Functiones et Approximatio 47.1 (2012), 7–13 doi: 10.7169/facm/2012.47.1.1

ON THE CRITICAL VALUES OF *L*-FUNCTIONS OF BASE CHANGE FOR HILBERT MODULAR FORMS II

CRISTIAN VIRDOL

Abstract: In this paper we generalize some results, obtained by Shimura, Yoshida and the author, on critical values of L-functions of l-adic representations attached to Hilbert modular forms twisted by finite order characters, to the critical values of L-functions of arbitrary base change to totally real number fields of l-adic representations attached to Hilbert modular forms twisted by some finite-dimensional representations.

Keywords: L-functions, Base change, special values, Hilbert modular forms.

1. Introduction

For F a totally real number field of degree n, let J_F be the set of infinite places of F, and let $\Gamma_F := \operatorname{Gal}(\overline{\mathbb{Q}}/F)$. Let f be a normalized Hecke eigenform of $\operatorname{GL}(2)/F$ of weight $k = (k(\tau))_{\tau \in J_F}$, where all $k(\tau)$ have the same parity and $k(\tau) \ge 2$. We denote by Π the cuspidal automorphic representation of $\operatorname{GL}(2)/F$ generated by f. In this paper we assume that Π is non-CM. We denote by ρ_{Π} the *l*-adic representation of Γ_F attached to Π . Define $k_0 = \max\{k(\tau)|\tau \in J_F\}$ and $k^0 = \min\{k(\tau)|\tau \in J_F\}$. Any integer $m \in \mathbb{Z}$ such that $(k_0 - k^0)/2 < m < (k_0 + k^0)/2$ is called a critical value for f or Π . Let F' be a totally real finite extension of F. Consider a finite-dimensional continuous representation

$$\psi: \Gamma_{F'} \to \mathrm{GL}_N(\mathbb{C}).$$

We assume throughout this paper that $\psi = \phi \otimes \chi$, where χ is a continuous abelian representation of $\Gamma_{F'}$, and ϕ is a continuous representation of $\Gamma_{F'}$ satisfying the following property: the number field $K := \overline{\mathbb{Q}}^{\ker \phi}$ is a $(\mathbb{Z}/2\mathbb{Z})^r$ -extension of a totally real field for some non-negative integer r, i.e. there exists a totally real subfield F''of K such that $\operatorname{Gal}(K/F') \cong (\mathbb{Z}/2\mathbb{Z})^r$. Let V_{ψ} be the space corresponding to ψ . We denote by $d_{\tau'}^+(\psi)$ the dimension of the subspace of V_{ψ} on which the complex

²⁰¹⁰ Mathematics Subject Classification: primary: 11F41; secondary: 11F80, 11R42, 11R80

conjugation corresponding to $\tau' \in J_{F'}$ acts by +1, and by $d_{\tau'}^{-}(\psi)$ the dimension of the subspace of V_{ψ} on which the complex conjugation corresponding to $\tau' \in J_{F'}$ acts by -1. Throughout this paper we write $a \sim b$ for $a, b \in \mathbb{C}$ if $b \neq 0$ and $a/b \in \overline{\mathbb{Q}}$.

In this paper we prove the following result:

Theorem 1.1. Assume $k(\tau) \ge 3$ for all $\tau \in J_F$ and $k(\tau) \mod 2$ is independent of τ . Let F' be a totally real finite extension of F. Let $\psi = \phi \otimes \chi$ be a finitedimensional complex-valued continuous representation of $\Gamma_{F'}$. Assume that the continuous representation χ is abelian, and that the continuous representation ϕ satisfies the following property: $K := \overline{\mathbb{Q}}^{ker\phi}$ is a $(\mathbb{Z}/2\mathbb{Z})^r$ -extension of a totally real number field for some non-negative integer r. Then

$$L(m,\rho_{\Pi}|_{\Gamma_{F'}} \otimes \psi) \sim \pi^{m[F':\mathbb{Q}]\dim\psi} \prod_{\tau' \in J_{F'}} c_{\tau'|F}^{(-1)^{(m+1)}}(\Pi)^{d_{\tau'}^{-}(\psi)} c_{\tau'|F}^{(-1)^{m}}(\Pi)^{d_{\tau'}^{+}(\psi)}$$

for any integer m satisfying

$$(k_0 + 1)/2 \leq m < (k_0 + k^0)/2,$$

where $c^{-}_{\tau'|F}(\Pi)$ and $c^{+}_{\tau'|F}(\Pi)$ appear in Propositions 2.2 and 2.3 below.

Theorem 1.1 is a generalization of Theorem 4.3 of [S], the main theorem of [Y], Theorem 4 of [Y], Theorems 1.1, 1.2 and 1.3 of [V1] (i.e. Propositions 2.1, 2.2 and 2.3 below; when ψ is abelian, Theorem 1.1 could be deduced easily from Propositions 2.1, 2.2 and 2.3 below), and of [V4]. It is conjectured that the result obtained in Theorem 1.1 should be true for arbitrary finite-dimensional complexvalued continuous representations ψ of $\Gamma_{F'}$.

2. Known results

Consider F a totally real number field and let J_F be the set of infinite places of F. If Π is a cuspidal automorphic representation (discrete series at infinity) of weight $k = (k(\tau))_{\tau \in J_F}$ of $\operatorname{GL}(2)/F$, where all $k(\tau)$ have the same parity and all $k(\tau) \ge 2$, then there exists ([T]) a λ -adic representation

$$\rho_{\Pi} := \rho_{\Pi,\lambda} : \Gamma_F \to \mathrm{GL}_2(O_{\lambda}) \hookrightarrow \mathrm{GL}_2(\overline{\mathbb{Q}}_l),$$

which satisfies $L(s, \rho_{\Pi,\lambda}) = L(s, \Pi) = L(s, f)$ (the equality up to finitely many Euler factors) and is unramified outside the primes dividing $\mathbf{n}l$ (by fixing a specific isomorphism $i: \overline{\mathbb{Q}}_l \xrightarrow{\sim} \mathbb{C}$ one can regard ρ_{Π} as a complex-valued representation). Here O is the coefficients ring of Π and λ is a prime ideal of O above some prime number l, \mathbf{n} is the level of Π and f is the normalized Hecke eigenform of $\mathrm{GL}(2)/F$ of weight k corresponding to Π . We denote by F_{∞}^{\times} the archimedian part of the idele group $F_{\mathbb{A}}^{\times}$ of F.

We know (this is Theorem 1.1 of [V1], which is a generalization of Theorem 4.3 of [S]):

Proposition 2.1. Assume $k(\tau) \ge 3$ for all $\tau \in J_F$ and $k(\tau) \mod 2$ is independent of τ . Let F' be a totally real extension of F. Then for every $\epsilon = (\epsilon(\tau)) \in (\mathbb{Z}/2\mathbb{Z})^{J_{F'}}$, there exists a constant $u(\epsilon, \Pi) \in \mathbb{C}^{\times}/\mathbb{Q}^{\times}$ with the following property. If ψ is a finite order Hecke character of F' such that

$$\psi_{\infty}(x) = \prod_{\tau \in J_{F'}} sgn(x_{\tau})^{\epsilon(\tau)+m}, \qquad x = (x_{\tau}) \in F_{\infty}^{'\times},$$

then

$$L(m,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\psi)\sim\pi^{m[F':\mathbb{Q}]}u(\epsilon,\Pi)$$

for any integer m satisfying

$$(k_0 + 1)/2 \leq m < (k_0 + k^0)/2.$$

We know (this is Theorem 1.2 of [V1], which is a generalization of the main theorem of [Y]):

Proposition 2.2. Assume that $k(\tau) \ge 3$ for all $\tau \in J_F$ and $k(\tau) \mod 2$ is independent of τ . Let F' be a totally real extension of F. Then, for every $\tau \in J_{F'}$, there exist constants $c_{\tau}^{\pm}(\Pi) \in \mathbb{C}^{\times}$ which are determined uniquely mod $\overline{\mathbb{Q}}^{\times}$ such that

$$u(\epsilon, \Pi) \sim \prod_{\tau \in J_{F'}} c_{\tau}^{\epsilon(\tau)}(\Pi),$$

where $\epsilon = (\epsilon(\tau)) \in (\mathbb{Z}/2\mathbb{Z})^{J_{F'}}$, and $u(\epsilon, \Pi)$ was defined in Proposition 1.1. The constants $c_{\tau}^{\pm}(\Pi) \in \mathbb{C}^{\times}$ are uniquely determined mod $\overline{\mathbb{Q}}^{\times}$.

Here we understand that $c^0_{\tau}(\Pi) = c^+_{\tau}(\Pi), c^1_{\tau}(\Pi) = c^-_{\tau}(\Pi)$ by identifying $\mathbb{Z}/2\mathbb{Z}$ with $\{0, 1\}$.

We know (this is Theorem 1.3 of [V1], which is a generalization of Theorem 4 of [Y]):

Proposition 2.3. Assume that $k(\tau) \ge 3$ for all $\tau \in J_F$ and $k(\tau) \mod 2$ is independent of τ . Let F' be a totally real extension of F. Then we have

$$c^{\pm}_{\tau}(\Pi) = c^{\pm}_{\tau|F}(\Pi) \quad \text{for every } \tau \in J_{F'}.$$

3. The proof of Theorem 1.1

We fix a non-CM cuspidal automorphic representation Π of $\operatorname{GL}(2)/F$ as in Theorem 1.1, and let F'/F be a totally real finite extension. Let $\psi = \phi \otimes \chi$ be a finite-dimensional representation of $\Gamma_{F'}$ as in Theorem 1.1. We denote by F'' the maximal totally real subfield of $K := \overline{\mathbb{Q}}^{\ker \phi}$. Obviously K is a $(\mathbb{Z}/2\mathbb{Z})^r$ -extension of F'' for some r, and χ is a direct sum of one-dimensional representations.

From the beginning of §15 of [CR] we know that there exist some subfields $E_i \subseteq K$ such that $\operatorname{Gal}(K/E_i)$ are solvable (actually we don't use this solvability

10 Cristian Virdol

in this paper), and some integers n_i , such that

$$[K:F']\phi = \sum_{i=1}^{u} n_i \operatorname{Ind}_{\operatorname{Gal}(K/F')}^{\operatorname{Gal}(K/F')} 1_{E_i},$$

where 1_{E_i} : $\operatorname{Gal}(K/E_i) \to \mathbb{C}^{\times}$ is the trivial representation. In particular we have $[K: F'] \dim \phi = \sum_{i=1}^{u} n_i [E_i: F']$. Then

$$L\left(s,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\phi\right)^{[K:F']} = \prod_{i=1}^{u} L\left(s,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\operatorname{Ind}_{\Gamma_{E_{i}}}^{\Gamma_{F'}}1_{E_{i}}\right)^{n_{i}}$$
$$= \prod_{i=1}^{u} L\left(s,\operatorname{Ind}_{\Gamma_{E_{i}}}^{\Gamma_{F'}}(\rho_{\Pi}|_{\Gamma_{E_{i}}})\right)^{n_{i}} = \prod_{i=1}^{u} L\left(s,\rho_{\Pi}|_{\Gamma_{E_{i}}}\right)^{n_{i}}$$

Let $F_i := E_i \cap F''$. One can see easily that E_i is a $(\mathbb{Z}/2\mathbb{Z})^{r_i}$ -extension of F_i for some r_i . Hence

$$L\left(s,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\phi\right)^{[K:F']} = \prod_{i=1}^{u} L\left(s,\rho_{\Pi}|_{\Gamma_{E_{i}}}\right)^{n_{i}}$$
$$= \prod_{i=1}^{u} \prod_{\phi_{i}: \operatorname{Gal}(E_{i}/F_{i})\to\mathbb{C}^{\times}} L\left(s,\rho_{\Pi}|_{\Gamma_{F_{i}}}\otimes\phi_{i}\right)^{n_{i}}.$$

Also one has

$$L\left(s,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\psi\right)^{[K:F']} = L\left(s,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\phi\otimes\chi\right)^{[K:F']}$$
$$=\prod_{i=1}^{u}\prod_{\phi_{i}: \operatorname{Gal}(E_{i}/F_{i})\to\mathbb{C}^{\times}}L\left(s,\rho_{\Pi}|_{\Gamma_{F_{i}}}\otimes\phi_{i}\otimes\chi|_{\Gamma_{F_{i}}}\right)^{n_{i}}.$$

Using the potential modularity of the representation $\rho_{\Pi}|_{\Gamma_{F_i}}$ (see Theorem A of [BGGT], Theorem 2.1 of [V2] or Theorem 1.1 of [V3]), one can prove easily the meromorphic continuation to the entire complex plane of the functions $L(s, \rho_{\Pi}|_{\Gamma_{F_i}} \otimes \phi_i \otimes \chi|_{\Gamma_{F_i}})$ (for details see for example the proof of Theorem 1.1 of [V1]), and hence one gets the meromorphic continuation to the entire complex plane of the function $L(s, \rho_{\Pi}|_{\Gamma_{F'}} \otimes \psi)^{[K:F']}$. Moreover, from the proof of Theorem 1.1 of [V1] we know that the function $L(s, \rho_{\Pi}|_{\Gamma_{F_i}} \otimes \phi_i \otimes \chi|_{\Gamma_{F_i}})^{[K:F']}$ has no poles or zeros at s = m for each integer m satisfying $(k_0 + 1)/2 \leq m < (k_0 + k^0)/2$. Thus for each integer m satisfying $(k_0 + 1)/2 \leq m < (k_0 + k^0)/2$, we get the identity

$$L\left(m,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\psi\right)^{[K:F']} = \prod_{i=1}^{u} \prod_{\phi_{i}: \operatorname{Gal}(E_{i}/F_{i})\to\mathbb{C}^{\times}} L\left(m,\rho_{\Pi}|_{\Gamma_{F_{i}}}\otimes\phi_{i}\otimes\chi|_{\Gamma_{F_{i}}}\right)^{n_{i}}$$

We have:

$$[K:F']\phi = \sum_{i=1}^{u} n_i \operatorname{Ind}_{\operatorname{Gal}(K/F')}^{\operatorname{Gal}(K/F')} 1_{E_i} = \sum_{i=1}^{u} n_i \operatorname{Ind}_{\operatorname{Gal}(K/F')}^{\operatorname{Gal}(K/F')} \operatorname{Ind}_{\operatorname{Gal}(K/E_i)}^{\operatorname{Gal}(K/F_i)} 1_{E_i}$$
$$= \sum_{i=1}^{u} n_i \operatorname{Ind}_{\operatorname{Gal}(K/F_i)}^{\operatorname{Gal}(K/F')} \left(\sum_{\phi_i: \operatorname{Gal}(E_i/F_i) \to \mathbb{C}^{\times}} \phi_i \right)$$
$$= \sum_{i=1}^{u} n_i \sum_{\phi_i: \operatorname{Gal}(E_i/F_i) \to \mathbb{C}^{\times}} \operatorname{Ind}_{\operatorname{Gal}(K/F')}^{\operatorname{Gal}(K/F')} \phi_i.$$

From this identity by tensoring by χ one can deduce easily that

$$d_{\tau'}^{-}(\psi) = \sum_{i=1}^{u} n_i \sum_{\phi_i: \operatorname{Gal}(E_i/F_i) \to \mathbb{C}^{\times}} \sum_{\{\tau_i \in J_{F_i} | \tau_i |_{F'} = \tau'\}} d_{\tau_i}^{-} \left(\phi_i \otimes \chi|_{\Gamma_{F_i}}\right)$$

and

$$d_{\tau'}^+(\psi) = \sum_{i=1}^u n_i \sum_{\phi_i: \operatorname{Gal}(E_i/F_i) \to \mathbb{C}^{\times}} \sum_{\{\tau_i \in J_{F_i} | \tau_i |_{F'} = \tau'\}} d_{\tau_i}^+ \left(\phi_i \otimes \chi|_{\Gamma_{F_i}}\right),$$

for any $\tau' \in J_{F'}$.

Recall that $[K:F'] \dim \phi = \sum_{i=1}^{u} n_i [E_i:F']$, and thus $[K:\mathbb{Q}] \dim \psi = \sum_{i=1}^{u} n_i [E_i:\mathbb{Q}] \dim \chi$. Now from Propositions 2.1, 2.2 and 2.3 one gets easily that

$$L\left(m,\rho_{\Pi}|_{\Gamma_{F_{i}}}\otimes\phi_{i}\otimes\chi|_{\Gamma_{F_{i}}}\right)$$

~ $\pi^{m[F_{i}:\mathbb{Q}]\dim\chi}\prod_{\tau_{i}\in J_{F_{i}}}c_{\tau_{i}|F'}^{-1^{(m+1)}}(\Pi)^{d_{\tau_{i}}^{-}(\phi_{i}\otimes\chi|_{\Gamma_{F_{i}}})}c_{\tau_{i}|F'}^{(-1)^{m}}(\Pi)^{d_{\tau_{i}}^{+}(\phi_{i}\otimes\chi|_{\Gamma_{F_{i}}})},$

and hence

$$L\left(m,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\psi\right)^{[K:F']} = \prod_{i=1}^{u}\prod_{\phi_{i}:\operatorname{Gal}(E_{i}/F_{i})\to\mathbb{C}^{\times}}L(m,\rho_{\Pi}|_{\Gamma_{F_{i}}}\otimes\phi_{i}\otimes\chi|_{\Gamma_{F_{i}}})^{n_{i}}$$
$$\sim \prod_{i=1}^{u}\prod_{\phi_{i}:\operatorname{Gal}(E_{i}/F_{i})\to\mathbb{C}^{\times}}\left(\pi^{mn_{i}[F_{i}:\mathbb{Q}]\dim\chi}\prod_{\tau_{i}\in J_{F_{i}}}c_{\tau_{i}|F'}^{-1}\right)$$
$$\times(\Pi)^{n_{i}d_{\tau_{i}}^{-}(\phi_{i}\otimes\chi|_{\Gamma_{F_{i}}})}c_{\tau_{i}|F'}^{(-1)^{m}}(\Pi)^{n_{i}d_{\tau_{i}}^{+}(\phi_{i}\otimes\chi|_{\Gamma_{F_{i}}})}\right)$$
$$=\pi^{m[F':\mathbb{Q}]\dim\psi}$$

$$\times \prod_{\tau' \in J_{F'}} c_{\tau'}^{-1^{(m+1)}}(\Pi)^{\sum_{i=1}^{u} n_i \sum_{\phi_i: \operatorname{Gal}(E_i/F_i) \to \mathbb{C}^{\times}} \sum_{\{\tau_i \in J_{F_i} \mid \tau_i \mid_{F'} = \tau'\}} d_{\tau_i}^{-}(\phi_i \otimes \chi|_{\Gamma_{F_i}})} \\ \times \prod_{\tau' \in J_{F'}} c_{\tau'}^{(-1)^m}(\Pi)^{\sum_{i=1}^{u} n_i \sum_{\phi_i: \operatorname{Gal}(E_i/F_i) \to \mathbb{C}^{\times}} \sum_{\{\tau_i \in J_{F_i} \mid \tau_i \mid_{F'} = \tau'\}} d_{\tau_i}^{+}(\phi_i \otimes \chi|_{\Gamma_{F_i}})} \\ = \pi^{m[K:\mathbb{Q}] \dim \psi} \prod_{\tau' \in J_{F'}} c_{\tau'}^{-1^{(m+1)}}(\Pi)^{d_{\tau'}^{-}(\psi)} c_{\tau'}^{(-1)^m}(\Pi)^{d_{\tau'}^{+}(\psi)} \\ = \pi^{m[K:\mathbb{Q}] \dim \psi} \prod_{\tau' \in J_{F'}} c_{\tau'|F}^{-1^{(m+1)}}(\Pi)^{d_{\tau'}^{-}(\psi)} c_{\tau'|F}^{(-1)^m}(\Pi)^{d_{\tau'}^{+}(\psi)},$$

and thus

$$L(m,\rho_{\Pi}|_{\Gamma_{F'}}\otimes\psi)\sim\pi^{m[F':\mathbb{Q}]\dim\psi}\prod_{\tau'\in J_{F'}}c_{\tau'|F}^{-1^{(m+1)}}(\Pi)^{d_{\tau'}^{-}(\psi)}c_{\tau'|F}^{(-1)^{m}}(\Pi)^{d_{\tau'}^{+}(\psi)},$$

which proves Theorem 1.1.

References

- [BGGT] T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor, *Potential auto*morphy and change of weight, preprint.
- [CR] C.W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, Wiley, New York, 1981.
- [S] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), no. 3, 637–679.
- [T] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), no. 2, 265–280.
- [V1] C. Virdol, On the critical values of L-functions of base change for Hilbert forms, Amer. J. Math. 132 (2010), no. 4, 1105–1111.
- [V2] C. Virdol, On the Birch and Swinnerton-Dyer conjecture for abelian varieties attached to Hilbert modular forms, J. Number Theory 131 (2011), no. 4, 681–684.

On the critical values of L-functions of base change for Hilbert modular forms II 13

- [V3] C. Virdol, Non-solvable base change for Hilbert modular forms and zeta functions of twisted quaternionic Shimura varieties, Ann. Fac. Sci. Toulouse Math. 19 (2010), no. 3-4, 831–848.
- [V4] C. Virdol, On the critical values of L-functions of tensor product of base change for Hilbert modular forms, Journal of Mathematics of Kyoto University 49 (2009), no. 2, 347–357.
- [Y] H. Yoshida, On a conjecture of Shimura concerning periods of Hilbert modular forms, Amer. J. Math. 117 (1995), no. 4, 1019–1038.

Address: Cristian Virdol: Department of Mathematics for Industry, Kyushu University. E-mail: virdol@imi.kyushu-u.ac.jp

Received: 12 March 2011; revised: 4 July 2011