Functiones et Approximatio 47.1 (2012), 89–93 doi: 10.7169/facm/2012.47.1.7

ON TORSION POINTS OF CERTAIN CM ELLIPTIC CURVES Naoki Murabayashi

Abstract: Let E be a CM elliptic curve defined over an algebraic number field F with CM by an imaginary quadratic field K. We determine the group of $K_{ab}F$ -rational torsion points of E. In some cases we also determine the group of F or KF-rational torsion points of E. **Keywords:** modularity, CM elliptic curves, torsion points.

1. Introduction

Let E be a CM elliptic curve defined over an algebraic number field $F \subseteq \mathbb{C}$ such that $\operatorname{End}_{\overline{\mathbb{Q}}}(E)$, the ring of endomorphisms of E defined over $\overline{\mathbb{Q}}$, is isomorphic to an order R of an imaginary quadratic field $K \subseteq \mathbb{C}$. It is known by work of Shimura [6] that there exists a normalized newform f of weight two on $\Gamma_1(N)$ for some N, such that E admits a non-zero homomorphism $\varphi: E \to J_f$ defined over $\overline{\mathbb{Q}}$, where J_f is the \mathbb{Q} -simple factor of the Jacobian variety $J_1(N)$ corresponding to f.

In the previous paper [1], we gave necessary and sufficient conditions for E to be modular over F, i.e., such a non-zero homomorphism φ can be defined over F. It holds that E is modular over F if and only if the group $E_{\text{tors}}(\mathbb{C})$ of torsion points of E rational over \mathbb{C} , i.e. the group of all torsion points of E, is contained in $E(K_{ab}F)$, where the subscript ab denotes the maximal abelian extension. Therefore, if E is modular over F, it holds that $E_{\text{tors}}(K_{ab}F) = E_{\text{tors}}(\mathbb{C})$.

In this paper we determine $E_{\text{tors}}(K_{ab}F)$ in the case where E is not modular over F. We also determine $E_{\text{tors}}(F)$ and $E_{\text{tors}}(KF)$ in some cases.

2. Main results

We put $K' := K_{ab}F$. Let

$$\Phi: \operatorname{Gal}(\overline{K}/K') \longrightarrow \operatorname{Aut}(E_{\operatorname{tors}}(\mathbb{C})) \qquad (\operatorname{resp.} \, \Psi: R^{\times} \longrightarrow \operatorname{Aut}(E_{\operatorname{tors}}(\mathbb{C})))$$

This research was financially supported by the Kansai University Grant-in-Aid for progress of research in graduate course, 2010.

²⁰¹⁰ Mathematics Subject Classification: primary: 11G15; secondary: 11G18

be the homomorphism corresponding to the canonical action of $\operatorname{Gal}(\overline{K}/K')$ (resp. R^{\times}) on $E_{\operatorname{tors}}(\mathbb{C})$. Then there exists a homomorphism $\chi : \operatorname{Gal}(\overline{K}/K') \longrightarrow R^{\times}$ such that $\Phi = \Psi \circ \chi$. We explain the definition of χ . Fix a complex uniformization $\xi : \mathbb{C}/\mathfrak{a} \xrightarrow{\sim} E(\mathbb{C})$, where \mathfrak{a} is a proper R ideal in K. Applying Theorem 5.4 in [5] (p. 117) with $\sigma \in \operatorname{Gal}(\overline{K}/K')$ and s = 1, we obtain the unique isomorphism $\xi' : \mathbb{C}/\mathfrak{a} \xrightarrow{\sim} E(\mathbb{C})$ such that $\xi(u)^{\sigma} = \xi'(u)$ for every $u \in K/\mathfrak{a}$. Putting $\chi(\sigma) := \xi' \circ \xi^{-1} \in \operatorname{Aut}(E) = R^{\times}$, we have $\xi(u)^{\sigma} = \xi'\xi^{-1}(\xi(u))$, i.e., $P^{\sigma} = \chi(\sigma)(P)$ for every $P = \xi(u) \in E_{\operatorname{tors}}(\mathbb{C})$. Let N be the size of the image of χ . By Theorem 5.1 in [1], E is modular over F if and only if N = 1. In particular, the condition that E is not modular over F implies $N \ge 2$, especially N = 2 in the case of $R^{\times} = \{\pm 1\}$.

Theorem 1. Assume that E is not modular over F. Then we have

$$E_{\rm tors}(K_{ab}F) = \begin{cases} E[2] & \text{if } N = 2, \\ E[\sqrt{-3}] (\subseteq E[3]) & \text{if } N = 3, \\ E[1+\sqrt{-1}] (\subseteq E[2]) & \text{if } N = 4, \\ \{O\} & \text{if } N = 6, \end{cases}$$

where E[a] $(a \in R)$ denotes the kernel of the endomorphism corresponding to a and O denotes the identity element of E.

Proof. If N = 2, then we have $\text{Im}\chi = \{\pm 1\} = \langle -1 \rangle$. We have

$$E_{\text{tors}}(K_{ab}F) = (E_{\text{tors}}(\mathbb{C}))^{\Psi(-1)} (:= \{P \in E_{\text{tors}}(\mathbb{C}) | \Psi(-1)(P) = P\}) \\ = E[2].$$

If N = 3, then we have $\operatorname{Im}\chi = \{1, \omega, \omega^2\} = \langle \omega \rangle$, where $\omega = \frac{-1 + \sqrt{-3}}{2}$. So $E_{\operatorname{tors}}(K_{ab}F) = (E_{\operatorname{tors}}(\mathbb{C}))^{\Psi(\omega)} = E[1 - \omega] = E[\sqrt{-3}]$. This is applied to the other cases.

By contraposition of Theorem 1, we have the following:

Theorem 2. If there exists a point of $E_{tors}(F)$ whose order is greater than or equal to 4, E is modular over F. In the case of $R^{\times} = \{\pm 1\}$, we can replace 4 with 3.

3. Further results

In this section we determine $E_{tors}(F)$ and $E_{tors}(KF)$ in some cases. We put F' := KF.

Proposition 3. Assume that if the conductor of R is odd, 2 does not remain prime in K. Then $E_{tors}(F')$ contains a subgroup of order 2.

Proof. Except the case where the conductor of R is odd and 2 remains prime in K, we can take a prime ideal \mathfrak{q} of R (not necessarily proper) lying above 2 such that $R/\mathfrak{q} \cong \mathbb{Z}/2\mathbb{Z}$. Lemma 1 in [4] implies that $E[2] \cong R/2R$ as R-module. Let M be the subgroup of E[2] corresponding to $\mathfrak{q}/2R$ by this identification. The action of $\operatorname{Gal}(\overline{F'}/F')$ on E[2] is R-linear, so M is stable under this. Since $E[2]/M \cong R/\mathfrak{q} \cong \mathbb{Z}/2\mathbb{Z}$, $M \cong \mathbb{Z}/2\mathbb{Z}$. Therefore the unique generator of M is fixed by the action of $\operatorname{Gal}(\overline{F'}/F')$, so F'-rational, hence $E_{\operatorname{tors}}(F') \supseteq M \cong \mathbb{Z}/2\mathbb{Z}$.

Proposition 4. Assume that

- (i) E is not modular over F;
- (ii) $K \neq \mathbb{Q}(\sqrt{-1});$
- (iii) 2 is ramified in K, i.e. $(2) = q^2$ (q is a prime ideal of K);
- (iv) there exists a prime ideal \mathfrak{Q} of F' lying above \mathfrak{q} such that \mathfrak{Q} is unramified over \mathfrak{q} .

Then $E_{\text{tors}}(F') \subsetneq E[2]$.

Proof. By assumption (ii) and (iii), $R^{\times} = \{\pm 1\}$. Hence, Theorem 1 implies that $E_{\text{tors}}(F') \subseteq E[2]$. By the theory of complex multiplication there exists a unique homomorphism

$$\alpha_{E/F'} : F'_{\mathbb{A}} \xrightarrow{\times} K^{\times}$$

(where $F'_{\mathbb{A}}^{\times}$ denotes the idele group of F') such that

- $\operatorname{Ker}(\alpha_{E/F'})$ is open in $F'_{\mathbb{A}}^{\times}$;
- For any $x \in F'_{\mathbb{A}}^{\times}$, $\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}\mathfrak{a} = \mathfrak{a}$, where $N_{F'/K}$ is the norm map from $F'_{\mathbb{A}}^{\times}$ to $K^{\times}_{\mathbb{A}}$;
- For any $x \in F_{\mathbb{A}}^{\prime \times}$, $\alpha_{E/F'}(x)\alpha_{E/F'}(x)^{\rho} = N(il(x))$, where z^{ρ} is the complex conjugate of a complex number z and il(x) is the fractional ideal of F' associated to an idele element x;
- For any $x \in F'_{\mathbb{A}} \times$ and $w \in K/\mathfrak{a} \ (\subseteq \mathbb{C}/\mathfrak{a})$,

$$\xi(w)^{[x, F']} = \xi(\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}w),$$

where [x, F'] is the element of $\operatorname{Gal}(F'_{ab}/F')$ corresponding to x by the reciprocity law of class field theory (see Theorem 19.8, p. 134 in [7]).

Claim 1. The condition that $E_{tors}(F') = E[2]$ is equivalent to the condition (*):

$$\alpha_{E/F'}(x)N_{F'/K}(x)_{\mathfrak{q}}^{-1} \in 1 + \mathfrak{q}^2$$
 for any $x \in F'_{\mathbb{A}}^{\times}$

(where $N_{F'/K}(x)_{\mathfrak{q}}$ denotes the \mathfrak{q} -component of $N_{F'/K}(x)$).

Proof of Claim 1. It is clear that $E_{tors}(F') = E[2]$ is equivalent to the condition:

$$\xi(\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}w) = \xi(w) \quad \text{for any } x \in F_{\mathbb{A}}^{\prime \times} \text{ and } w \in \frac{1}{2}\mathfrak{a}/\mathfrak{a}.$$

Putting $w = \frac{1}{2}a$ $(a \in \mathfrak{a}), \ \xi(\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}w) = \xi(w)$ is equivalent to the condition (**):

$$\frac{\alpha_{E/F'}(x)N_{F'/K}(x)_{\mathfrak{r}}^{-1}}{2}a \equiv \frac{1}{2}a \mod \mathfrak{a} \otimes_R \mathcal{O}_{\mathfrak{r}} \qquad \text{for any prime ideal } \mathfrak{r} \text{ of } K$$

(where $\mathcal{O}_{\mathfrak{r}}$ denotes the ring of integers in $K_{\mathfrak{r}}$, the completion of K with respect to the valuation associated to \mathfrak{r}). If $\mathfrak{r} \neq \mathfrak{q}$, $2 \in \mathcal{O}_{\mathfrak{r}}^{\times}$. We also have that $\alpha_{E/F'}(x)N_{F'/K}(x)_{\mathfrak{r}}^{-1} \in \mathcal{O}_{\mathfrak{r}}^{\times}$ because of $\alpha_{E/F'}(x)N_{F'/K}(x)^{-1}\mathfrak{a} = \mathfrak{a}$. So if $\mathfrak{r} \neq \mathfrak{q}$, the congruence relations in the condition (**) hold. Therefore we have

$$E_{\text{tors}}(F') = E[2] \iff \frac{\alpha_{E/F'}(x)N_{F'/K}(x)_{\mathfrak{q}}^{-1} - 1}{2} a \equiv 0 \mod \mathfrak{a} \otimes_R \mathcal{O}_{\mathfrak{q}}$$

for any $x \in F_{\mathbb{A}}^{\times \times}$ and $a \in \mathfrak{a}$
$$\iff \frac{\alpha_{E/F'}(x)N_{F'/K}(x)_{\mathfrak{q}}^{-1} - 1}{2} \in \mathcal{O}_{\mathfrak{q}} \qquad \text{for any } x \in F_{\mathbb{A}}^{\times \times}.$$

Since $(2) = q^2$, the last condition is equivalent to the condition (*). This completes the proof.

Claim 2. The condition (*) does not hold.

Proof of Claim 2. Let π be a prime element of $\mathcal{O}_{\mathfrak{q}}$, i.e. $(\pi) = \mathfrak{q}$ in $\mathcal{O}_{\mathfrak{q}}$. By assumption, $F'_{\mathfrak{Q}}/K_{\mathfrak{q}}$ is an unramified extension, so $N_{F'_{\mathfrak{Q}}/K_{\mathfrak{q}}}(\mathcal{O}^{\times}_{\mathfrak{Q}}) = \mathcal{O}^{\times}_{\mathfrak{q}}$, where $\mathcal{O}_{\mathfrak{Q}}$ denotes the ring of integers in $F'_{\mathfrak{Q}}$. Therefore there exists $x_0 \in \mathcal{O}^{\times}_{\mathfrak{Q}}$ such that $N_{F'_{\mathfrak{Q}}/K_{\mathfrak{q}}}(x_0) = (1+\pi)^{-1}$. We consider the restriction of $\alpha_{E/F'}$ to $\mathcal{O}^{\times}_{\mathfrak{Q}}$ and let \mathfrak{Q}^f $(f \ge 0)$ be the conductor of it. Putting $m := \sharp(\mathcal{O}_{\mathfrak{Q}}/\mathfrak{Q}^f)^{\times}$ if $f \ge 1$ and m := 1if $f = 0, x_0^m \equiv 1 \mod \mathfrak{Q}^f$, hence $\alpha_{E/F'}(\iota_{\mathfrak{Q}} x_0)^m = 1$, where $\iota_{\mathfrak{Q}} x_0$ denotes the element of $F'_{\mathbb{A}}^{\times}$ whose \mathfrak{Q} -component is x_0 and all the other components are one. Therefore we have

$$\alpha_{E/F'}(\iota_{\mathfrak{Q}} x_0) \in K^{\times} \cap \{\text{roots of unity}\} = \{\pm 1\}.$$

If $\alpha_{E/F'}(\iota_{\mathfrak{Q}}x_0) = 1$,

$$\alpha_{E/F'}(\iota_{\mathfrak{Q}}x_0)N_{F'/K}(\iota_{\mathfrak{Q}}x_0)_{\mathfrak{q}}^{-1} = 1 + \pi \notin 1 + \mathfrak{q}^2$$

and if $\alpha_{E/F'}(\iota_{\mathfrak{Q}}x_0) = -1$,

$$\alpha_{E/F'}(\iota_{\mathfrak{Q}}x_0)N_{F'/K}(\iota_{\mathfrak{Q}}x_0)_{\mathfrak{q}}^{-1} = -1 - \pi = 1 + \pi - 2(1+\pi) \notin 1 + \mathfrak{q}^2$$

because of $2(1 + \pi) \in \mathfrak{q}^2$. Hence the condition (*) does not hold.

By Claim 1 and 2, $E_{\text{tors}}(F') \subsetneqq E[2]$. This completes the proof of Proposition 4.

Theorem 5. Let K be an imaginary quadratic field with expression $\mathbb{Q}(\sqrt{-p_1\cdots p_r})$, where p_1,\ldots, p_r $(r \ge 1)$ are distinct prime numbers such that $p_i \equiv 1 \mod 4$ $(1 \le i \le r)$. Let \mathfrak{q} be the prime ideal of K lying above 2 (then $(2) = \mathfrak{q}^2$ in K). Let E be an elliptic curve defined over $\mathbb{Q}(j_E)$ such that $\operatorname{End}_{\overline{\mathbb{Q}}}(E)$ is isomorphic to the maximal order of K. Let H be the Hilbert class field of K (hence $H = K(j_E)$). Then we have

$$E_{\text{tors}}(\mathbb{Q}(j_E)) = E_{\text{tors}}(H) = E[\mathfrak{q}] \cong \mathbb{Z}/2\mathbb{Z}.$$

Proof. By Theorem 7.1 in [2], E is not modular over $\mathbb{Q}(j_E)$. So Theorem 1 implies that $E_{\text{tors}}(H) \subseteq E[2]$. Since $(2) = \mathfrak{q}^2$, M in the proof of Proposition 3 coincides with $E[\mathfrak{q}]$. Combining with Proposition 4, $E_{\text{tors}}(H) = E[\mathfrak{q}] \cong \mathbb{Z}/2\mathbb{Z}$. Since E is defined over $\mathbb{Q}(j_E)$, $\text{Gal}(H/\mathbb{Q}(j_E))$ acts on $E_{\text{tors}}(H) \cong \mathbb{Z}/2\mathbb{Z}$. Therefore the unique generator of $E_{\text{tors}}(H)$ is $\mathbb{Q}(j_E)$ -rational. Hence we get the assertion.

Acknowledgements. The presentation of Theorem 1 owes to the referee's comments. I wish to express my sincere thanks to the referee.

References

- N. Murabayashi, On the field of definition for modularity of CM elliptic curves, J. Number Theory 108 (2004), 268–286.
- [2] N. Murabayashi, On construction of certain CM elliptic curves, J. Number Theory 128 (2008), 576–588.
- [3] N. Murabayashi, Modularity of CM elliptic curves over division fields, J. Number Theory 128 (2008), 895–897.
- [4] J.L. Parish, Rational torsion in complex-multiplication elliptic curves, J. Number Theory 33 (1989), 257–265.
- [5] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten and Princeton University Press, 1971.
- [6] G. Shimura, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199–208.
- [7] G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton University Press, Princeton, NJ, 1998.

E-mail: murabaya@kansai-u.ac.jp

Received: 31 May 2011; revised: 22 July 2011

Address: Naoki Murabayashi: Department of Mathematics, Faculty of Engineering Science, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka, 564-8680, Japan.