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MINIMAL GENUS ONE CURVES

Mohammad Sadek

Abstract: In this paper we consider genus one equations of degree n, namely a (generalised)
binary quartic when n = 2, a ternary cubic when n = 3, and a pair of quaternary quadrics
when n = 4. A new definition for the minimality of genus one equations of degree n over local
fields is introduced. The advantage of this definition is that it does not depend on invariant
theory of genus one curves. We prove that this definition coincides with the classical definition
of minimality for all n 6 4. As an application, we give a new proof for the existence of global
minimal genus one equations over number fields of class number 1.
Keywords: Genus one curves, minimal models of curves, genus one equations of degree n.

1. Introduction

The following definitions can be found in [5]. A genus one equation of degree n
over a Dedeking domain R is defined as follows:

A genus one equation of degree n = 1 is a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ R. (1)

Two genus one equations of degree 1 with coefficients in R are R-equivalent if they
are related by the substitutions: x′ = u2x + r and y′ = u3y + su2x + t, where
r, s, t ∈ R, u ∈ R∗. We set det([u; r, s, t]) = u−1.

A genus one equation of degree n = 2 is a (generalised) binary quartic

y2 + (α0x
2 + α1xz + α2z

2)y = ax4 + bx3z + cx2z2 + dxz3 + ez4. (2)

Two genus one equations of degree 2 with coefficients in R are R-equivalent if
they are related by the substitutions: x′ = m11x +m21z, z

′ = m12x +m22z and
y′ = µ−1y+ r0x

2 + r1xz + r2z
2, where µ ∈ R∗, ri ∈ R and M = (mij) ∈ GL2(R).

We set det([µ, (ri),M ]) = µdetM.
A genus one equation of degree n = 3 is a ternary cubic

F (x, y, z) = ax3 + by3 + cz3 + a2x
2y + a3x

2z

+ b1y
2x+ b3y

2z + c1z
2x+ c2z

2y +mxyz = 0.
(3)

2010 Mathematics Subject Classification: primary: 11G20, 14H50



118 Mohammad Sadek

Two genus one equations of degree 3 with coefficients in R are R-equivalent if they
are related by multiplying by µ ∈ R∗, then substituting x′ = m11x + m21y +
m31z, y

′ = m12x + m22y + m32z and z′ = m13x + m23y + m33z, where M =
(mij) ∈ GL3(R). Set det([µ,M ]) = µdetM.

A genus one equation of degree n > 4 is given by l = n(n − 3)/2 quadratic
forms in n variables. Two genus one equations of degree n with coefficients in R
are R-equivalent if they are related by the substitutions: F ′

i = mi1F1 +mi2F2 +
. . . +milFl, i = 1, . . . , l, for M = (mij) ∈ GLl(R), and then x′j =

∑n
i=1 nijxi for

N = (nij) ∈ GLn(R). When n = 4, set det([M,N ]) = detM detN.
From now on we work throughout over a Henselian discrete valuation field

K with ring of integers OK . We assume moreover that char(K) ̸= 2, 3. We fix
a uniformiser t, a normalised valuation ν, and write k = OK/tOK . Set S =
SpecOK .

Let C be a smooth genus one curve over K. Let D be a K-rational divisor
on C of degree n. If n = 1, then C(K) ̸= ∅. If n > 2, then the divisor class [D]
defines a morphism C → Pn−1

K . In fact, the pair (C, [D]) is described by a genus
one equation of degree n over K.

For n 6 4, we associate invariants c4,ϕ, c6,ϕ and the discriminant ∆ϕ to a genus
one equation ϕ of degree n such that ∆ϕ = (c34,ϕ− c26,ϕ)/1728. Moreover, ϕ defines
a smooth curve of genus one if and only if ∆ϕ ̸= 0. The invariants c4,ϕ, c6,ϕ and ∆ϕ

are of weights r = 4, 6 and 12 respectively. In other words, if F ∈ {c4,ϕ, c6,ϕ,∆ϕ},
then F ◦ g = (det g)rF for every K-equivalence g. These invariants have been
known since the nineteenth century, and can be found in [1]. We scale these
invariants according to [10].

Definition 1.1. A genus one equation ϕ of degree n defined over the discrete
valuation field K, n 6 4, with ∆ϕ ̸= 0 is

(a) integral if the defining polynomials have coefficients in OK .

(b) minimal if it is integral and ν(∆ϕ) is minimal among all the valuations of
the discriminants of the integral genus one equations K-equivalent to ϕ.

Genus one equations of degree n appear when we try to describe elements in
the n-Selmer group of an elliptic curve. Producing integral genus one equations
with small coefficients representing elements in n-Selmer groups has been a target
for investigations. In order to obtain such genus one equations, we need to reduce
and minimize them. By reducing genus one equations, we mean reducing the size
of the coefficients while keeping the invariants unchanged. To minimise genus
one equations, we need to make the associated invariants smaller. Reduced and
minimal genus one equations of degree 2 appear as an essential part of the 2-descent
algorithm described by Birch and Swinnerton-Dyer in [2]. More recent treatment
for the minimisation of genus one equations of degree 2, 3 and 4 can be found
in [15], [9] and [16] respectively. An algorithmic approach for minimising genus
one equations of degree n, n 6 4, can be found in [6]. This paper is dedicated
to explaining the minimisation of genus one equations of degree n, for n 6 4, in
a geometric sense.
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The main obstacle which holds back the existence of a solution to the minimi-
sation question when n is large is the difficulty of describing the rings of invariants
associated to genus one equations. In order to overcome this difficulty, we give an
alternative definition for the minimality of genus one equations of degree n.

An integral genus one equation ϕ of degree n defines an S-scheme C. We
give criteria for C to be normal, and hence an S-model for its generic fiber CK ,
see Definition 2.1 below. We say that ϕ is geometrically minimal if the minimal
desingularisation of C is isomorphic to the minimal proper regular model of CK .
This definition does not involve invariant theory of genus one curves. Therefore,
it can be generalised to any n > 5 easily. Furthermore, geometric minimality is
not hard to check in practice once we know how to produce desingularisations.

We prove that geometric minimality agrees with the classical definition of min-
imality, see Definition 1.1, when n 6 4. Geometric minimality provides a non-
explicit way and hence sometimes a more convenient way of identifying classical
minimality.

In [14] we use geometric minimality to count the number of minimal genus one
equations of degree n, up to OK-equivalence, in a given K-equivalence class, for
n 6 4. These counting results are used in [8] to find bounds for heights of rational
points on elliptic curves.

Finally, we give a new proof for the following theorem ([6], Theorem 4.17).

Theorem 1.2. Let F be a number field of class number 1 with ring of integers
OF . Let C be a smooth genus one curve defined over F by a genus one equation
ϕ of degree n where n 6 4. Assume that C(Fν) ̸= ∅ for every completion Fν of F .
Let E be the Jacobian elliptic curve of C with minimal discriminant ∆. Then ϕ
is F -equivalent to an OF -integral genus one equation whose discriminant is ∆.

2. Models of genus one curves

Recall that K is a discrete valuation field with ring of integers OK , residue field
k, and S = SpecOK .

Definition 2.1. An S-curve is an integral, projective, flat, normal S-scheme f :
X → S of dimension 2. The generic fiber of C will be denoted by CK and its special
fiber by Ck. We define an S-model for a smooth curve C over K to be an S-curve
C such that CK is isomorphic to C.

Definition 2.2. Let C be an S-curve. Let (Γi)i∈I be the family of irreducible
components of Ck. For a strict subset J ⊂ I, a contraction of the components
Γj , j ∈ J, in C consists of an S-morphism u : C → CJ of S-schemes such that

(a) For each j ∈ J , the image u(Γj) consists of a single point xj ∈ CJ , and
(b) u defines an isomorphism C −

∪
j∈J Γj

∼−→ CJ −
∪
j∈J xj .

Since OK is Henselian, the contraction u : C → CJ of the components Γj , j ∈ J,
exists for any strict subset J ⊂ I. Moreover, the morphism u is unique up to unique
isomorphism, see ([12], Theorem 8.3.36 and Proposition 8.3.28). The following
theorem, Theorem 1 of ([3], §6.7), describes the contraction morphism explicitly.



120 Mohammad Sadek

Theorem 2.3. Let C be an S-curve. Let (Γi)i∈I be the family of irreducible
components of Ck. Let D be a non-trivial effective Cartier divisor on C. Let J
be the set of all indices j ∈ I such that Supp(D) ∩ Γj = ∅. Then the canonical
morphism

u : C → CJ := Proj(
∞⊕
m=0

H0(C,OC(mD)))

is the contraction of the components Γj , j ∈ J, and CJ is an S-curve.

Let C be a smooth genus one curve over K. Assume that C(K) ̸= ∅. Let E be
the Jacobian elliptic curve of C with minimal proper regular model Emin. Since
C ∼=K E, the minimal proper regular model of C is Emin.

The S-scheme C defined by an integral genus one equation ϕ : y2 + g(x, z)y =
f(x, z) of degree 2 is the scheme obtained by glueing {y2+g(x, 1)y = f(x, 1)} ⊂ A2

S

and {v2 + g(1, u)v = f(1, u)} ⊂ A2
S via x = 1/u and y = x2v. It comes with

a natural morphism C → P1
S given on these affine pieces by (x, y) 7→ (x : 1) and

(u, v) 7→ (1 : u).
The S-scheme defined by an integral genus one equation ϕ of degree n, where

n = 1 or n > 3, is the subscheme C ⊂ PmS defined by ϕ, where m = 2 when n = 1,
and m = n− 1 when n > 3.

Now we give the key definition of this paper.

Definition 2.4. Let ϕ be an integral genus one equation of degree n, n > 1,
defining a normal S-scheme C. Assume moreover that CK is smooth and
CK(K) ̸= ∅. Let Emin be the minimal proper regular model of the Jacobian of
CK . Then ϕ is said to be geometrically minimal if the minimal desingularisation
C̃ → C satisfies C̃ ∼= Emin.

For the definitions of minimal proper regular models and minimal desingulari-
sations see ([12], §9.3).

3. Normality

In this section we prove that an S-scheme defined by a minimal genus one equation
of degree n, n 6 4, is normal, and hence is an S-model for its generic fiber. Let
C be an S-scheme defined by an integral genus one equation of degree n where
CK is smooth. It is known that the normality of C implies that there are only
finitely many non-regular points on C, and all these points are closed points in the
special fiber, see p.8 of [4] for details. Moreover, if n 6 4, then C is a complete
intersection. It follows that C is normal if and only if C is regular at the generic
points of Ck. The latter statement is a direct consequence of Serre’s criterion for
normality, see ([12], Corollary 8.2.24). If Ck is reduced, then C is normal, see ([12],
Lemma 4.1.18).
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Lemma 3.1. Let (A,m) be a regular Noetherian local ring.

(i) Suppose that f ∈ m\{0}. Then A/fA is regular if and only if f ̸∈ m2.
(ii) Suppose that I is a proper ideal of A. Then A/I is regular if and only if

I is generated by r elements of m which are linearly independent mod m2,
with r = dimA− dimA/I.

Proof. See ([12], Corollaries 4.2.12 and 4.2.15). �

Lemma 3.2. Let K ′ be a finite extension of K with ring of integers OK′ . Let C
be an S-scheme. Set S′ = SpecOK′ , and C′ = C ×S S′. If C′ is S′-normal, then C
is S-normal.

Proof. That C′ is S′-normal means that OC′,x is integrally closed in Frac(OC′,x)
for every x ∈ C′. Now let x ∈ C, and α ∈ Frac(OC,x) satisfy an integral relation
for α over OC,x. The S′-normality of C′ implies that α ∈ OC′,x. Therefore,
α ∈ OC′,x ∩ Frac(OC,x) = OC,x. �

If f(x1, . . . , xn) =
∑m
i=1 aix

l1i
1 . . . xlnin ∈ OK [x1, . . . , xn], then f̃(x1, . . . , xn) will

denote its image in k[x1, . . . , xn]. Moreover, ν(f) = min{ν(ai) : 1 6 i 6 m}.
Let C be an S-scheme defined by an integral genus one equation ϕ of degree 3

where
ϕ : by3 + f1(x, z)y

2 + f2(x, z)y + f3(x, z) = 0, (4)

with f1(x, z) = b1x+b3z, f2(x, z) = a2x
2+mxz+c2z

2 and f3(x, z) = ax3+a3x
2z+

c1z
2x + cz3. If Ck contains an irreducible component of multiplicity m, m >

2, then we can assume without loss of generality that the defining equation of
this multiplicity-m component is y = 0. This means that min{ν(f2), ν(f3)} >
1, ν(f1) = 0 when m = 2, and min{ν(f1), ν(f2), ν(f3)} > 1, ν(b) = 0 when m = 3.

Proposition 3.3. Let C be an S-scheme defined by an integral genus one equation
ϕ of degree n, n 6 3. Assume that CK is smooth.

(i) If Ck consists only of multiplicity-1 components, then C is normal.

Now assume that Ck contains an irreducible component of multiplicity greater
than 1.

(ii) If n = 2 and ϕ : y2 + g(x)y = f(x), then C is normal if and only if there
exists R(x) ∈ OK [x] such that ν(f(x) + g(x)R(x)−R(x)2) = 1.

(iii) If n = 3, ϕ : F (x, y, z) = 0 is given as in equation (4), and Ck contains
a multiplicity-m component Γ : {y = 0}, m > 2, then C is normal if and
only if ν(f3) = 1.

Proof. (i) Since Ck is reduced and CK is smooth, the S-scheme C is normal. (ii)
This is Lemme 2 (c) of [11]. (iii) The maximal ideal corresponding to the generic
point ξ of Γ is mξ = ⟨t, y⟩. Now C is normal if and only if F (x, y, z) ̸∈ m2

ξ ,
see Lemma 3.1 (i). Since ν(f2) > 1, we have y3, y2, f2(x, z)y ∈ m2

ξ . Therefore,
F (x, y, z) ̸∈ m2

ξ if and only if ν(f3) = 1. �
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Now we study the normality of an S-scheme C defined by an integral genus
one equation ϕ : F (x1, x2, x3, x4) = G(x1, x2, x3, x4) = 0 of degree 4. We will
assume that F̃ and G̃ are coprime. Moreover, we may assume that ϕ is not OK-
equivalent to an equation whose reduction mod t is given by x21 = x22 = 0. These
two assumptions are reasonable to make because of the following lemma which can
be found in §2.5.1 of [16].

Lemma 3.4.

(i) If F̃ and G̃ have a common factor, then ϕ is not minimal.
(ii) If Ck is defined by x21 = x22 = 0, then either ϕ is not minimal, or

CK(K) = ∅.

We observe that (i) all the irreducible components of Ck are defined over the
residue field of a finite unramified extension of K, (ii) the normality of C over the
ring of integers of a finite extension of K implies the normality of C over OK , see
Lemma 3.2, and (iii) the minimality of ϕ is stable under unramified base changes,
see ([6], Theorem 3.6). Therefore, we will assume that k is algebraically closed
when we are finding criteria for the normality of C, see Proposition 3.5, and testing
the normality of C when C is minimal, see Theorem 3.6.

Since we will be interested in C when Ck contains a component of multiplicity
m, m > 2, we will write down all the possibilities for such a special fiber, up to
OK-equivalence of ϕ. Again k will be algebraically closed for the remainder of this
section. For a complete list for the forms of Ck, which includes special fibers with
only multiplicity-1 components, see [7].

Ck Defining equations
conic + double line x1x3 = x22 + x1x4 = 0

double conic x21 = x22 + x3x4 = 0
double line + two lines x21 + x22 = x1x3 + µx2x4 = 0, µ ∈ {0, 1}

triple line + line x1x2 = x21 + x2x4 = 0
two double lines x22 = x1x3 + µx2x4 = 0, µ ∈ {0, 1}
quadruple line x21 = x22 + x1x3 = 0

Let the quadrics F and G be given by the following two polynomials respec-
tively:

a1x
2
1 + a2x1x2 + a3x1x3 + a4x1x4 + a5x

2
2

+ a6x2x3 + a7x2x4 + a8x
2
3 + a9x3x4 + a10x

2
4,

b1x
2
1 + b2x1x2 + b3x1x3 + b4x1x4 + b5x

2
2

+ b6x2x3 + b7x2x4 + b8x
2
3 + b9x3x4 + b10x

2
4.

(5)

Proposition 3.5. Let C be the S-scheme defined by the integral equation ϕ : F =
G = 0, where F and G are given in (5). Assume that CK is smooth.

(i) If Ck contains a multiplicity-1 component Γ, then C is normal at Γ.
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(ii) If F̃ = x1x3 and G̃ = x22 + x1x4, then C is normal if and only if

ν(x4F (0, 0, x3, x4)− x3G(0, 0, x3, x4)) = 1.

(iii) If F̃ = x21 and G̃ = x22 + x3x4, then C is normal unless F (0, x2, x3, x4) ≡
µ(x22 + x3x4) mod t2, for some µ ∈ OK .

(iv) Assume that Ck contains a line Γ : {x1 = x2 = 0} of multiplicity m, m > 2,
with F̃ = q(x1, x2) and G̃ = x1x3 + µx2x4 + q′(x1, x2), µ ∈ {0, 1}. If
ν(F (0, 0, x3, x4)) = 1, then C is normal at Γ.

Proof. (i) Since Ck is reduced at the generic point ξ of Γ, we see that C is normal
at ξ.

Now we use Lemma 3.1 (ii) to study the normality of C at components of
multiplicity greater than 1. The model C is normal if and only if F,G ̸∈ m2

ξ , and
F,G are linearly independent mod m2

ξ , for every generic point ξ of Ck. The linear
independence condition is: For λ1, λ2 ∈ OK [x1, . . . , x4]ξ, if λ1F + λ2G ∈ m2

ξ , then
λ1, λ2 ∈ mξ.

(ii) Let ξ be the generic point of the double line {x1 = x2 = 0} in Ck, then
mξ = ⟨x1, x2, t⟩. It is clear that F,G ̸∈ m2

ξ . If λ1F + λ2G ∈ m2
ξ , then the fact that

x1 and t are linearly independent mod m2
ξ implies that λ1x3 + λ2x4 ∈ mξ, i.e.,

λ1 ≡ µx4 mod mξ and λ2 ≡ −µx3 mod mξ for some µ ∈ OK . Thus C is normal
if and only if ν(f) = 1, where

f = x4(a8x
2
3 + a9x3x4 + a10x

2
4)− x3(b8x

2
3 + b9x3x4 + b10x

2
4).

(iii) Let mξ = ⟨x1, x22 + x3x4, t⟩ be the maximal ideal corresponding to the
generic point ξ of the conic. We have G ̸∈ m2

ξ . If a5x
2
2+a9x3x4 = tu(x22+x3x4), u ∈

OK , then F ̸∈ m2
ξ if and only if ν(a6x2x3 + a7x2x4 + a8x

2
3 + a10x

2
4) = 1, otherwise

F ̸∈ m2
ξ if and only if ν(a5x22 + a6x2x3 + a7x2x4 + a8x

2
3 + a9x3x4 + a10x

2
4) = 1. If

λ1F + λ2G ∈ m2
ξ , then λ2 ∈ mξ because t and x22 + x3x4 are linearly independent

mod m2
ξ . Then the condition we obtained from F ̸∈ m2

ξ implies that λ1 ∈ mξ.
(iv) Assume that ξ is the generic point of Γ : {x1 = x2 = 0}. The ideal mξ is

given by ⟨x1, x2, t⟩. Since F̃ = q(x1, x2) and ν(a8x23+a9x3x4+a10x24) = 1, we have
F ̸∈ m2

ξ . Since G̃ = x1x3+µx2x4+ q
′(x1, x2), we have G ̸∈ m2

ξ because x1x3 ̸∈ m2
ξ .

Assume that λ1F + λ2G ∈ m2
ξ . Since x1, x2 and t are linearly independent mod

m2
ξ , it follows that λ2 ∈ mξ. Moreover, as ν(a8x23 + a9x3x4 + a10x

2
4) = 1, we get

λ1 ∈ mξ. �

Theorem 3.6. Let ϕ be an integral genus one equation of degree n, n 6 4, defining
an S-scheme C. Assume that CK is smooth and CK(K) ̸= ∅. If ϕ is minimal, then
C is normal.

Proof. If Ck consists only of multiplicity-1 components, then Ck is reduced and
hence C is normal. So, we only need to assume that ϕ is of degree n, n > 2, and
Ck contains a component of multiplicity greater than 1. Furthermore, we assume
that C is not normal, and hence ϕ does not satisfy the conditions included in
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Propositions 3.3 and 3.5. Then we will prove that ϕ is not minimal by finding
a genus one equation K-equivalent to ϕ whose discriminant has valuation less
than ∆ϕ. Recall that the discriminant varies by the 12th power of the determinant
of the K-equivalence transformation, see §1.

Let n = 2 and ϕ : y2 + g(x)y = f(x). Since Ck is a double line, we can assume
that g̃ = f̃ = 0. Since ϕ is not normal, we have ν(f) > 2. The equation ϕ is not
minimal because it is K-equivalent to the equation y2 + 1

t g(x)y = 1
t2 f(x).

Let n = 3 and ϕ : F (x, y, z) = 0 as in Equation (4). Now Ck contains
a multiplicity-m component Γ : {y = 0}, m > 2. Since C is not normal, we have
ν(f2), ν(f3) > 1 and ν(f3) > 2. Now ϕ is not minimal because it is K-equivalent
to the equation 1

t2F (x, ty, z) = 0.
Let n = 4 and ϕ : F = G = 0, where F and G are given as in (5). We will go

through the different cases of Proposition 3.5.
Assume that Ck : {x1x3 = x22 + x1x4 = 0} and

ν(x4F (0, 0, x3, x4)− x3G(0, 0, x3, x4)) > 2.

We use a matrix in GL4(OK) to get rid of the x21, x1x2 and x1x4-terms in F and
the x21, x1x2 and x1x3-terms in G. We notice that in the equation

x4F (0, 0, x3, x4)−x3G(0, 0, x3, x4) = −b8x33+(a8−b9)x23x4+(a9−b10)x3x24+a10x34,

we have min{ν(b8), ν(a8 − b9), ν(a9 − b10), ν(a10)} > 2. We apply the transforma-
tion x1 7→ x1 − a8x3 − a9x4, xi 7→ xi, i = 2, 3, 4, to get rid of the terms a8x23 and
a9x3x4. Thereafter, we obtain the genus one equation ϕ′ : F ′ = G′ = 0, where

F ′ = x1x3 + a5x
2
2 + a6x2x3 + a7x2x4 + a10x

2
4,

G′ = x1x4 + x22 + b6x2x3 + b7x2x4 + b8x
2
3 + (b9 − a8)x3x4 + (b10 − a9)x

2
4.

We deduce that ϕ′ is not minimal because it is K-equivalent to the equation

1

t2
F ′(t2x1, tx2, x3, x4) =

1

t2
G′(t2x1, tx2, x3, x4) = 0.

Assume that Ck : {x21 = x22 + x3x4 = 0}, and that ν(F (0, x2, x3, x4) − µ(x22 +
x3x4)) > 2 for some µ ∈ OK . Then ϕ is not minimal because it is K-equivalent to

1

t2
(F (tx1, x2, x3, x4)− µG(tx1, x2, x3, x4)) = G(tx1, x2, x3, x4) = 0.

Now assume that Ck contains a line Γ : {x1 = x2 = 0} of multiplicitym, m > 2,
with F̃ = q(x1, x2) and G̃ = x1x3 + µx2x4 + q′(x1, x2), where µ ∈ {0, 1}. Assume
that ν(a8x23 + a9x3x4 + a10x

2
4) > 2. Then ϕ is not minimal because it is K-

equivalent to

1

t2
F (tx1, tx2, x3, x4) =

1

t
G(tx1, tx2, x3, x4) = 0. �
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4. Criteria for minimality

We state the first main theorem of this paper.

Theorem 4.1. Let ϕ be an integral genus one equation of degree n, n 6 4.
Assume moreover that ϕ defines a normal S-scheme C, and that CK is smooth with
CK(K) ̸= ∅. Then ϕ is minimal, see Definition 1.1, if and only if ϕ is geometrically
minimal, see Definition 2.4.

Theorem 4.1 is known for the case n = 1, see ([12], §9.4) or [4]. When
n = 2, Liu proved that if ϕ is minimal, then ϕ is geometrically minimal, see
([11], Corollaire 5 (a)). We introduce a proof which works for all n 6 4.

4.1. Canonical sheaves of S-models

Let E be an elliptic curve with minimal proper regular model Emin. If C is
an S-model for E, then the canonical sheaf ωC/S of C satisfies ωC/S |E = ωE/K ,
moreover the restriction of the canonical sheaf ωC/S on E gives a canonical in-
jection H0(C, ωC/S) ↪→ H0(E,ωE/K). We have H0(C,OC) = OK . In partic-
ular, if ωC/S = ωOC , then H0(C, ωC/S) = ωOK . In addition, there exists an
ω0 ∈ H0(Emin, ωEmin/S) such that ωEmin/S = ω0OEmin , see ([4], Example 7.7).

Lemma 4.2. Let E be an elliptic curve over K with minimal proper regular model
Emin. Let C be a normal S-scheme with CK ∼= E. Let C̃ → C be the minimal
desingularisation of C. Then the following statements hold.

(i) H0(Emin, ωEmin/S) = H0(C̃, ωC̃/S) ⊆ H0(C, ωC/S) as subgroups in
H0(E,ωE/K).

(ii) If C̃ ∼= Emin, then H0(Emin, ωEmin/S) = H0(C, ωC/S).

Proof. (i) The equality holds because C̃ and Emin are two regular S-models for
E, see ([12], Corollary 9.2.25 (b)). The inequality holds because C is obtained
from C̃ as a contraction of a finite number of irreducible components, see ([12],
Lemma 9.2.17 (a)).

(ii) Since C̃ ∼= Emin, we have a contraction morphism f : Emin → C. Therefore,
f∗ωEmin/S = ωC/S , see ([12], Corollary 9.4.18 (b)). �

Proposition 4.3. Let C be an S-scheme defined by an integral genus one equation
ϕ of degree n. Assume that CK is smooth. Then ωC/S = ωϕOC , where ωϕ ∈
H0(CK , ωCK/K) is

(i) if n = 1: ωϕ = du/(2v + a1u+ a3), where u = x/z, v = y/z ∈ K(C),
(ii) if n = 2: ωϕ = dx/(2y + g(x)),
(iii) if n = 3: ωϕ = du/(∂F/∂v), where u = x/z, v = y/z ∈ K(C),
(iv) if n = 4: ωϕ = du2/(

∂F1

∂u4

∂F2

∂u3
− ∂F1

∂u3

∂F2

∂u4
), where ui = xi/x1 ∈ K(C), i =

2, 3, 4.

Proof. This is a direct consequence of ([12], Corollary 6.4.14). �
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Lemma 4.4. Let ϕ1, ϕ2 be two K-equivalent integral genus one equations of degree
n, n 6 4. Assume that ϕi defines an S-scheme Ci with Ci := (Ci)K being smooth.
If ωCi/S = ωϕiOCi , then

∆ϕ1ω
⊗12
ϕ1

= λ∆ϕ2ω
⊗12
ϕ2

∈ H0(C1, ωC1/K)⊗12 = H0(C2, ωC2/K)⊗12, where λ ∈ O∗
K .

Proof. Assume that ϕ1 = g.ϕ2 where g is a transformation defining the K-
equivalence. The transformation g defines an isomorphism γ : C1

∼= C2 which
satisfies γ∗ωϕ2 = (det g)ωϕ1 , see ([10], Proposition 5.19). Hence, ωϕ2 = α(det g)ωϕ1

as elements in H0(Ci, ωCi/K), where α ∈ O∗
K . Recall that ∆ϕ1

= (det g)12.∆ϕ2
. It

follows that ∆ϕ1ω
⊗12
ϕ1

= α12∆ϕ2ω
⊗12
ϕ2

. �

If ϕ1 is minimal, then we call the integer m such that ωϕ2 = ut−mωϕ1 , u ∈ O∗
K ,

the level of ϕ2, and denote it by level(ϕ2). The above corollary implies that the
level of an integral genus one equation of degree n does not depend on the choice
of the minimal genus one equation ϕ1. Notice that ν(∆ϕ2) = ν(∆ϕ1)+12 level(ϕ2).

Lemma 4.5. Keep the hypotheses of Lemma 4.4. Then we have H0(C1, ωC1/S) ⊆
H0(C2, ωC2/S) as sub-OK-modules of H0(Ci, ωCi/K) if and only if ν(∆ϕ1) 6 ν(∆ϕ2).
Moreover, the equality of the two submodules holds if and only if ϕ1 and ϕ2 have
the same level.

Proof. The assumption H0(C1, ωC1/S) ⊆ H0(C2, ωC2/S) is equivalent to ωϕ1 ∈
ωϕ2OK . Thus Lemma 4.4 asserts that ∆ϕ2 ∈ ∆ϕ1OK , i.e., ν(∆ϕ1) 6 ν(∆ϕ2).

The equality of the sub-OK-modules H0(C1, ωC1/S) = H0(C2, ωC2/S) means
that ωϕ1OK = ωϕ2OK as OK-modules, i.e., ωϕ1 ∈ ωϕ2O∗

K . Hence, ϕ1 and ϕ2 have
the same level by Lemma 4.4. �

4.2. Constructing genus one equations

Let E be an elliptic curve over K with minimal proper regular model Emin. Let
P ∈ E(K). We will denote the Zariski closure of {P} in Emin by {P}.

When n = 1, set D1 = 3.{P} where P ∈ E(K). When n > 2, let
∑

(Pi) ∈
Div(E) be a K-rational divisor on E of degree n. Assume moreover that {Pi} ∩
Emink is contained in exactly one irreducible component of Emink . Consider the
divisor Dn on Emin, and the S-model Cn for E given by

Dn =
∑

{Pi}, and Cn := Proj(
∞⊕
m=0

H0(Emin,OEmin(mDn))).

There is a canonical morphism un : Emin → Cn contracting all the irreducible
components of Emink except the ones having nonempty intersection with Dn, see
Theorem 2.3.

Lemma 4.6. Let Dn, n ∈ {1, 2, 3, 4}, be as above. Then H0(Emin,OEmin(mDn)),
m > 1, is a free OK-module of rank 3m if n = 1, and of rank mn if n > 2.
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Proof. It is known that H0(Emin,OEmin(mDn))⊗OK K
∼= H0(C,OC(mDn|C)),

see for example ([12], Corollary 5.2.27). By virtue of the Riemann-Roch Theorem,
H0(C,OC(mDn|C)) is a 3m-dimensional K-vector space when n = 1, and an
mn-dimensional K-vector space when n > 2.

Since OEmin(mDn) is an invertible sheaf on Emin, it follows that
H0(Emin,OEmin(mDn)) is a flat OK-module. Therefore,H0(Emin,OEmin(mDn))
is a finitely generated flat module over the local ring OK , hence it is free. �

Theorem 4.7. Let Cn and Dn, n 6 4, be as above. Then there exists an integral
genus one equation ϕn of degree n defining Cn.

Proof. For n = 1, see ([12], §9.4). For n > 2, we pick a basis {x1, . . . , xn} of
H0(Emin,OEmin(Dn)). Consider the morphism λn : Emin −→ Pn−1

S associated
to the basis {x1, . . . , xn}.

For n = 2, put x1 = x and x2 = 1. We have P1
S = SpecOK [x] ∪ SpecOK [1/x].

Let U = λ−1
2 (SpecOK [x]) and V = λ−1

2 (SpecOK [1/x]). We have C2 = U ∪ V.
Taking the integral closure of OK [x] in K(C2), we have

OC2(U) = OK [x]⊕ yOK [x], for some y ∈ OC2(U),

moreover there exist g(x), f(x) ∈ OK [x] such that deg g 6 2, deg f 6 4 and
y2+ g(x)y = f(x), see ([11], Lemme 1). Following the same argument for OC2(V ),
we deduce that C2 is the union of the two affine open schemes

U = SpecOK [x, y]/(y2 + g(x)y − f(x)),

V = SpecOK [w, z]/(z2 + w2g(1/w)z − w4f(1/w)),

where w = 1/x, z = y/x2. Hence, we are done when n = 2.
Now let n = 3, 4. Let Zn be the closed subset λn(Emin) ⊂ Pn−1

S endowed with
the reduced scheme structure. According to the description of the contraction
morphism included in the proof of ([12], Proposition 8.3.30), the morphism λn :
Emin → Zn ⊆ Pn−1

S factors into un : Emin → Cn followed by vn : Cn → Zn, where
vn is the normalisation morphism. It is understood that vn is a finite morphism,
hence for an irreducible component Γ of Emink , λn(Γ) is a point if and only if un(Γ)
is a point. In other words, the special fibers of Cn and Zn have the same number
of irreducible components. We are going to show that Zn is defined by an integral
genus one equation of degree n. Then we show that Cn ∼= Zn.

When n = 3, the free OK-module H0(Emin,OEmin(3D3)) is of rank 9, see
Lemma 4.6, but it contains the 10 elements x31, x32, x23, x21x2, x21x3, x22x1, x22x3,
x23x1, x23x2, x1x2x3. It follows that there are ai ∈ OK such that

F := a1x
3
1 + a2x

3
2 + a3x

3
3 + a4x

2
1x2 + a5x

2
1x3 + a6x

2
2x1

+ a7x
2
2x3 + a8x

2
3x1 + a9x

2
3x2 + a10x1x2x3 = 0.

Rescaling x1, x2 and x3, we can assume that there is at least one ai ∈ O∗
K . Now

Z3 is contained in ProjOK [x1, x2, x3]/(F ).
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When n = 4, we consider the 10 elements x21, x1x2, x1x3, x1x4, x22, x2x3, x2x4,
x23, x3x4, x24 in the rank-8 free OK-module H0(Emin,OEmin(2D4)). They satisfy
two quadrics Q and R with coefficients in OK . Moreover, by rescaling x1, x2, x3
and x4 we can assume that both Q and R have at least one coefficient in O∗

K . Now
Z4 is contained in the intersection of Q and R.

We want to show that Zn = ProjOK [x1, . . . , xn]/In, where I3 = (F ) and
I4 = (Q,R). Recall that both schemes are of dimension 2. Since
Zn ⊆ ProjOK [x1, . . . , xn]/In, we have ProjOK [x1, . . . , xn]/In = Zn ∪ Z ′

n, for
some closed subscheme Z ′

n ⊂ Pn−1
S , where Z ′

n ̸= ProjOK [x1, . . . , xn]/In. Since
Proj(OK [x1, . . . , xn]/In ⊗K) is irreducible, ProjOK [x1, . . . , xn]/In is irreducible
itself. It follows from the definition of irreducibility that Z ′

n = ∅, and the closed
subscheme Zn is ProjOK [x1, . . . , xn]/In.

Now both Cn and Zn, n = 3, 4, have dimension 2, their generic fibers are iso-
morphic, and their special fibers have the same number of irreducible components.
By virtue of ([12], Remark 8.3.25), vn : Cn → Zn is an isomorphism. �

Remark 4.8. Let n > 2. Let ϕ be an integral genus one equation of degree n
defined by a hyperplane section H. Assume moreover that ϕ defines a morphism
E → Pn−1

K . Then we can choose Dn = (n− 1){P}+ {Q} where P,Q ∈ E(K) are
such that (n− 1)P +Q ∼ H. It follows that ϕn is K-equivalent to ϕ.

4.3. Proof of Theorem 4.1

Proof of Theorem 4.1. We first assume that ϕ is geometrically minimal, i.e.,
that C̃ ∼= Emin. Thus we have a contraction morphism f : Emin → C. We claim
that if C′ is a normal S-scheme defined by an integral genus one equation ϕ′ which is
K-equivalent to ϕ, then H0(C, ωC/S) ⊆ H0(C′, ωC′/S), and hence ν(∆ϕ) 6 ν(∆ϕ′),
see Lemma 4.5. Therefore, ϕ is minimal.

Lemma 4.2 (i) shows that H0(Emin, ωEmin/S) ⊆ H0(C′, ωC′/S). The fact that
C is obtained from Emin by contraction implies the equation H0(C, ωC/S) =
H0(Emin, ωEmin/S), see Lemma 4.2 (ii). Thus the claim is proved.

Before we proceed with the proof of the second part of the theorem we need
the following lemma.

Lemma 4.9. Let ϕ be a genus one equation of degree n defining a normal S-
scheme C with CK being smooth and CK(K) ̸= ∅. Let Emin be the minimal proper
regular model of the Jacobian of CK . Then H0(Emin, ωEmin/S) = H0(C, ωC/S) as
sub-OK-modules of H0(CK , ωCK/K) if and only if ϕ is minimal.

Proof. Assume that H0(Emin, ωEmin/S) = H0(C, ωC/S). Let C′ be a normal S-
scheme defined by a genus one equation K-equivalent to ϕ. By virtue of
Lemma 4.2 (i), we have H0(C, ωC/S) ⊆ H0(C′, ωC′/S). Therefore, ϕ is minimal
by Lemma 4.5.

Now assume that ϕ is minimal. According to Theorem 4.7 and Remark 4.8,
there exists an integral genus one equation ϕ′ which is K-equivalent to ϕ. More-
over, ϕ′ is geometrically minimal because the minimal desingularisation of the
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S-scheme C′ defined by ϕ′ is isomorphic to Emin. Therefore, H0(Emin, ωEmin/S) =
H0(C′, ωC′/S) by Lemma 4.2 (ii). Moreover, ϕ′ is minimal by the first part of The-
orem 4.1. Since the genus one equations ϕ and ϕ′ are both minimal, in particular
they have the same level, Lemma 4.5 implies that H0(C′, ωC′/S) = H0(C, ωC/S),
and we are done. �

Now we conclude the proof of Theorem 4.1.
Assume that ϕ is minimal. We assume on the contrary that C̃ ̸∼= Emin, and

therefore the strict transform of Ck in C̃k contains an exceptional divisor Γ. By ([12],
Proposition 9.3.10), we have degωC̃/S |Γ < 0. It follows that H0(Γ, ωC̃/S |Γ) = 0,

therefore ωC̃/S is not generated by its global sections on Γ. But we have

ωC̃/S |Γ = ωC/S |Γ = ωϕOC |Γ,

where ωϕ is given as in Proposition 4.3. The global sections of ωC̃/S are

H0(C̃, ωC̃/S) = H0(Emin, ωEmin/S) = H0(C, ωC/S) = ωϕOK ,

where the second equality is justified by C being minimal, see Lemma 4.9. There-
fore, ωC̃/S is generated by its global sections at every x ∈ Γ, which is a contradic-
tion. �

Corollary 4.10. Let ϕ, C and C̃ be as in Theorem 4.1, and ωϕ as in Proposi-
tion 4.3. Then the following are equivalent.

(i) ϕ is minimal;
(ii) ϕ is geometrically minimal;
(iii) ωC̃/S = ωϕOC̃;
(iv) H0(C̃, ωC̃/S) = H0(C, ωC/S) = ωϕOK .

5. Existence of global models

In order to prove the global result included in Theorem 1.2, we need the following
local result.

Lemma 5.1. Let ϕ be a minimal genus one equation of degree n defining a normal
S-scheme C such that CK is smooth and CK(K) ̸= ∅. Let E be the Jacobian of CK
with minimal discriminant ∆. Then ν(∆ϕ) = ν(∆).

Proof. Let E and Emin be the minimal Weierstrass model and minimal proper
regular model of E respectively. We identify CK and E via an isomorphism
γ : CK ∼=K E. For explicit formulae for γ, see ([10], §6) or ([6], §2). Let ωϕ and ω be
the generators of the canonical sheaves ωC/S and ωE/S given as in Proposition 4.3.

Now according to Lemma 4.9, we have H0(Emin, ωEmin/S) = H0(E , ωE/S) =
ωOK , and H0(Emin, ωEmin/S) = H0(C, ωC/S) = ωϕOK as sub-OK-modules of
H0(E,ωE/K). Therefore, ωϕ = λω for some λ ∈ O∗

K . According to Lemma 4.4,
we have ∆ϕ.ω

⊗12
ϕ = ∆.ω⊗12 up to a unit. Hence, ∆ϕ = ∆ up to a unit in O∗

K . In
other words, ν(∆ϕ) = ν(∆). �
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Corollary 5.2. Let ϕ be an integral genus one equation defining a normal S-
scheme C such that CK is smooth and CK(K) ̸= ∅. Let C̃ → C be the minimal
desingularisation of C. Let E be the Jacobian of CK with minimal discriminant ∆.
Then

ν(∆ϕ) = ν(∆) + 12 lengthOK (H
0(C, ωC/S)/H

0(C̃, ωC̃/S)),

where lengthOK denotes the length of an OK-module.

Proof. Theorem 4.7 and Remark 4.8 admit the existence of an integral geomet-
rically minimal genus one equation ϕ′ K-equivalent to ϕ. Moreover, Theorem 4.1
implies that ϕ′ is minimal. We have ν(∆ϕ′) = ν(∆) by Lemma 5.1. We only
need to show that ν(∆ϕ) = ν(∆ϕ′)+12 lengthOK (H

0(C, ωC/S)/H
0(C̃, ωC̃/S)). The

latter follows immediately from the fact that ∆ϕ.ω
⊗12
ϕ = ∆ϕ′ .ω⊗12

ϕ′ up to a unit,
see Lemma 4.4, and H0(C′, ωC′/S) = H0(C̃, ωC̃/S) ⊆ H0(C, ωC/S) = ωϕOC , where
C′ is the normal S-scheme defined by ϕ′. �

We observe that lengthOK (H
0(C, ωC/S)/H

0(C̃, ωC̃/S)) in the above corollary is
an interpretation for level(ϕ) mentioned after Lemma 4.4. Now we conclude with
the proof of Theorem 1.2.

Proof of Theorem 1.2. We write Oν for the ring of integers of the comple-
tion Fν .

By virtue of Theorem 4.7 and Remark 4.8, ϕ is Fν-equivalent to a geometri-
cally minimal Oν-integral genus one equation ϕν . Moreover, ϕν is minimal, see
Theorem 4.1. According to Lemma 5.1, ν(∆ϕν ) = ν(∆) for every non-archimedean
place ν.

Since F is of class number 1, we can use strong approximation to find an OF -
integral genus one equation ϕ′ which is F -equivalent to ϕ and ν(∆ϕ′) = ν(∆ϕν ) =
ν(∆), for every non-archimedean place ν. See [9] for details when n = 2, 3. The
case n = 4 is similar. Since the discriminant is of weight 12, we have ∆ϕ′ = λ12∆
for some λ ∈ O∗

F . By rescaling the coefficients of the defining polynomials of ϕ′,
we can assume that λ = 1. �
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