements of Z[α], whose conjugates in Z[αi] have absolute value less
than or equal to N(α)/2(|αi| − 1).
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2. Proofs of Theorem 4 and 5

Theorem 4 follows from the next lemma.

Lemma 7. Suppose that an expanding algebraic integer α is a root of a polynomial
P (x) = xd + ad−1x

d−1 + · · ·+ a0 ∈ Z[x] with

|a0| > |a1|+ |a2|+ . . .+ |ad−1|+ 1,

and B̃ = {0, ±1, . . . , ± (|a0| − 1)} . Let A0, A1, . . . , Ad−1 be integers with A0 /∈ B̃.
Then there exist integers A′

0, A
′
1, . . . , A

′
d−1 and c0, c1, . . . , ck ∈ B̃ such that

A0 +A1α+ . . .+Ad−1α
d−1 = c0 + c1α+ . . .+ ckα

k

+
(
A′

0 +A′
1α+ . . .+A′

d−1α
d−1
)
αk+1

and |A′
0|+ |A′

1|+ . . .+ |A′
d−1| < |A0|+ |A1|+ . . .+ |Ad−1|.

Proof of Lemma 7. If A0 +A1α+ . . .+Ad−1α
d−1 = 0 then we can take k = 0,

c0 = 0 and A′
i = 0 for all i = 0, 1, . . . , d− 1.

Further, assume that A0 +A1α+ . . .+Ad−1α
d−1 ̸= 0.

Assume without loss of generality that A0 > 0. Then A0 /∈ B̃ implies A0 > |a0|.
Divide A0 by a0 :

A0 = c0 + qa0, 0 6 c0 < |a0|, q ̸= 0.

(Note that qa0 > 0.) Then P (α) = 0 implies

a0 = −a1α− a2α
2 − . . .− ad−1α

d−1 − αd

and
A0 = c0 + qa0 = c0 − qa1α− qa2α

2 − . . .− qad−1α
d−1 − qαd.

Hence

A0 +A1α+ . . .+Ad−1α
d−1

= c0 + (A1 − qa1)α+ . . .+ (Ad−1 − qad−1)α
d−1 − qαd

= c0 +
(
B0 +B1α+ . . .+Bd−1α

d−1
)
α

where Bd−1 = −q and Bi = Ai+1 − qai+1, i = 0, 1, . . . , d− 2.
Further, |a0| > |a1|+ |a2|+ . . .+ |ad−1|+ 1 implies

d−1∑
i=0

|Bi| =
d−1∑
i=1

|Ai − qai|+ |q| 6
d−1∑
i=1

|Ai|+ |q|

(
d−1∑
i=1

|ai|+ 1

)

6
d−1∑
i=1

|Ai|+ |q||a0| 6
d−1∑
i=0

|Ai|.
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If c0 ̸= 0 then the last inequality is strict, since A0 = |c0 + qa0| > |q||a0|.
On the other hand, if

∑d−1
i=0 |Bi| <

∑d−1
i=0 |Ai| then we can take k = 0, A′

i = Bi,
i = 0, 1, . . . , d− 1 and we are done.

Further, assume that
∑d−1
i=0 |Bi| =

∑d−1
i=0 |Ai|. (Then c0 = 0.)

If Bi ∈ B̃ for all i = 0, 1, . . . , d − 1 then we can take k = d, cj = Bj−1,
j = 1, 2, . . . , d, A′

i = 0 for all i = 0, 1, . . . , d− 1 and we are done in this case.
Now suppose that Bt /∈ B̃ for some t ∈ {0, 1, . . . , d−1}. Let s ∈ {0, 1, . . . , d−1}

be the smallest integer for which Bs ̸= 0. If Bs ∈ B̃ (in that case s < d − 1)
then we can take k = s + 1, c1 = . . . = cs = 0, cs+1 = Bs and A′

i = Bs+i+1,
i = 0, 1, . . . , d− s− 2 and A′

i = 0 for i > d− s− 2. Indeed,

d−1∑
i=0

|A′
i| =

d−1∑
i=s+1

|Bi| <
d−1∑
i=s

|Bi| =
d−1∑
i=0

|Ai|.

Finally, if Bs /∈ B̃ then we can repeat the above procedure with the number
Bs+Bs+1α+ . . .. After a finite number of iterations we will receive the inequality∑d−1
i=0 |A′

i| <
∑d−1
i=0 |Ai|. Otherwise the number

A0 +A1α+ . . .+Ad−1α
d−1 ̸= 0

would be divisible by αn for every positive integer n, which is impossible, since α
is expanding. �

We will derive Theorem 5 from Theorem 4 using the following lemma.

Lemma 8. Let P (x) ∈ Z[x] be a monic polynomial such that all roots of P (x) are
of modulus strictly greater than one. Then there exists a monic polynomial

Q(x) = xm + bm−1x
m−1 + . . .+ b1x+ b0 ∈ Z[x]

which is a multiple of P (x) and

|b0| > |b1|+ |b2|+ . . .+ |bm−1|+ 1.

Moreover, for any integer n > − log(21/d − 1)/ log |α1| one can choose Q(x) with
Q(0) = P (0)n, where d is the degree of P (x) and α1 is a root of P (x) of least
modulus.

Proof of Lemma 8. Let d be the degree of P (x). Suppose that α1, α2, . . . , αd
are all complex roots of P (x) (not necessarily distinct). Assume without loss of
generality that

1 < |α1| 6 |α2| 6 . . . 6 |αd|.
Let n be a positive integer. Set

G(x) =

d∏
i=1

(x− αni ) = xd + gd−1x
d−1 + . . .+ g1x+ g0.
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Clearly, all the coefficients gi are integers. Now the inequality 1+|gd−1|+. . .+|g1| 6
|g0| is equivalent to

1 + |gd−1|+ · · ·+ |g1|+ |g0| 6 2|g0|.

Dividing both sides by |g0| we obtain

1

|g0|
+

|gd−1|
|g0|

+ . . .+
|g1|
|g0|

+ 1 6 2.

Here the left hand side is

1 +

∣∣∣∣∣
d∑
i=1

α−n
i

∣∣∣∣∣+
∣∣∣∣∣∣
∑
i<j

α−n
i α−n

j

∣∣∣∣∣∣+ . . .+

∣∣∣∣∣
d∏
i=1

α−n
i

∣∣∣∣∣ 6
d∏
i=1

(1 + |α−n
i |) 6 (1 + |α−n

1 |)d.

Hence the inequality 1 + |gd−1|+ . . .+ |g1| 6 |g0| holds provided (1 + |α−n
1 |)d 6 2

which is equivalent to n > − log(21/d − 1)/ log |α1|. Finally, note that the polyno-
mial Q(x) = G(xn) =

∏d
i=1(x

n − αni ) is the required one. �

Remark 9. In Lemma 8 we get g0 = ±P (0) provided the conjugates of α of
degree d all lie in |z| > (21/d − 1)−1.

Proof of Theorem 5. Let α be an expanding algebraic integer whose minimal
polynomial is P (x). By Lemma 8 for any integer n > − log(21/d−1)/ log |α1| there
is a monic polynomial Q(x) with Q(0) = P (0)n which satisfies the condition of
Theorem 4. Finally, note that P (0) = ±N(α). �

Note. Suppose that α is an expanding algebraic integer. In order to prove the
equality Z[α] = B[α] using Theorem 4 one needs a polynomial P (x) satisfying
the conditions of Theorem 4 and P (0) = ±N(α). Unfortunately, this is false
in general. Consider an algebraic integer α which is the root of cubic trinomial
p(x) = x3 − cx + c, c > 2, c ̸= 8, c ∈ Z. If p(x) is reducible in Z[x], then it
has an integer root, say, m. The equation m3 = c(m − 1) implies that m − 1
divides m3. Since gcd(m3,m − 1) = 1 and c > 0, this implies m − 1 = 1. Thus
m = 2, c = 8. Hence the polynomial p(x) is irreducible in Z[x] if c > 2, c ̸= 8.
By direct substitution one easily checks that p(x) has three real roots in intervals
(−

√
c,−

√
c + 1), (1 + 1/c, 3/2) and (

√
c − 1,

√
c) if c > 7, all of modulus strictly

greater than one. For c = 2, 3, 4, 5, 6, the polynomial p(x) has one real and two
complex roots outside the unit circle, which can be verified by direct computation.
Alternatively, use the Shur-Cohn criterion [10], [23]. Thus α is a cubic expanding
algebraic integer. In Theorem 10 below, we prove that Z[α] = B[α] in principle
cannot be established by Theorem 4.

Theorem 10. The polynomial p(x) = x3−cx+c, c ∈ Z, c > 2, c ̸= 8 does not divide
any polynomial P (x) = anx

n+· · ·+a1x+a0 ∈ Z[x] with |a0| > |a1|+|a2|+· · ·+|an|
and a0 = ±c.
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Proof of Theorem 10. Assume that there exists a polynomial P (x) = anx
n +

· · · + a1x + a0 ∈ Z[x] which is a multiple of p(x) and satisfies |a0| > |a1| + |a2| +
· · ·+ |an| with a0 = ±c. Then P (x) = p(x)q(x) for some non constant polynomial
q ∈ Z[x]. Since a0 = ±c, q(0) = ±1. Hence, any irreducible factor of q(x) has
a root of modulus less or equal to 1. Let ζ be one of such roots. Then P (ζ) = 0
implies

−a0 = a1ζ + a2ζ
2 + . . . anζ

n. (1)

This implies ζk = ±1 for any coefficient ak ̸= 0, k = 1 . . . n. Otherwise, by
comparing the real parts of the complex numbers in both sides of (1), one has

|a1|+ |a2|+ · · ·+ |an| > |ℜ(a1ζ + a2ζ
2 + . . . anζ

n)| = |a0|,

which contradicts the assumption. This shows that ζ is a root of unity. Thus q(x)
is a product of cyclotomic polynomials and a constant a ∈ Z. Since q(0) = ±1,
a = ±1. We claim that

q(x) = ±(x− 1)r(x+ 1)s(x2 + 1)t(x2 + x+ 1)u(x2 − x+ 1)v, (2)

with integer exponents r, s, t, u, v > 0. To prove this, it suffices to show that at
least one coefficient a1, a2 or a3 is not equal to 0, so we have ζ = ±1, ζ2 = ±1 or
ζ3 = ±1 in (1).

Assume that a1 = a2 = a3 = 0. Let α be the root of polynomial p(x) =
x3 − cx + c. Then (1) with ζ replaced by α implies that α4 divides a0 = ±c in
the ring R of algebraic integers of Q(α). Note that p(α) = 0 gives α3 = c(α− 1).
Thus α4|c in R implies α4|α3, so α is a unit in R. This is impossible, since c > 2
and p(x) is irreducible if c ̸= 8 so the claim (2) is proved.

Observe that t > 1 in (2) implies 2|k for every non zero coefficient ak, k = 1 . . . n
in (1), since ik = ±1 if and only if 2|k (here, as usual, i2 = −1). In this case,
P (x) = P (−x) = P1(x

2) for some polynomial P1 ∈ Z[x]. This is impossible, since
such a polynomial P (x) would be divisible by p(x) and p(−x) so p(0)2 = c2 divides
a0 = P (0) = ±c contradicting c > 2.

Similarly, 3|k for any non-zero ak in (1) provided u > 1 or v > 1, since
(±e±2πi/3)k = ±1 if and only if 3|k. In this case, P (x) = P1(x

3) for some P1 ∈
Z[x]. Set ζ = e2πi/3. Then P (α) = P (ζα) = P1(α

3) = 0 for any root α of p(x).
The polynomials p(x) and p(ζx) have no roots in common, since

p(ζα)− p(α) = (ζ3α3 − cζα+ c)− (α3 − cα+ c) = c(1− ζ)α ̸= 0.

This implies that P (x) is a multiple of p(x)p(ζx). Since all roots of P are of
modulus greater or equal to one, one has |P (0)| > |p(0)p(ζ0)| = |p(0)|2 = c2 >
c = |a0| = |P (0)|, which again leads to the contradiction.

From the arguments given above, it follows that t = u = v = 0, thus q(x) =
(x− 1)r(x+ 1)s is the only remaining possibility. Then

|P (i)|2 = |p(i)q(i)|2 = |(i3 − ci+ c)2(i− 1)r(i+ 1)s|2 = ((1 + c)2 + c2)2r+s.
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The inequality

|P (i)| 6 |an|+ · · ·+ |a1|+ |a0| 6 2|a0| = 2c,

implies
((1 + c)2 + c2)2r+s 6 4c2

which is impossible unless r = s = 0. This contradicts the assumption that q(x)
is a non constant polynomial and concludes the proof of Theorem 10. �

3. Proof of Theorem 2

The following lemma provides a necessary condition for a quadratic algebraic in-
teger to be expanding which will be used in the proof of Theorem 2.

Lemma 11. Let α be an expanding quadratic algebraic integer with the minimal
polynomial x2 + ax + b. Then |a| 6 |b|. The equality |a| = |b| holds if and only if
b = |a| > 2 and |a| ̸= 4.

One could employ the necessary and sufficient conditions (see Corollary 2.1 of
[4]) developed using the Schur-Cohn criterion [10], [23]. Nevertheless, we provide
the proof of Lemma 11.

Proof of Lemma 11. We might assume that a > 0, since a = −(α + α′) and α
is expanding if and only if −α is expanding. Here α′ stands for the conjugate of
α.

Suppose, contrary to our claim, that a > |b|. This implies the inequalities

(a− 2)2 6 a2 − 4b < (a+ 2)2,

a− 2 6
√
a2 − 4b < a+ 2

and ∣∣∣∣∣ −a+
√
a2 − 4b

2

∣∣∣∣∣ 6 1

which is a contradiction, since

{α, α′} =

{
−a±

√
a2 − 4b

2

}
.

Now, suppose that |b| = a > 0 and α is expanding. We claim that b = a.
Indeed, b = −a implies

0 <
−a+

√
a2 + 4a

2
=

2a

a+
√
a2 + 4a

<
2a

a+ a
= 1

which again leads to the contradiction.
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Thus b = a > 0. Assume that b = a > 5. Then

min {|α|, |α′|} = min

{∣∣∣∣∣−a±
√
a2 − 4a

2

∣∣∣∣∣
}

=
a−

√
a2 − 4a

2

=
2a

a+
√
a2 − 4a

>
2a

a+ a
= 1

which implies that α is expanding.
Finally, one easily checks that b = a = 2 or 3 implies that α is expanding,

whereas b = a = 1 or 4 implies that α is not expanding quadratic algebraic
integer. �

Proof of Theorem 2. Let α be an expanding quadratic algebraic integer with
the minimal polynomial x2+ax+ b. Assume without loss of generality that a > 0.
(Indeed, Theorem 2 holds for α if and only if it holds for −α.) By Lemma 11,
0 6 a 6 |b|. If a + 1 6 |b| then the result follows from Theorem 4 with P (x) =
x2 + ax + b. Suppose that a = |b|. By Lemma 11 b = a > 2 and a ̸= 4. Now
the minimal polynomial of α is x2 + ax + a and we can apply Theorem 4 with
P (x) = (x− 1)(x2 + ax+ a) = x3 + (a− 1)x2 − a. �

4. Proof of Theorem 3

In the proof of Theorem 3 we will construct a finite automaton, which is called
"transducer" (cf. [5], [8]). We follow the notations of [25].

Definition 12. The 6-tuple A = (Q,Σ,∆, q, q0, δ) is called a finite transducer
automaton if

• Q,Σ and ∆ are non empty, finite sets, and
• q : Q× Σ → Q and δ : Q× Σ → ∆ are unique mappings.

The sets Σ and ∆ are called input and output alphabet, respectively. Q is the set of
states and q0 is the starting state. The mappings q and δ are called transformation
and result function, respectively.

We will use the following characterization of expanding cubic polynomials.

Lemma 13. The polynomial p(x) = x3 + ax2 + bx+ c with integer coefficients is
expanding if and only if {

|b− ac| < c2 − 1,

|b+ 1| < |a+ c|.
(3)

Proof. This is Lemma 1 from Akiyama and Gjini [4]. �
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Proof of Theorem 3. Suppose that α is an expanding cubic algebraic integer
whose minimal polynomial p(x) = x3 + ax2 + bx + c is a trinomial. Then either
a = 0 or b = 0. If b = 0 then the first inequality of (3) implies |a||c| < c2 − 1 and
|a| < |c|. Hence each expanding cubic trinomial x3+ax2+c satisfies 1+|a| 6 |c| and
we can apply Theorem 4. Now suppose that a = 0. Then the second inequality
of (3) implies |b + 1| < |c|. If b > 0 then 1 + |b| < |c| and again we can apply
Theorem 4. Let b < 0. Then the inequality |b + 1| < |c| implies b > −|c|. If
b > −|c| + 1 then 1 + |b| 6 |c| and once again we can apply Theorem 4. Finally
we are left with the trinomials p1(x) = x3 − cx + c, and p2(x) = x3 − cx − c,
c > 2. Note that p2(−x) = −p1(x). Hence it is enough to consider the trinomial
x3− cx+ c, c > 2. This trinomial is irreducible provided c ̸= 8 (see the note before
Theorem 10). However Theorem 10 shows that in this case it is impossible to
apply Theorem 4. Instead we will construct a finite automaton for this trinomial.

Now we briefly discuss how to construct the counting automaton A0(1) which
performs the addition of 1 in B[α]. We will follow the explanation presented in
[25]. Denote (σN , . . . , σ0) =

∑N
j=0 σjα

j . We say that (σN , . . . , σ0) is an α-adic
representation of v ∈ Z[α] if v = (σN , . . . , σ0) and σ0, . . . , σN ∈ B. Suppose
v ∈ Z[α] has α-adic representation v = (dN (v), dN−1(v), . . . , d0(v)). We want
to add 1 to the α-adic representation of v, i.e., we want to construct the α-adic
representation of v + 1 = (dN ′(v + 1), dN ′−1(v + 1), . . . , d0(v + 1)), dj(v + 1) ∈ B.
We perform the addition digit wise, from right to left. First we add 1 to the
first digit d0(v). The addition produces a carry q1 ∈ Z[α] obeying the scheme
d0(v) + 1 = d0(v + 1) + αq1. Note that in contrast to [25] our d0(v + 1) and q1
are not unique unless d0(v + 1) = 0. This reduces the problem of adding 1 to v to
the problem of adding q1 to (dN (v), dN−1(v), . . . , d1(v)). Iterating this procedure
yields the general scheme

dj(v) + qj = dj(v + 1) + αqj+1, j > 0. (4)

Since the division procedure (4) is not unique we restrict our iteration procedure
to the following: for each pair (qj , dj(v)) we fix the pair (qj+1, dj(v+1)) satisfying
(4), and each time the iteration starts with (qj , dj(v)) we will use the same pair
(qj+1, dj(v + 1)). Adopting the notation of Definition 12 we define the counting
automaton A0(1) by setting

Q = the set of possible carries,

Σ = ∆ = B,
q0 = 1,

q : Q× Σ → Q : (qj , dj(v)) 7→ qj+1 according to (4),

δ : Q× Σ → ∆ : (qj , dj(v)) 7→ dj(v + 1) according to (4).

Now we explicitly construct the counting automaton A0(1) for α – a root of
x3 − cx+ c, c > 2, c ̸= 8. Consider the following table.
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Number of carry Carry : Input/Output Next carry
0 0 : k|k 0
1 1 : k 6 c− 2, k|k + 1 0

: c− 1|0 2
2 1 0 c : k|k 3
3 1 1 c : k|k 4
4 1 1 c− 1 : k 6 0, k|k + c− 1 5

: k > 1, k|k − 1 4
5 1 1 : k > c+ 2, k|k − 1 6

: c+ 1|0 7
6 1 : k > c+ 2, k|k − 1 0

: c+ 1|0 8
7 1 0 c− 1 : k > c+ 2, k|k − 1 9

: c+ 1|0 10
8 1 0 c : k|k 9
9 1 1 c : k|k 11
10 2 1 c+ c : k|k 12
11 1 1 c+ 1 : k 6 1, k|k + 1 11

: k > 0, k|k − c+ 1 13
12 2 2 1 + c+ c : k 6 1, k|k + 1 14

: k > 0, k|k − c+ 1 15
13 1 1 : k 6 c− 2, k|k + 1 1

: c− 1|0 16
14 2 2 2 + c+ c : k 6 2, k|k + 2 14

: k > 1, k|k − c+ 2 15
15 1 2 c+ 2 : k 6 2, k|k + 2 17

: k > 1, k|k − c+ 2 18
16 1 0 c+ 1 : k 6 c− 2, k|k + 1 3

: c− 1|0 19
17 1 1 c+ 2 : k 6 2, k|k + 2 11

: k > 1, k|k − c+ 2 13
18 1 2 : k 6 c− 3, k|k + 2 1

: k > c− 2, k|k − c+ 2 16
19 2 1 c+ c : k|k 20
20 2 2 c+ c+ 1 : k 6 0, k|k + c− 1 21

: k > 1, k|k − 1 22
21 1 2 c− 2 : k 6 1, k|k + c− 2 23

: k > 2, k|k − 2 24
22 2 2 2 + c+ c : k 6 1, k|k + c− 2 21

: k > 2, k|k − 2 22
23 1 2 : k 6 c+ 2, k|k + c− 2 7

: k > c+ 3, k|k − 2 6
24 1 1 c− 2 : k 6 1, k|k + c− 2 5

: k > 2, k|k − 2 4
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Here a denotes −a. The second column "carry" indicates the carry. Carries are
numbered in the first column "number of carry". The third column "input/output"
defines the result function δ: k ∈ B denotes the input digit and k|u(k) means that
the corresponding output is u(k) ∈ B. The fourth column "next carry" defines the
transformation function q indicating the number of the next carry.

One can check that this counting automaton A0(1) has no "zero cycles," i.e., if
we begin with any carry from the second column and start walking the zero path
(each time taking input 0) eventually we will reach the sync point – carry 0. This
means that we can add 1 to any α-adic representation v ∈ Z[α] and obtain an
α-adic representation of v + 1.

If we run the counting automaton A0(1) starting with the carry no. 6 (i.e.
q0 := 1) this would produce the subtraction of 1. Now if we run A0(1) starting
with the carry no. 13 this would produce addition of 1 1 = α + 1. Then we take
the resulting representation and subtract 1. This gives the addition of 1 0 = α.
Similarly running A0(1) with the starting carry no. 5 and then adding 1 we obtain
the subtraction of α. If we run A0(1) starting with the carry no. 11, then subtract
1 0 = α and then for c − 1 times add 1 we would get the addition of 1 0 0 = α2.
Finally running A0(1) with starting carry no. 4, then adding 1 0 = α and then for
c − 1 times subtracting 1 we obtain the subtraction of 1 0 0 = α2. Hence starting
with 0 and applying ±1 or ±α or ±α2 we can find α-adic representation of any
number lying in Z[α] = Z+ Zα+ Zα2. �

Note. The polynomial x3 − cx + c, c > 2, c ̸= 8 is not a CNS polynomial (see
Theorem 3 of [6]).

5. Proof of Theorem 6

Proof. Let p(x) = xd+ad−1x
d−1+ . . .+a1x+a0 be the minimal polynomial of α .

(Then N(α) = α1α2 · . . . ·αd = ±a0.) Let γ ∈ Z[α], γ = C0+C1α+ . . .+Cd−1α
d−1,

Cj ∈ Z. Then the conjugates of γ are γi = C0 + C1αi + . . . + Cd−1α
d−1
i , i =

1, 2, . . . , d. Consider the following division procedure. There are integers r and q
such that C0 = r + a0q and |r| 6 |a0|/2. The equality p(αi) = 0 implies

a0 = −a1αi − . . .− ad−1α
d−1
i − αdi .

Thus
C0 = r − αi

(
a1q + a2qαi + . . .+ ad−1qα

d−2
i + qαd−1

i

)
.

Denote
γi = r + αiγ

′
i

where γ′i = C ′
0 + C ′

1αi + . . . + C ′
d−1α

d−1
i with integers C ′

j = Cj+1 − aj+1q, 0 6
j 6 d− 2, C ′

d−1 = −q. (Note that the numbers C ′
j do not depend on the choice of

conjugate γi.)
Now fix i ∈ {1, 2, . . . , d} and define the sequence x(i)n as follows.

x
(i)
0 = βi = B0 +B1αi + . . .+Bd−1α

d−1
i ,
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Bj ∈ Z, j = 0, 1, . . . , d−1, and x(i)n+1 is obtained from x
(i)
n via the division procedure

described above, i. e.,

x(i)n = rn + αix
(i)
n+1, |rn| 6 |a0|/2, n > 0. (5)

Then
βi = r0 + r1αi + . . .+ rn−1α

n−1
i + αni x

(i)
n (6)

and

|x(i)n | =
∣∣∣∣ βiαni − r0

αni
− . . .− rn−1

αi

∣∣∣∣ 6 |βi|
|αi|n

+
|r0|
|αi|n

+ . . .+
|rn−1|
|αi|

6 |βi|
|αi|n

+
|a0|
2

(
1

|αi|
+

1

|αi|2
+ . . .

)
=

|βi|
|αi|n

+
|a0|

2(|αi| − 1)
.

Let m = min16i6d |αi| and M = max16i6d |βi|. Then the last inequality yields

|x(i)n | 6 M

mn
+

|a0|
2(|αi| − 1)

6 M

mn
+

|a0|
2(m− 1)

. (7)

Thus the set {x(i)n : 1 6 i 6 d, n > 0} is finite, since it consists of algebraic
integers of degree at most d whose conjugates are bounded. Now (5) implies that
the sequence x(i)n is periodic starting from certain n > n0. (Note that n0 does not
depend on the choice of conjugate x(i)n .)

Further, take any δi ∈ {x(i)n : n > n0}. Since δi = x
(i)
n for infinitely many

positive integers n, (7) shows that

|δi| 6
|a0|

2(|αi| − 1)
=

|N(α)|
2(|αi| − 1)

(8)

for all i = 1, 2, . . . , d. Since δi ∈ Z[αi], there exist integers A0, A1, . . . , Ad−1 such
that

A0 +A1αi + . . .+Ad−1α
d−1
i = δi, i = 1, 2, . . . , d.

By Cramer’s rule,

Aj =
1

det(αri )

∣∣∣∣∣∣∣∣
1 α1 · · · αj−1

1 δ1 αj+1
1 · · · αd−1

1

1 α2 · · · αj−1
2 δ2 αj+1

2 · · · αd−1
2

· · · · · ·
1 αd · · · αj−1

d δd αj+1
d · · · αd−1

d

∣∣∣∣∣∣∣∣ (9)

for j = 0, 1, . . . , d − 1. Denote by Uk, 1 6 k 6 d, the determinant obtained from
the last determinant by omitting the k−th row and the j + 1−th column. On
applying Hadamard’s inequality, one obtains

|Uk| 6
∏
r ̸=k

√
|αr|2d − 1

|αr|2 − 1
. (10)
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It’s well-known that det2(αri ) = D(α), where D(α) stands for the discriminant of
α (see, e. g., Chapter 2 of [24]). Then in view of (9), (8) and (10), we have

|Aj | =
1√
D(α)

∣∣∣∣∣
d∑
k=1

δkUk

∣∣∣∣∣ 6 1√
D(α)

d∑
k=1

|N(α)|
2(|αk| − 1)

∏
r ̸=k

√
|αr|2d − 1

|αr|2 − 1

=
|N(α)|
2
√
D(α)

d∏
r=1

√
|αr|2d − 1

|αr|2 − 1

d∑
k=1

√
|αk|2 − 1

(|αk| − 1)
√
|αk|2d − 1

. (11)

Now, δi = x
(i)
n for certain n. Then in view of (6), we obtain

β = β1 = r0 + r1α+ . . .+ rn−1α
n−1 + αnδ1 =

r0 + r1α+ . . .+ rn−1α
n−1 +A0α

n +A1α
n+1 + . . .+Ad−1α

n+d−1.

Finally, in view of (11), the polynomial

P (x) = r0 + r1x+ . . .+ rn−1x
n−1 +A0x

n +A1x
n+1 + . . .+Ad−1x

n+d−1

is the required one. �
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