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A LOWER BOUND ON A QUANTITY RELATED
TO THE QUALITY OF POLYNOMIAL LATTICES

Peter Kritzer, Friedrich Pillichshammer

Abstract: In this paper, we study a quantity Rb which is closely related to the quality of
an important subclass of digital (t, m, s)-nets over a finite field Fb, namely polynomial lattices.
Niederreiter has shown by an averaging argument that there always exist generators of polynomial
lattices for which Rb is small, establishing thereby the existence of polynomial lattices with
particularly low star discrepancy. In this work, we show that this result is best possible, i.e., we
prove that for all generators of polynomial lattices the quantity Rb cannot go below a certain
threshold.
Keywords: Polynomial lattices, star discrepancy, digital nets.

1. Introduction and Statement of the Result

In many applications, one is interested in approximating the value of an integral
Is(F ) :=

∫
[0,1]s

F (x) dx of a function F : [0, 1]s → R. One way of numerically
approximating Is(F ) is to employ a quasi-Monte Carlo (QMC) rule,

QN,s(F ) :=
1
N

N−1∑
n=0

F (xn),

where x0,x1, . . . , xN−1 are deterministically chosen points in [0, 1)s. We refer to
a collection of integration nodes as a “point set”, by which we mean a multi-set,
i.e., points may occur repeatedly. It is well known (see, e.g., [5, 18]) that point sets
which are in some sense evenly distributed in the unit cube yield a low integration
error when applying a QMC rule for approximating Is(F ).

Naturally, an essential question in the theory of QMC methods is how the node
set of a QMC integration rule should be chosen. One very prominent class of point
sets are polynomial lattices, as proposed by Niederreiter in [17, 18]. These point
sets are special cases of digital (t,m, s)-nets (see [5, 15, 18]).
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For the construction of a polynomial lattice, choose a prime b and let Fb be
the finite field consisting of b elements. Furthermore let Fb[x] be the field of
polynomials over Fb, and let Fb((x−1)) be the field of formal Laurent series over
Fb, with elements of the form

∞∑

l=z

tlx
−l,

where z is an arbitrary integer and the tl are arbitrary elements in Fb. Note that
the field of Laurent series contains the field of rational functions as a subfield.
Given an integer m > 1, define a function χm : Fb((x−1)) → [0, 1) by

χm

( ∞∑

l=z

tlx
−l

)
:=

m∑

l=max(1,z)

tlb
−l.

Let, in the following, given a prime b and an integer m > 1,

Gb,m := {a ∈ Fb[x] : deg(a) < m}.

Given a prime b, an integer m > 1, and a dimension s > 2, we choose an
f ∈ Fb[x] with deg(f) = m and s polynomials g1, . . . , gs ∈ Fb[x] and define

xh :=
(

χm

(
h(x)g1(x)

f(x)

)
, . . . , χm

(
h(x)gs(x)

f(x)

))
, h ∈ Gb,m.

The point set consisting of the points xh, h ∈ Gb,m, is denoted by P (g, f), where
g := (g1, . . . , gs). Note that |P (g, f)| = |Gb,m| = bm. Due to the many analogies
of such a point set to good lattice points (see, e.g, [18, 19]), a QMC rule using
P (g, f) is called polynomial lattice rule, and P (g, f) is called polynomial lattice.
Using a more general terminology, P (g, f) can also be called a polynomial lattice
of rank 1, see, e.g., [13, 14]. The polynomial f in the construction of P (g, f) is
referred to as the modulus, and the vector g is referred to as the generating vector
of the polynomial lattice.

Furthermore, given two vectors of polynomials u = (u1, . . . , ur),
v = (v1, . . . , vr) ∈ (Fb[x])r, we define

u · v :=
r∑

i=1

uivi.

When studying the quality of a QMC rule using a polynomial lattice P (g, f),
one frequently considers (see [1]– [5], [11, 12, 18]) the quantity

Rb(g, f) :=
∑

h∈Gs
b,m\{0}

h·g≡0 (mod f)

rb(h),
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where for h = (h1, . . . , hs) ∈ Gs
b,m we put rb(h) = rb(h1) · · · rb(hs), and for h ∈

Gb,m we put

rb(h) =

{
1 if h = 0,

1
br+1 sin(πκr/b) if h = κ0 + κ1x + · · ·+ κrx

r, κr 6= 0.

Note that slightly different versions of rb are considered in some of the papers cited
above.

It is well known that low values of Rb(g, f) imply high quality of P (g, f) with
respect to the performance of a QMC algorithm using P (g, f) as the underlying
node set. In particular, the quantity Rb(g, f) is closely related to the so-called
star discrepancy of P (g, f). The star discrepancy of a point set P of N points is
defined as follows.

D∗
N (P ) := sup

06αi61
16i6s

∣∣∣∣
AN ([0, α1)× · · · × [0, αs), P )

N
− α1 · · ·αs

∣∣∣∣ ,

where AN (E, P ) denotes the number of points of P lying in an interval E ⊆ [0, 1)s.
Obviously, the star discrepancy of a point set provides a way of measuring to
which extent the points are uniformly distributed in the unit cube. It was shown
by Niederreiter ([18, p. 77]) that the star discrepancy D∗

N of a polynomial lattice
P (g, f) with N = bm points in dimension s satisfies

D∗
N (P (g, f)) 6 s

N
+ Rb(g, f), (1.1)

hence low values of Rb(g, f) imply low star discrepancy. In particular, Theo-
rem 4.43 in [18] states that for any prime b and dimension s > 2 there exists
a number Cs,b > 0 such that for any f ∈ Fb[x] with deg(f) = m > 1 there exists
a vector g0 ∈ Gs

b,m such that

Rb(g0, f) 6 Cs,b
ms

bm
. (1.2)

The result in (1.2) was obtained by averaging over all g ∈ Gs
b,m. Together with

(1.1) this establishes for any N = bm the existence of polynomial lattices P (g, f)
of cardinality N and with star discrepancy

D∗
N (P (g, f)) = O

(
(log N)s

N

)
.

Constructions of such polynomial lattices using the component-by-component ap-
proach or generating vectors of so-called Korobov form can be found in [1, 3, 5].

In this paper, we are going to show that Niederreiter’s result is essentially best
possible, i.e., given f , there is no g with components different from zero such that
the order of magnitude of Rb(g, f) with respect to the degree of f is better than
that given in (1.2). To be more precise, in Section 3 we are going to show the
following theorem.
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Theorem 1.1. For any prime b and dimension s > 2 there exists a number
cs,b > 0 with the following property: for any f ∈ Fb[x] with deg(f) = m > 1 and
any g ∈ Gs

b,m, gi 6= 0, 1 6 i 6 s, we have

Rb(g, f) > cs,bb
deg(δs) (m− deg(δs))s

bm
,

where δs := gcd(g1, . . . , gs, f).

We remark here that a corresponding result for classical integration lattices has
been shown by Larcher [9] (for dimension s = 2) and [10] (for arbitrary dimensions
s > 2).

2. Preliminaries

We use the convention deg(0) = −∞. Note that for any h ∈ Gb,m \ {0} we have
rb(h) > b−1−deg(h).

For L ∈ Fb((x−1)) we write bLc for the polynomial part of L and {L} :=
L− bLc.

For the proof of Theorem 1.1 we use facts from the theory of continued fractions
of formal Laurent series; see, for example, [18, Appendix B], or [7]. For the sake
of completeness we recall the most important results.

Let g, f ∈ Fb[x] with deg(g) < deg(f) and let [0, A1, A2, . . . , Ar] be the con-
tinued fraction expansion of g/f , Q1, . . . , Qr, Qr = f , the denominators of the
convergents. Formally, we set Q−1 = 0 and Q0 = 1. Furthermore, we de-
note by Pi the numerator of the i-th convergent to g/f . It is well known that
deg(Q1) < deg(Q2) < · · · < deg(Qr), that deg(Qi) > i, and that

m = deg(Qr) =
r∑

i=1

deg(Ai).

We define ν as the discrete exponential valuation on Fb((x−1)) defined by

ν(L) =

{
−min{k : uk 6= 0} if L =

∑∞
k=w ukx−k 6= 0,

−∞ if L = 0.

Note that ν extends the degree function from Fb[x] to Fb((x−1)), in particular,
ν(p) = deg(p) for p ∈ Fb[x]. Furthermore, for p, q ∈ Fb[x], q 6= 0, we have
ν(p/q) = deg(p)− deg(q).

It is known that (see, e.g., [18, p. 220], or [7, p. 11]), for 0 6 i < r,

ν

(
g

f
− Pi

Qi

)
= − deg(Qi)− deg(Qi+1)

= −2 deg(Qi)− deg(Ai+1). (2.1)
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Furthermore, see again [7], for 0 6 i < r we have

g

f
− Pi

Qi
=

(−1)i

(Ri+1Qi + Qi+1)Qi
,

where Ri := [Ai; Ai+1, . . . , Ar]. Using the identity Qi+1 = Ai+1Qi + Qi−1, we
obtain

g

f
− Pi

Qi
=

(−1)i

Ri+1Q2
i + Ai+1Q2

i + Qi−1Qi

=
1

Ai+1Q2
i

(−1)i

Ri+1
Ai+1

+ 1 + Qi−1
Ai+1Qi

.

Since ν(l1l2) = ν(l1) + ν(l2), for l1, l2 ∈ Fb((x−1)), it follows from (2.1) that

ν

(
(−1)i

Ri+1
Ai+1

+ 1 + Qi−1
Ai+1Qi

)
= 0,

such that we arrive at
g

f
− Pi

Qi
=

θi

Ai+1Q2
i

(2.2)

for 0 6 i < r, with θi 6= 0 and ν(θi) = 0.

3. The Proof of Theorem 1.1

We now give the proof of Theorem 1.1.

Proof. The proof is inspired by [10]. Note that it is sufficient to show Theorem 1.1
for the case deg(δs) = 0, since

Rb(g, f) >
∑

h∈Gs
b,m′\{0}

h·g′≡0 (mod f ′)

rb(h),

where f ′ = f/δs, g′ = g/δs, and m′ = m− deg(δs).
Hence, we assume in the following that deg(δs) = 0. Furthermore, we are going

to assume that m is large enough to satisfy the inequality logb m < 2 logb(m −
2s logb m). For the finitely many m not satisfying this condition, the theorem
holds by choosing the constant cs,b > 0 small enough.

Let di := gcd(gi, f) for 1 6 i 6 s, and giti ≡ di (mod f) such that
deg(gcd(ti, f)) = 0. We consider three cases:

1. Suppose that deg(di0) > s logb m for an i0 ∈ {1, . . . , s}. Then we have

Rb(g, f) >
∑

hi0∈(Gb,m\{0})
hi0gi0≡0 (mod f)

1
bdeg(hi0 )+1

.
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However, hi0gi0 ≡ 0 (mod f) if and only if hi0 = l f
di0

, where 0 6 deg(l) <

deg(di0), so

Rb(g, f) > 1
b

∑

l∈Fb[x]
06deg(l)<deg(di0 )

bdeg(di0 )

bdeg(l)+deg(f)
> b− 1

b

ms

bm
.

Hence, we can assume deg(di) 6 s logb m for all i ∈ {1, . . . , s} in the following.

2. Suppose that one continued fraction coefficient Ak0 of a gi0 tj0dj0
f , i0 6= j0,

1 6 i0, j0 6 s satisfies deg(Ak0) > s logb m. Then we have

Rb(g, f) >
∑

(hi0 ,hj0 )∈G2
b,m\{0}

hi0gi0+hj0gj0≡0 (mod f)

rb(hi0)rb(hj0)

=
∑

(hi0 ,hj0 )∈G2
b,m\{0}

hi0gi0 tj0+hj0gj0 tj0≡0 (mod f)

rb(hi0)rb(hj0)

=
∑

(hi0 ,hj0 )∈G2
b,m\{0}

hi0gi0 tj0+hj0dj0≡0 (mod f)

rb(hi0)rb(hj0)

>
∑

(hi0 ,hj0 )∈G2
b,m\{0}

hi0≡0 (mod dj0 )

hi0gi0 tj0+hj0dj0≡0 (mod f)

rb(hi0)rb(hj0)

>
∑

(hi0 ,hj0 )∈G2
b,m′\{0}

hi0gi0 tj0+hj0≡0 (mod f/dj0 )

rb(hi0)rb(hj0)
bdeg(dj0 )

,

where m′ := deg(f/dj0). Let now Qk, 0 6 k 6 r, be the denominator of the
k-th convergent of gi0 tj0dj0

f , Q−1 = 0, Q0 = 1, Qk = AkQk−1 + Qk−2 for
1 6 k 6 r.
Furthermore, let h′i0 := Qk0−1, then there is a solution h′j0 of h′i0gi0tj0 +h′j0 ≡
0 (mod f/dj0) such that

deg(h′j0) = deg(f/dj0) + ν

({
Qk0−1gi0tj0dj0

f

})

= deg(f/dj0) + ν

({
Qk0−1

(
gi0tj0dj0

f
− Pk0−1

Qk0−1

)})

6 deg(f/dj0) + ν

(
Qk0−1

(
gi0tj0dj0

f
− Pk0−1

Qk0−1

))

= deg(f/dj0)− deg(Ak0)− deg(Qk0−1),
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where we used (2.1). Hence,

Rb(g, f) >
r(h′i0)r(h

′
j0

)

bdeg(dj0 )
> 1

b2

bdeg(Ak0 )

bdeg(dj0 )bdeg(f/dj0 )
> 1

b2

ms

bm
.

So we can assume that the degrees of the continued fraction coefficients of
gitjdj

f , i 6= j, 1 6 i, j 6 s, are smaller than s logb m.
3. Suppose that deg(di) 6 s logb m for all 1 6 i 6 s and that the degrees of the

continued fraction coefficients of gitjdj

f , i 6= j, 1 6 i, j 6 s, are smaller than
s logb m. In this case the result follows from the subsequent Lemma 3.1, so
the result of the theorem is shown. ¥

We now prove the following lemma which completes the proof of Theorem 1.1.

Lemma 3.1. Let b be a prime, let s > 2, σ ∈ {2, . . . , s}, and g = (g1, . . . , gs) ∈
Gs

b,m, gi 6= 0, 1 6 i 6 s. Furthermore, define di := gcd(gi, f) with deg(di) 6
s logb m for 1 6 i 6 s. Let giti ≡ di (mod f) such that deg(gcd(ti, f)) = 0,
and assume that the degrees of the continued fraction coefficients of gitjdj

f , i 6= j,
1 6 i, j 6 s, are less than s logb m. Moreover, assume that m is large enough to
satisfy the inequality logb m < 2 logb(m− 2s logb m). Then it is true that

R̃(σ, g, f, w) :=
∑

h∈Gσ
b,m\{0}

h1g1+···+hσgσ≡w (mod f)

rb(h) > c(σ, s, b)bdeg(δσ) m
σ

bm
,

for any w ∈ Fb[x] for which

δσ := gcd(g1, . . . , gσ, f)

is a divisor of w. Here c(σ, s, b) > 0 is a constant depending only on σ, s, and b.

Proof. First of all, assume that the bound in the lemma holds true for
deg(δσ) = 0, then for the case that deg(δσ) > 0 we set g′i = gi/δσ for 1 6 i 6 σ,
w′ = w/δσ, f ′ = f/δσ, and m′ = m − deg(δσ). Since we assumed deg(di) 6
s logb m, which implies deg(δσ) 6 s logb m, we then obtain

∑

h∈Gσ
b,m\{0}

h1g1+···+hσgσ≡w (mod f)

rb(h) >
∑

h∈Gσ
b,m′\{0}

h1g′1+···+hσg′σ≡w′ (mod f ′)

rb(h)

> c(σ, s, b)
(m′)σ

bm′

> c(σ, s, b)bdeg(δσ) (m− s logb m)σ

bm

> c̃(σ, s, b)bdeg(δσ) m
σ

bm
,

with another constant c̃(σ, s, b) > 0 depending only on σ, s, and b.
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Hence there is no loss of generality in assuming in the following that
deg(δσ) = 0.

We are going to show the result of the lemma by induction on σ.
The case σ = 2: Here, we study

R̃(2, (g1, g2), f, w) :=
∑

h∈G2
b,m\{0}

h1g1+h2g2≡w (mod f)

rb(h),

where we assume, without loss of generality, deg(gcd(g1, g2, f)) = 0, and set di :=
gcd(gi, f), p := f/d2.

Now, if h1g1 + h2g2 ≡ w (mod f), then h2g2 ≡ w − h1g1 (mod f), and the
latter equivalence can be solved if w − h1g1 ≡ 0 (mod d2), which is fulfilled due
to our assumptions. Hence there exist a, l ∈ Fb[x], deg(a) < deg(d2), such that
h1 = a + ld2 and w − ag1 ≡ 0 (mod d2), so h2g2 ≡ w − g1a − g1ld2 (mod f).
Let now v := w−g1a

d2
t2. With this notation, we have that h2 ≡ v − g1lt2 (mod p),

where p is defined as above.
Therefore, for every l ∈ Fb[x], there exists a solution

h2 = p

{
v

p
− g1lt2

p

}
,

and we obtain

R̃(2, (g1, g2), f, w) > 1
b2

∑

0 6=l∈Fb[x]
deg(l)<deg(p)

1

bdeg(ld2) max
(
1, bdeg(p{ v

p−
g1lt2

p }))

=
1
b2

1
bdeg(p)

1
bdeg(d2)

×
∑

0 6=l∈Fb[x]
deg(l)<deg(p)

1

bdeg(l) max
(

1
bdeg(p) , b

ν({ v
p−

g1lt2
p })) .

Let now G := g1t2
d1

and F := p
d1
, then gcd(G,F ) = 1

d1
gcd(g1t2, p) = 1, and, due

to our assumptions, G/F has continued fraction coefficients Ak with deg(Ak) <
s logb m < 2s logb(m− 2s logb m) 6 2s logb(deg(F )).

We are now going to show the following inequality. For every a ∈ Fb((x−1)),
ν(a) < 0, and for a constant c(s, b) > 0 it is true that

Σ :=
∑

0 6=l∈Fb[x]
deg(l)<deg(F )

1

bdeg(l) max
(

1
bdeg(F ) , b

ν({a−l G
F })

) > c(s, b)(deg(F ))2. (3.1)

Let Q0, Q1, . . . , Qr, Q0 = 1, Q−1 = 0, Qr = F , be the denominators of the
convergents to G/F , with Qi = AiQi−1 + Qi−2 for 1 6 i 6 r, deg(Ai) < s logb m.
Then we have, as shown in (2.2),

G

F
− Pi

Qi
=

θi

Ai+1Q2
i

, where ν(θi) 6 0.
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Furthermore,

Σ =
deg(F )−1∑

y=0

∑

l∈Fb[x]
deg(l)=y

1

bdeg(l) max
(

1
bdeg(F ) , b

ν({a−l G
F })

)

>
r−1∑

i=0

deg(Ai+1)−1∑
z1=0

∑

z2∈{−∞,0,1,2,...,deg(Qi)−1}
S(i, z1, z2),

where
S(i, z1, z2) :=

∑

l=κQi+λ
deg(κ)=z1
deg(λ)=z2

1

bdeg(l) max
(

1
bdeg(F ) , b

ν({a−l G
F })

) .

We have

bdeg(l) max
(

1
bdeg(F )

, bν({a−l G
F })

)
= bz1bdeg(Qi)bmax(− deg(F ),ν({a−l G

F }))

= bz1bmax(deg(Qi)−deg(F ),deg(Qi)+ν({a−l G
F })).

Now, on the one hand, for 0 6 i < r we have

deg(Qi)− deg(F ) 6 −1,

and, on the other hand, for 0 6 i < r and l = κQi + λ we have

deg(Qi) + ν

({
a− l

G

F

})

= deg(Qi) + ν

({
a− (κQi + λ)

(
G

F
− Pi

Qi
+

Pi

Qi

)})

= deg(Qi) + ν

({
a− (κQi + λ)

(
θi

Ai+1Q2
i

+
Pi

Qi

)})

= deg(Qi) + ν

({
a− λPi

Qi
− (κQi + λ)θi

Ai+1Q2
i

})

= deg(Qi) + ν

({baQic+ {aQi} − λPi

Qi
− (κQi + λ)θi

Ai+1Q2
i

})

= deg(Qi) + ν

({
k(λ) + {aQi}

Qi
− (κQi + λ)θi

Ai+1Q2
i

})

= deg(Qi) + ν

(
k(λ) + {aQi}

Qi
− (κQi + λ)θi

Ai+1Q2
i

)

= ν

(
Qi

(
k(λ) + {aQi}

Qi
− (κQi + λ)θi

Ai+1Q2
i

))

= ν

(
k(λ) + {aQi} − (κQi + λ)θi

Ai+1Qi

)
6 deg(k(λ)) + 1,

where k(λ) := baQic − λPi (mod Qi).
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Consequently,

bdeg(l) max
(

1
bdeg(F )

, bν({a−l G
F })

)
6 bz1bφ(λ),

where

φ(λ) :=

{
deg(Qi)− deg(F ) if k(λ) = 0,

deg(k(λ)) + 1 otherwise.

Therefore,

Σ >
r−1∑

i=0

deg(Ai+1)−1∑
z1=0

1
bz1

∑

z2∈{−∞,0,1,2,...,deg(Qi)−1}

∑

κ∈Fb[x]
deg(κ)=z1

∑

λ∈Fb[x]
deg(λ)=z2

1
bφ(λ)

= (b− 1)
r−1∑

i=0

deg(Ai+1)
∑

λ∈Fb[x]
deg(λ)<deg(Qi)

1
bφ(λ)

= (b− 1)
r−1∑

i=0

deg(Ai+1)




1
bdeg(Qi)−deg(F )

+
∑

λ∈Fb[x]
k(λ)6=0

deg(λ)<deg(Qi)

1
bdeg(k(λ))+1




.

Now as λ runs through all polynomials in Fb[x] with degree less than deg(Qi), so
does k(λ). Consequently,

Σ > (b− 1)
r−1∑

i=0

deg(Ai+1)
deg(Qi)−1∑

z=0

1
bz+1

∑

λ∈Fb[x]
deg(λ)=z

1

=
(b− 1)2

b

r−1∑

i=0

deg(Ai+1) deg(Qi).

For the latter expression,

r−1∑

i=0

deg(Ai+1) deg(Qi) =
r−1∑

i=0

deg(Ai+1)
i∑

j=1

deg(Aj).

Note that
r−1∑

i=0

deg(Ai+1)
i∑

j=1

deg(Aj) =
r∑

i=1

deg(Ai)
i−1∑

j=1

deg(Aj)

=
r∑

j=1

deg(Aj)
r∑

i=j+1

deg(Ai).
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Hence,

2
r∑

i=1

deg(Ai)
i−1∑

j=1

deg(Aj) =
r∑

i=1

deg(Ai)
r∑

j=1

deg(Aj)−
r∑

i=1

deg(Ai)2

= (deg(F ))2 −
r∑

i=1

deg(Ai)2.

However, from the assumption on deg(Ai) we obtain deg(Ai) 6 2s logb(deg(F )),
hence the latter expression is bounded from below by

(deg(F ))2 − deg(F )(2s logb(deg(F ))2,

and (3.1) is shown.
However, (3.1) implies

R̃(2, (g1, g2), f, w) > 1
b2

1
bdeg(p)

1
bdeg(d2)

c(s, b)(deg(F ))2

> 1
b2

1
bdeg(p)

1
bdeg(d2)

c(s, b)(m− 2s logb m)2

=
1
b2

1
bdeg(f)−deg(d2)

1
bdeg(d2)

c(s, b)(m− 2s logb m)2

> c′(s, b)
m2

bm
,

with c′(s, b) > 0 another constant depending only on s and b. Hence we have
shown the result of the lemma for σ = 2.

Induction step σ − 1 → σ: The condition h1g1 + · · · + hσgσ ≡ w (mod f) is
equivalent to

h1g1 + · · ·+ hσ−1gσ−1 ≡ w − hσgσ (mod f).

The latter congruence has a solution if and only if δσ−1 := gcd(g1, . . . , gσ−1, f) is
a divisor of w − hσgσ, i.e.,

hσgσ ≡ w (mod δσ−1).

Now, since deg(gcd(δσ−1, gσ)) = deg(δσ) = 0, there exists an a ∈ Fb[x], deg(a) <
deg(δσ−1), such that

w − agσ ≡ 0 (mod δσ−1),

and so

hσ = a + lδσ−1.
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Hence we have, using the induction assumption,

R̃(σ, g, f, w)

>
∑

l∈Fb[x]
deg(l)<m−deg(δσ−1)

1
bdeg(a+lδσ−1)

∑

h∈Gσ−1
b,m \{0}

h1g1+···+hσ−1gσ−1≡w−(a+lδσ−1)gσ (mod f)

rb(h)

> c(σ − 1, s, b)bdeg(δσ−1)
mσ−1

bm

∑

l∈Fb[x]
deg(l)<m−deg(δσ−1)

1
bdeg(a+lδσ−1)

.

Now, for the latter sum we have

∑

l∈Fb[x]
deg(l)<m−deg(δσ−1)

1
bdeg(a+lδσ−1)

> 1
bdeg(a)

+
1

bdeg(δσ−1)

∑

l∈Fb[x]
06deg(l)<m−deg(δσ−1)

1
bdeg(l)

> 1
bdeg(δσ−1)

(m− deg(δσ−1))

> 1
bdeg(δσ−1)

c′′(s, b)m,

where c′′(s, b) > 0 is another constant depending only on s and b, and where we
made use of the assumption that deg(δσ−1) 6 s logb m. The result follows. ¥
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