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ON A-INVARIANTS OF Z,EXTENSIONS OVER REAL ABELIAN
NUMBER FIELDS OF PRIME POWER CONDUCTORS

TakAsHI FUKUDA, KEIICHI KOMATSU, TAKAYUKI MORISAWA

Abstract: For each prime number £ less than 10%, we construct an infinite family of abelian
number fields for which Iwasawa Ay-invariants vanish.
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1. Introduction

For a prime number ¢ and an algebraic number field k&, we denote by pe(k) and
Ae(k) the Iwasawa p-invariant and A-invariant of the cyclotomic Z-extension of k
respectively. Greenberg conjecture, which is still open, predicts that both (k)
and Ag(k) vanish for all prime numbers ¢ and all totally real number fields k. In
spite of a large amount of papers about Greenberg conjecture, we lack a systematic
knowledge about it. For example, there is no known totally real number field &
different with the rational number field Q such that both p(k) and A¢(k) vanish
for all prime number ¢. Similarly, there is no known prime number ¢ such that
both pe(k) and A¢(k) vanish for all totally real number fields k. So we are led to
consider the following problems:

Problem 1.1. For a fixed prime number /¢, find an infinite family of totally real
number fields & such that ps(k) = \(k) = 0.

Problem 1.2. For a fixed totally real number field k, find an infinite family of
prime numbers ¢ such that ue(k) = \¢(k) = 0.

First we explain trivial examples. Let ¢ = 2. It is well known by genus theory
that there exist infinitely many real quadratic fields & with odd class number in
which the prime 2 is not decomposed. Then a famous theorem of Iwasawa in [10]
immediately shows pa(k) = A2(k) = 0 for such k. Conversely, let k be any real
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quadratic field. Then there exist infinitely many prime numbers ¢ which does not
divide the class number of k£ and is not decomposed in k. Iwasawa’s theorem again
concludes that pe(k) = Ae(k) = 0 for such £.

We are interested in non-trivial examples. Ozaki-Taya [14] constructs explicitly
an infinite family of real quadratic fields k& with pa(k) = A2(k) = 0 in which
2 splits. They also construct an infinite family of real quadratic fields k with
u2(k) = A2(k) = 0 which have even class numbers. Horie-Nakagawa [12] proved
that there are infinitely many real quadratic fields k£ with class number prime to
3 in which 3 is not decomposed. It follows pug(k) = As(k) = 0 for such k. Ono [13]
extended the result of Horie-Nakagawa to prime numbers less than 5000. Namely,
for a prime number ¢ less than 5000, he proved with the aid of computer that there
are infinitely many real quadratic fields k with class number prime to ¢ in which
¢ is not decomposed. Of course, uy(k) = A¢(k) = 0 for such k.

In this paper, we construct another type of infinite family of number fields k
with pe(k) = Ae(k) = 0, which contributes to Problem 1.1. Our targets in this
paper are abelian number fields k& and it is known that p.(k) = 0 by Ferrero-
Washington [3]. So we omit the statement py(k) = 0 in the following. In a similar,
but more general situation, Friedman-Sands [5] investigates the stability of A, -
invariants, while our attention concentrates in the vanishing of Ay-invariants. For
a prime number p and an integer m, we denote by B, ,,, the m-th layer of the
cyclotomic Zp-extension of Q. The following are our theorems.

Theorem 1.1. Let ¢ be a prime number less than 10*. Then the Iwasawa invariant
Ae(Ba,,) vanishes for all m > 0.

Theorem 1.2. Let ¢ be a prime number less than 10%. Then the Iwasawa invariant
Ae(Bs,) vanishes for all m > 0.

Remark 1.1. If ¢ satisfies #2 # 1 (mod 16), then there is only one prime ideal of
Bs. ., lying above £ and the class number of Bs ,, is prime to £ by [8, Proposition 3.
Hence Iwasawa’s theorem shows Ay(Bs,,) = 0 for all m > 0.

If ¢ satisfies 2 # 1 (mod 9), then there is only one prime ideal of Bs ,, lying
above ¢ and the class number of Bj ,, is prime to ¢ by [8, Proposition 2]. Hence
Iwasawa’s theorem again shows A¢(Bs,,) = 0 for all m > 0.

Remark 1.2. Friedman [4, Theorem. (B)] describes explicitly the behavior of
class numbers of intermediate fields of a multiple Zy-extension using A; and v;.
Our theorems asserts that \; = 0 in some special situations.

2. Preliminaries to Proof

We start with explaining notations. For a finite group G, we denote by |G| the
order of G. Let k be an algebraic number field. For a finite algebraic extension
K of k, we denote by [K : k] the extension degree of K over k. If K is a Galois
extension of k, we denote by G(K/k) the Galois group of K over k. For a prime
number ¢, we denote by Ay (k) the ¢-Sylow subgroup of the ideal class group of k.
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We denote by Q, the algebraic closure of the f-adic number field Q, and suppose
the multiplicative valuation | |, of Q, is normalized so that | £ |, = £71.

For one more prime number p, we denote by B, . the cyclotomic Z,-extension
of Q, by B, ., the m-th layer of B, ,/Q and by A¢(B,, ) the Iwasawa A-invariant
of the cyclotomic Z,-extension prmBgyoo/]Bp’m as mentioned above.

Let p and ¢ be distinct prime numbers. We put A, ., = A¢(By, »nBeyn) and
I' = G(Bp,oocBr,oo/Bp,oc). An element of I' acts on Ay, , canonically. We put

Al ={a € Ap., | a® = afor any element o € T}.

m,n

Then we have
|Am,n

<A

m’n’ ‘
and
|A£‘n,n‘ < |Arm”n"

for non-negative integers m, n, m,n withm <m andn <n' by class field theory
and genus theory. Since Leopoldt’s conjecture holds for By, ,,,, there exists integer
ng such that |A7, . | = |A}, | for any integer n with n, < n by [7, Proposition 1].
We put [T, | = 4L, |

Let F,, » be the maximal abelian /-extension of B,, ,,, which is unramified over
B, mBen. Then |[AL | = (Fun : BpmBeyn) by genus theory. Let Méf) be the

m,n

maximal abelian /-extension of B, ,, unramified outside ¢. The degree (M;,f) :
B, mBe,o) is finite again by the validity of Leopoldt’s conjecture for B, ,,. More
precisely, we have the following lemma which is a direct consequence of applying
[2, Lemma 8] to the extension M,%)/Bp’m.

Lemma 2.1. Let ¢ be an odd prime number with { # p and Mf,f) the maximal
abelian £-extension of B, ,, unramified outside ¢ and Re(B, ,,) the £-adic regulator
of By,m. Then we have

-1

|G(Mr(f)/Bp,mB€,oo)‘ =

|Am,0 |R€ (Bp,m)
=T

14

Since the degree [Mﬁ,f) : BpmBr oo is finite, there exists non-negative integer
ng and an element « in M;,f) such that My(f) =B, mBe oo (@) and that

[Bp’mBZ,no (@) :Bp’mB&no] = [Mr(rf) : Bp’mB&oo}

Let S be the inertia group of a prime ideal £ of B, ,, lying above ¢ with
respect to the extension M,Sf) /Bp,m. Let ¢ be the canonical restriction mapping of
G(MY /By ) t0 G(BpmBeny (@) /Bym). Since ¢(S) is the inertia group of £ in
By, mBe.n, () over By, ., by [15, p. 395], we have |A], | =|A7, ., |. The following
proposition describes a sufficient condition for Theorems 1.1 and 1.2.
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Proposition 2.2. Assume that there exists a constant m, such that |A£1p’oo| =
| AL, oo | for allm = my,. If \e(Bym,) =0, then A((Bp,m) = 0 for all m > 0.

Proof. Since A\¢(B, ,) = 0 means the boundness of {|A,,, »|}nZ;, there exists
non-negative integer ng such that |Ap,, | = |Am, | for any integer n with n, <n
and that |A1;np,m| = |A£Lp,oo|. Let m,n be integers with m, < m and ny < n
and assume that |A,,, .| < [Amn,|. Since A, ,, is isomorphic to A, ., as
I-module, A, is isomorphic to the direct sum Ay, ® (Amn/Am,n) as I-
module by [15, Lemma 16.15]. Since [Ap, n,| = [Am, n| < [Amn|, T-module
A/ Am, n is non-trivial, which implies (A 5 /Am,n)" is also non-trivial. Since
A}, ,, is isomorphic to Afnmw ® (Amn/Am, )", we have |A£npm| <|AL |- This
contradicts |A{np’oo| = |A}, ool Hence |Ap, n,| = |Am .l for all m,n with m, <
m and ny < n, from which we conclude that A\¢(B,,,) = 0 for all m > m,.
The vanishing of A¢(B, ) for 0 < m < m, is a well-known property of Z,-
extensions. |

,n|'

Now we consider primitive Dirichlet characters whose values lie in Q,. Let
w be the Teichmiiller character modulo ¢ and  an even character modulo gp™
whose order is p"*, where ¢ is 4 or p according as p = 2 or not. Then a generalized
Bernoulli number By -1, € Qy is defined by

1 quLZ
-1
By 1y = =y > bw ().
b=1

It follows that |B; ,-14]¢ < 1 because ¢ # p. (cf. [1]). Let L,(s,4) be an f-adic
L-function associated to . Then we see that

Le(lﬂ/)) = L€(07w) = _Bl,wflw (mOd E) (1)

by Theorem 5.11 and Corollary 5.13 in [15].
Then we are able to connect the assumption of Proposition 2.2 to a property
of Bernoulli numbers.

Proposition 2.3. Assume that there is a constant m, such that |Bl,w_1w|21 =1
for all m > m, + 1 and all even characters 1 modulo gp™ with order p™. Then
we have |A£1p |AY, ool for all m > m,,.

ool =
Proof. Let m be an integer with m > m, + 1. Theorem 5.24 in [15] says that

-1

-1
= HLK(LQ/)) ;
¢ ¥

L

[Am.0|Re(Bp.m)
=T

where 1 runs over all non-trivial even characters modulo ¢gp™. Since a character
modulo gp™ with order p* is induced from a character modulo gp**! with order p*,
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we have
-1 -1

(£)
Mm B 'H'LB oo
IG( /Bp,mBr,oo) | _ HBl,mw _1
¥ ¢

| G(MS) /By, Bo,oo)

= HLZ(L'(/J)
Y

/4

by Lemma 2.1 and (1), where ¢ runs over all even characters modulo gp™ with
order greater than p™r. Let £ be a prime ideal of By, ,,, lying above £ and T the

inertia group of £ in Mf,f) over By ., Let ¢ be the canonical restriction mapping
of G(Mf,f)/IB%pm) onto G(M,(sz/]B%p,mp). Since ¢(T) is the inertia group of £ in
Mf,fz) over B, ,,, by [15, p. 395], we have |A], | AL |

p,oo| - m,oo|‘

It is proved that a constant m, in Proposition 2.3 actually exists for a general
prime number p (cf. the proof of Theorem 16.12 in [15]). When p is 2 or 3, we
are able to give m, explicitly in the following form, which is a key to proof of
theorems. As usual, we denote by [x] the largest integer not exceeding a real
number z.

Proposition 2.4. Let 2¢ be the exact power of 2 dividing £ —1 or £? —1 according
as £ =1 (mod 4) or not and put

me = 2¢ + Blogz(ﬁ— 1)} —2.

Then we have |By ,-14]¢ = 1 for all m > mg + 1 and for all even characters 1)
modulo 22 with order 2™.

Proposition 2.5. Let 3¢ be the exact power of 3 dividing £2 — 1 and put
1 1
m3:20+ 510g3(€—1)+§ —1.

Then we have |By ,-14l¢ = 1 for all m > ms + 1 and for all even characters 1)
modulo 3™ with order 3™.

We reach Proposition 2.4 by combining [6, Lemma 4.4] and the proof of [6,
Proposition 4.7]. The same situation as Proposition 2.5 is treated in [5, p. 1664].
But we follow the argument in [6], which takes a slight different form in the case
p = 3, and give a proof of Proposition 2.5 for completeness and for convenience to
readers.

If 2¢ + [logs(¢ — 1)] < m, then [11, Lemma 1] and the proof of [11, Lemma 2]
shows that | By ,-14]¢ = 1. So we assume m3+1 < m < 2c+ [logz({ —1)] — 1 and
define a rational function f1(T") in the rational function field Q(7") by

fi(T) = < > wl(b)Tb> (T3¢ —1)7%,

b=1 (mod 3°)
0<b<3°¢

By specializing the argument in [15, p. 387] to the case p = 3, we are led to the
following fact.
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Lemma 2.6. Suppose that m > 2c — 1. If f1(¢) # 0 (mod £) for any primitive
3m+L_th root of unity ¢ in Q,, then By -1 # 0 (mod ¢) for any even character
1 modulo 3™t with order 3™.

We put g(T) = Y w H(143°0)T3 and h(T) = Yo w= L (143°)T?. Then
we have

T=HT = ) A(T) = 9(T) = W(T). 2)

Let ¢ be a primitive 3™*1-th root of unity in Q, and put u = m — 2¢ + 1,
§=C"" e=[({—1)/3"] and

. w14 39(i +34))  if i4+3%j <4,
” 0 if i43%5 > /.

Then T3" —6 mod / is irreducible over Z;[0] /£Z[6]. Since m < 2c+[logs(£—1)]—1,

we have u < [logg(f —1)] and e > 1. We also put s;(0) = >7_a; ;67 and
r(T) = Zf’lal 5;(8)T*. Then there exists a polynomial ¢(T) in Z[][T] such that

WT) = (T*" = 0)q(T) + r(T). (3)
We prepare one more auxiliary lemma.

Lemma 2.7. Let

9,0 e [
a1,0 e [
R p—
agu_10 **° G3u_1le

be a matriz of size 3* x (e+ 1) with @; j = a; ; + {Ze[0] in Ze[0]/0Z]0). If 3 > e,
then the rank of R is greater than or equal to e.

Proof. Note that a; ; = 1/(1 + 3% + 3°"*j) mod ¢ if a; ; # 0. Remove the last
column of R that possibly contains zero entries. Further, remove one row that
contains a zero entry and construct the matrix R of size (3% — 1) x e or 3% x e.
Then the rank of R is equal to e by [6, Lemma 4.5]. |

Proof of Proposition 2.5. Let mg +1 < m < 2¢+ [log5(¢ —1)] — 1 and ¢ be
a primitive 3™*1-th root of unity in Q,. We assume f;(¢) =0 (mod ¢). Then we
have h(¢*") = 0 (mod ¢) by (2). Hence we have r(¢3>*) = 0 (mod ¢) by (3). Since
T3" — 6 mod ¢ is irreducible over Z;[6]/¢Z[f], we have

3:/(0) =0 (mod ¢) (0<i<<3"=1). (4)
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From the condition ms + 1 < m, it follows that 32! > ¢ — 1, which implies
3=l > (¢ —1)/3" > e. Let @;; be the elements in Lemma 2.7 and put f =
{—1—3".

First suppose f > 3“~!, which implies f > e. We put

apo Qo
aio v Ol
R =
ae+1,0 Tt ae+1,e

By [6, Lemma 4.5], the rank of R; is equal to e + 1. Hence we have § = 0
(mod /) by (4), which is a contradiction. Next suppose f < 3“~!, which implies
3% — f>e+1. We put

af70 P af,e
afy10 v Gftle
Ry = ) )
Qftet1,0 “°° Qftetlee
From the definition of a; ;j, we have @yy1e = -+ = Gftet1, = 0. By Lemma 2.7

and [6, Lemma 4.5], the rank of Ry is equal to e +1if a;. # 0 or e if as. = 0.
In both cases, we have 8 = 0 (mod ¢) by (4), which is a contradiction. Hence
f1(¢) 0 (mod ¢) and Lemma 2.6 yield the conclusion. [ |

3. Proof of Theorems

We combine Propositions 2.2, 2.3, 2.4 and 2.5 to establish the following theorem,
which is a criterion for Theorems 1.1 and 1.2.

Theorem 3.1. Let p be 2 or 3, £ a prime number with p # £ and m, the integer
defined in Propositions 2.4 or 2.5. If A\¢(Bp,m,) = 0, then Ae(By,,) = 0 for all
m = 0.

We show with the aid of computer that A¢(Bg,,,) = 0 and A\¢(Bs ,,) = 0 for
all £ < 10*. Theorems 1.1 and 1.2 follow from these computational results. We
explain briefly computational procedures to show A\¢(B, ) = 0

We first note that Aa(Bs ) = A3(Bs,m) = 0 for all m > 0, which is a direct
consequence of the fact A¢(Q) = 0 for all prime number ¢. Next, we exclude ¢ which
satisfies £2 # 1 (mod 16) if p =2 and ¢2 # 1 (mod 9) if p = 3 by Remark 1.1. For
the remaining ¢, we apply the technique in Ichimura-Sumida [9].
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Let A,, = G(B,.»/Q) and 1 be a character of A, with values in Q,, namely
a character modulo ¢p™. Then an idempotent ey, € Zy[A,,] is defined by

1
e =
T Bl

Te(¢(0))o "

and A¢(By ) is decomposed as

Ae(Bp,m) = Z Aty (Bpm)
¥

where Tr is the trace map from Qu(v)(A,,)) to Q¢ and v runs over all repre-
sentatives of Qg-conjugacy classes of characters of A,,. Since A,, is canonically
isomorphic to G(Bp mBr,oo/Br,oo), Am acts on Ay, n = Ai(By,Ben) canonically
and gy (Bp.m) is defined as an integer satisfying

ley(Amn) [ = Aoy (Bpm)n+v (0 >>0)

with a constant integer . Now we summarize a condition for A¢(B, ,,) = 0 as
the following lemma.

Lemma 3.2. We have \¢(B, ., ) = 0 if and only if gy (By) = 0 for all integer
m with 1 < m < my and for all representatives v of Qq-conjugacy classes of
characters of A, with order p™.

We are in the situation (A) or (C) in [9] and note that |By ,-14[¢ = 1 implies
Aey(Bpm) = 0 (cf. (1), (2) and (3) in [9]). It is easy to calculate By ,-1,. Our
calculation shows that there are seven pairs (¢,1) in the case p = 2 and four
pairs (£,7) in the case p = 3 which does not satisfy [B; ,-1,]¢ = 1 in the range
¢ < 10 For all these (£,7), p™ divides ¢ — 1, namely the condition (C1) in [9]
holds. We applied Ichimura-Sumida criterion for these eleven pairs and verified
that the condition (Hp, ») = (H; ) in [9] holds for n = 2, namely Ay, (Bp m) = 0.
We show numerical data for these (¢,1). Readers should replace x in [9] with ¢
in our notation.

In this section, we write ( = exp(2mv/—1/k). Let o be the generator of A,,
induced by (gn+2 +—> C25n+2 or (gnt+1 — Cg‘nﬂ according as p =2 or p = 3. Let gy
be the minimal primitive root of ¢ and 7, the primitive p™-th root of unity in Q,
satisfying

£—1

— g[im (mod ¢).

We denote by 1), the character of A,, satisfying ¢, (o) = 9,,,. We show numerical
data about ¢ = ¢¥ with |B; -1, # 1 in the following tables in which Py(T)
denotes the Iwasawa polynomial associated with ¢ and ¢* means the prime number
¢ in [9, Corollary 2|. The program written by TC running on two computers with
64 bit Xeon processor have done the calculations in a month.
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Table 1: p =2

14 ¢ | Case | Py(T) mod ¢? 0*

31 [ ¢y | (C) | T+186 1429969
193 | 925 | (A) | T +33389 5521195777
257 | 27 | (A) | T + 12593 52145949697
521 | 93 | (A) | T +204753 18101857409
641 | 37 | (A) | T + 223068 1213630714369

3617 | 923 | (A) | T+11965036 | 60569710224641
4513 | 37 | (A) | T+ 15930890 | 235307606264321
Table 2: p =2

14 ¢ | Case | Py(T) mod ¢> e

73 | 1 | (C) | T+ 2263 56018449

109 | 3% | (A) | T+2289 1888152283
487 [ ¢8| (C) | T+ 39934 280668166291
1621 | 3% | (A) | T+2207802 | 16560570765169
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