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ON A THREE-SPACE PROPERTY FOR LINDELÖF Σ-SPACES,
(WCG)-SPACES AND THE SOBCZYK PROPERTY
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Dedicated to the memory of Susanne Dierolf

Abstract: Corson’s example shows that there exists a Banach space E which is not weakly
normal but E contains a closed subspace isomorphic to the Banach space C[0, 1] and such that
the quotient space E/C[0, 1] is isomorphic to the weakly compactly generated Banach space
c0[0, 1]. This applies to show the following two results:

(i) The Lindelöf property is not a three-space property.

(ii) The Lindelöf Σ-property is not a three-space property. In this note using the lifting property
developed by Susanne Dierolf we present a very simple argument providing also (ii), see
Theorem 1. This argument used in the proof applies also to show that under Continuum
Hypothesis every infinite-dimensional topological vector space E which contains a dense
hyperplane admits a stronger vector topology υ with the same topological dual and such
that (E, υ) contains a dense non-Baire hyperplane. This partially answers a question of
Saxon concerning Arias de Reyna-Valdivia-Saxon theorem.

A Banach space E has the Sobczyk Property if it contains an isomorphic copy of c0
and every such a copy is complemented in E. The classical Sobczyk’s theorem says that every
separable Banach space has this property. We give an example of a C(K)-space E and its sub-
space Y isometric to c0 such that E/Y is isomorphic to c0(Γ), with card(Γ) = 2ℵ0 , yet Y
is uncomplemented in E. This complements Corson’s example and shows that the Sobczyk
Property (as well as the (WCG)-property, and the Separable Complementation Property) is not
a three-space property.

In the last part we recall some facts (partially with a simpler presentation) concerning K-
analytic, Lindelöf Σ and analytic locally convex spaces. Additionally, a few remarks concerning
weakly K-analytic spaces are included.
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1. Introduction

By a three-space property (in the category of topological vector spaces) we under-
stand the following situation, see for example [40].

Suppose that E is a topological vector space (tvs) (either real or complex) and
assume that F ⊂ E is a closed vector subspace of E such that F and the quotient
E/F have certain property P. Does E have property P?

Several important topological properties of tvs are a three-space property like
separability, local boundedness, completeness, barelledness, metrizability, etc., see
[41] and [40] and [9] and references.

A Hausdorff topological space X is a Lindelöf Σ-space (called also K-countably
determined) if there is an upper semi-continuous (usco) map from a (non-empty)
subset Σ ⊂ NN with compact values in X whose union is X, see [36], [1], [29].
If the same holds for Σ = NN, then X is called K-analytic. A continuous image
of NN is called an analytic space.

Note that analytic ⇒ K-analytic ⇒ Lindelöf Σ ⇒ Lindelöf, and none of the
reverse implication is true in general. We refer to [1], [29, Proposition 1.2], and
recent survey paper due to Tkachuk [50] for several well-known characterizations
and results about of Lindelöf Σ-spaces.

The class of Lindelöf Σ-spaces is invariant with respect to images under compact-
valued upper semi-continuous maps (hence, continuous maps, closed subspaces,
perfect preimages), countable products and countable unions. Although even the
square of a Lindelöf space need not be Lindelöf, any countable product of Lin-
delöf Σ-spaces is a Lindelöf space. This provides two important consequences
following from Arkhangel’ski-Pytkeev result [1, Theorem II.1.1] and Orihuela [37,
Theorem 3, Note 3], respectively.

Proposition 1. If X is a Lindelöf Σ-space, then the space Cp(X) of continuous
real-valued maps on a completely regular Hausdorff space X has countable tightness
and is angelic.

Recall that a Fréchet space E, i.e. a metrizable and complete lcs, is a weakly
compactly generated space ((WCG) shortly) if E admits a σ(E, E′)-compact abso-
lutely convex set whose linear span is dense in E. Every reflexive Banach space E
is (WCG) and every (WCG) Fréchet space is weakly K-analytic [47], [30], i.e. the
weak topology σ(E, E′) is K-analytic.

Although Lindelöf Σ-spaces enjoy good properties, from Corson’s example, as
stated in Abstract, it follows also that the Lindelöf Σ-space property for locally
convex spaces is not a three-space property, i.e. there exists a lcs E (= the space E
from the Abstract with the weak topology) which is not a Lindelöf Σ-space since
it is not Lindelöf but E contains a closed analytic vector subspace F (= the
space C[0, 1] with the weak topology is analytic) and the quotient E/F space is
K-analytic (= c0[0, 1] with the weak topology is K-analytic).

In this note, dedicated to Professor S. Dierolf, using a lifting procedure intro-
duced by S. Dierolf from [11] and developing some arguments from [26] we provide
in the first part much simpler approach yielding the same conclusion. We hope that
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this short work will supplement a pioneer work of W. Roelcke and S. Dierolf [40]
concerning several problems related with a three-space property in the category of
topological vector spaces.

We prove the following general

Theorem 1. Let (E, ξ) be an infinite-dimensional separable Fréchet space. Then
there exist on E two stronger locally convex topologies υ1 and υ2 such that (E, υi)
is not a Lindelöf Σ-space for i = 1, 2, and ξ = inf {υ1, υ2} but

(i) (E, υi) contains a closed Baire metrizable separable subspace Fi;
(ii) The quotient space (E/Fi, υi/Fi) is linearly homeomorphic to the space

`2(ℵ1) endowed with the weak topology.

Since `2(ℵ1) is reflexive, the weak topology of `2(ℵ1) is K-analytic, hence the
spaces (E/Fi, υi/Fi) are K-analytic but not separable. Clearly each Fi is a Lindelöf
Σ-space.

We do not know however if the constructed spaces (E, υi) are Lindelöf. Note
however that the fact ξ = inf {υ1, υ2} does not guarantee in general that one of
topologies υ1, or υ2 is Lindelöf. In fact, a similar argument used in the proof
of Theorem 1 applies to show that for a complete normed separable topology ξ
on an infinite-dimensional vector space E there exist two normed nonseparable
topologies υ1, υ2 with ξ = inf {υ1, υ2}.

The argument used above applies also to provide some observations related
with still an open question if every tvs containing a dense hyperplane contains
a dense non Baire hyperplane, see [39, Question 13.1.1] and [43]. Originally in
[39] authors asked if every infinite-dimensional Banach space contains a dense
non-Baire hyperplane.

Arias de Reina, see [39, Theorem 1.2.12] proved the following result: Under
Martin’s axiom every infinite-dimensional separable Banach space contains a dense
hyperplane which is not a Baire space. This result has been generalized by Val-
divia in [52] by showing that under Martin’s axiom every separable Baire tvs con-
tains a non Baire dense hyperplane if E admits a discontinuous linear functional.
Finally Saxon in [43] obtained a complete answer in the category of locally con-
vex spaces. He proved that Under c − A axiom (which is essentially weaker than
Martin’s axiom) a lcs E admits a dense non-Baire hyperplane iff E admits a dense
hyperplane.

Using Valdivia’s result mentioned above we provide the following

Theorem 2. Assume Continuum Hypothesis. Let (E, ξ) be an infinite-dimensional
tvs which contains a dense hyperplane F . Then on E there exists a vector topology
υ > ξ such that (E, ξ)′ = (E, υ)′ and (E, υ) contains a dense non-Baire hyper-
plane.

In the third section we provide an example of a C(K)-space which shows the
Sobczyk Property is not a three-space property. As a by-product of our result
we obtain that the Separable Complementation Property ((SCP), for short) is not
a three-space property either. We recall that a Banach space E has the (SCP)



292 Jesús Ferrer, Jerzy Kąkol, Manuel López Pellicer, Marek Wójtowicz

provided that every separable subspace Y0 is included in a separable superspace
Y1 ⊂ E such that Y1 is already complemented in E. We shall also use the nontrivial
fact that every (WCG)-space E has the dens property, i.e., the weak* density
of E′ equals the density of E; then we say that E is a DENS space (see, e.g., [53,
Theorem 3.5 and p. 1762]). It is known that the implications below are strict
[53, pp. 1762-1762]:

(WCG)⇒ (SCP)⇒ Sobczyk Property and (WCG)⇒ DENS. (1)

The source of the problem of whether the Sobczyk Property is a three-space prop-
erty (poset at the end of the 90’ by Drewnowski) is the result by Patterson [38].
She has proved that, in the non-separable C(K)-space (with K separable, yet non-
metrizable) considered by Corson [10], every isometric copy of c0 is complemented.

On the other hand, since C(K) contains a copy of C[0, 1] with C(K)/C[0, 1]
isomorphic to c0[0, 1], it is natural to conjecture the above question has a positive
answer; then every isomorhic copy of c0 in C(K) would be complemented.

The problem of complementability of copies of c0 in spaces of the type C(L),
with L compact scattered, is studied also in a recent paper by Koszmider [28].
He proves that, under some additional assumptions, if L is a Mrówka space (its
description is given below) then the only proper complemented subspaces of C(L)
are isomorphic to C(L) or c0.

In Theorem 5 below we show the above question has a negative answer, even
for the class of C(L)-spaces studied by Koszmider.

Following [25] a lcs E is called semi Baire-like (shortly sBL) if given an in-
creasing sequence (An)n of closed absolutely convex sets covering E, then Am is
absorbing in E for some m ∈ N.

A lcs E is barrelled (`∞-barrelled) if every σ(E′, E)-bounded set (sequence)
in E′ is equicontinuous.

Recall also that a topological space X has countable tightness if for every set
A ⊂ X and each x ∈ A there exists a countable subset B ⊂ A whose closure
contains x.

A topological space X is said to be angelic if every relatively countably compact
set A in X is relatively compact and and for each x ∈ A there exists a sequence
in A which converges to x, see [18].

2. Proofs of Theorems 1 and 2

The following result due to Talagrand [48] will be essential to prove Theorem 1.

Proposition 2. Let (E, ξ) be a regular space which admits a stronger topology ϑ
such that (E, ϑ) is a Lindelöf Σ-space. Then d(E, ϑ) 6 w(E, ξ), where d(E) and
w(E) denote the density and the weight of E, respectively.

We need also the following two useful facts, the first one due to S. Dierolf,
see [40], [11], [12], and the other one has been proved by Kąkol and Saxon [25,
Theorem 3.1]. For the sake of completeness we add short direct proofs.
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Lemma 1. Let ξ and ϑ be two vector topologies on a vector space E such that
ξ 6 ϑ. If F is a vector subspace of E such that ξ|F = ϑ|F and for the quotients
we also have ξ/F = ϑ/F , then ξ = ϑ.

Proof. Let U be a neighbourhood of zero in (E, ϑ). By hypothesis there exists
a neighbourhood of zero V in (E, ξ) such that (V − V )∩F ⊂ U , and (U ∩ V ) + F
is a neighbourhood of zero in (E, ξ). If

w ∈ V ∩ [(U ∩ V ) + F ] ,

then w = x + y for some x ∈ U ∩ V and y ∈ F , so that

y = w − x ∈ (V − V ) ∩ F ⊂ U.

Thus w ∈ U + U . This means that in (E, ξ), the neighbourhood of zero V ∩
[(U ∩ V ) + F ] is a subset of U + U . Therefore ξ = ϑ. ¥

Lemma 2. Let E be a lcs containing a closed metrizable barrelled subspace F such
that E/F is sBL. Then E is sBL.

Proof. Let F be a basis of absolutely convex neighbourhoods of zero in E and let
(An)n be a sequence in E as required. Since the space F is barrelled and metriz-
able, then F enjoys the property Baire-like, which means that every increasing
sequence of absolutely convex closed subsets covering F contains a member which
is neighbourhood of zero in F , see [42]. Hence there exists m ∈ N and U ∈ F such
that 3U ∩ F ⊂ Am. Then there exists k ∈ N such that q(U ∩Ak) is absorbing in
E/F , where q : E → E/F is the quotient map. The set

D := U ∩ q−1(q(U ∩Ak))

is absorbing in E and since q is open, then D ⊂ U ∩Ak +F +V ∩U for all V ∈ F.
Hence

D ⊂ Ak + (3U) ∩ F + V,

so D ⊂ Ak + 3U ∩ F ⊂ Ak + Am ⊂ 2Ak+m. ¥

We note also (for a convenience of the reader) that there exists a lcs which is
not sBL but E contains a closed barrelled subspace F such that E/F is sBL, see
[25, Example 4.1].

We are ready to prove Theorem 1

Proof. Let (xt)t∈T be a Hamel basis of E. Consider a partition (Tn)n of T such
that T =

⋃
n Tn and card T= card Tn for all n ∈ N. Set Gn := lin{xt : t ∈⋃n

i=1 Ti}. Then (Gn)n covers E and

dim E = dim Gn = dim(E/Gn) = 2ℵ0

for n ∈ N. By the Baire category theorem there exists a dense Baire subspace
F1 := Gm of E. Let σ be a locally convex topology on E/F1 such that (E/F1, σ)
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is linearly homeomorphic with `2(ℵ1) with the weak topology. Clearly ξ/F1 6 σ.
Then there exists on E a coarsest locally convex topology υ1 such that ξ 6 υ1 and

υ1/F1 = σ, ξ|F1 = υ1|F1.

Note that the sets U ∩ q−1(V ), where U and V run over ξ- and σ-neighbourhoods
of zero, respectively, form a basis of neighbourhoods of zero for υ1, see [11], where
q : E → E/F1 is the quotient map. Since (E, υ1) is sBL by Lemma 2, then
applying Lemma 2 again for (Gn)n we deduce that there exists m ∈ N such that
F2 := Gm is υ1-dense in E. Since (Gn)n is increasing we can choose F2 (by the
Baire category theorem) to be also Baire in ξ. Let υ2 be a coarsest locally convex
topology on E such that ξ 6 υ2 and the quotient topology

υ2/F2 = σ, ξ|F2 = υ2|F2.

Clearly each Fi, i = 1, 2 is closed in (E, υi), respectively, and we have

ξ 6 inf{υ1, υ2}, ξ|F2 = inf{υ1, υ2}|F2 = υ2|F2.

On the other hand the topologies

ξ/F2 = inf{υ1, υ2}/F2 = υ1/F2

are trivial. By Lemma 1 one gets that ξ = inf{υ1, υ2}. Note also that υi, i = 1, 2,
are non-separable since `2(ℵ1) is non-separable. Finally observe that (E, υi), i =
1, 2, cannot be a Lindelöf Σ-space. This directly follows from Proposition 2 since
ξ 6 υi and υi is not separable, i = 1, 2. ¥

A similar argument applies also to get the following variant of the Corson’s
example from the Abstract.

Theorem 3. Let (E, ξ) be an infinite-dimensional separable Banach space. Then
there exists on E a stronger normed topology ξ1 such that (E, ξ1) contains a closed
subspace F which is a continuous image of `1 and E with the weak topology σ
of (E, ξ1) is not a Lindelöf Σ-space although (E, σ)/F is isomorphic to the space
`2(ℵ1) endowed with the weak topology.

Proof. By ‖.‖ we denote a norm generating the topology ξ. Then there exists
a sequence (yn)n in E with

∑
n ‖yn‖ < ∞ whose linear span is dense in E, and

such that
(tn) ∈ `1 ∧

∑
n

tnyn = 0 ⇒ (tn) = 0,

see [31]. Define a compact injective map

T : `1 → E, T (x) :=
∑

n

xnyn,

x = (xn) ∈ `1. Clearly F := T (`1) is a proper dense subspace. Note also that F
is non-barrelled. Indeed, assume F is barrelled. Since T is injective and continu-
ous, then F admits a finer topology γ such that (F, γ) is linearly homeomorphic
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with `1. By the closed graph theorem the identity map from barrelled F onto
(F, γ) is continuous yielding the equality of γ with the original topology of F ,
a contradiction. Hence F is not barrelled. This combined with dim E = 2ℵo and
[39, Proposition 4.3.11] yields dim (E/F ) = 2ℵ0 .

Let % be the norm topology of `2(ℵ1). Since the quotient space E/F carries
the trivial topology and dim (E/F ) = 2ℵ0 , then on E/F there exists a locally
convex non-separable normed topology γ such that ξ 6 ξ1 and (E/F, γ) is linearly
homeomorphic with (`2(ℵ1), %). As in the proof of Theorem 1 one gets a normed
topology ξ1 on E such that

ξ < ξ1, ξ|F = ξ1|F, ξ1/F = %,

note here that the property to have a normed topology is a three-space property,
see [40]. Since (F, ξ|F ) is a continuous image of the space `1 and ξ|F = ξ1|F , then
also (F, ξ1|F ) is a continuous image of `1. Hence (F, ξ1|F ) is analytic. But the weak
topology σ of (E, ξ1) has a quotient (by F ) isomorphic with the weak topology of
`2(ℵ1), and again Proposition 2 applies to get that (E, σ) is not a Lindelöf Σ- space
but has a closed subspace and a Hausdorff quotient which analytic and K-analytic,
respectively. ¥

Problem 1. Let E be a lcs which contains a closed metrizable separable subspace
F such that E/F is analytic. Is then E a Lindelöf Σ-space? Note that if F is even
analytic, then E need not be analytic, see [26].

It is worth recalling here some positive result related with this subject, see [26].
First notice the following: If E is a topological vector space containing a subspace
F such that F and E/F are separable Fréchet spaces, then E is separable Fréchet.
This is clear, since separability, metrizability and completeness are a three-space
property by [40]. Therefore, the following two cases are interesting to settle.

Let F and E/F be analytic and E metrizable. Assume that F or E/F are
complete. Is E analytic?

Recall here that (?) a metrizable topological vector space E is analytic iff E
has a compact resolution, see for example [5].

Theorem 4. Let E be a metrizable tvs containing a closed subspace F such that
F and E/F are analytic. If F is complete and locally convex, then E is analytic.

Proof. Proof below is due to L. Drewnowski (private communication). Let G be
the completion of E and let

Q : G → G/F

be the quotient map. By a result of Michael [33], see also [3, Proposition 7.1]
or [3, Corollary 7.1] for the case of Fréchet spaces, there is a continuous map
g : G/F → G such that Q ◦ g is the identity map on G/F , i.e.

g(x + F ) ∈ x + F
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for each x ∈ G. Since the quotient E/F ⊂ G/F is analytic, then the quotient space
E/F admits a compact resolution {Kα : α ∈ NN}. Assume that {Aα : α ∈ NN} is
a compact resolution in F .

We show that the compact sets

Mα := g(Kα) + Aα

form a compact resolution on E for α ∈ NN. Indeed, first observe that g(Kα) ⊂ E,
so then each compact set Mα is contained in E. Fix x ∈ E. Since

g(x + F ) ∈ x + F,

then there exists y ∈ F such that

g(x + F ) + y = x.

For some α ∈ NN we note that x + F ⊂ Kα and y ∈ Aα. This shows that x ∈ Mα

and this proves that
E =

⋃
{Mα : α ∈ NN}.

We proved that the space E (which metrizable and separable) has a compact
resolution. Now we apply (?) to deduce that E is analytic. The proof is completed.

¥

We are ready to prove Theorem 2.

Proof. First assume that (E, ξ) is not a Baire tvs. Then no ξ-dense subspace of
E is Baire. In that case set υ := ξ.

Now assume that (E, ξ) is a Baire tvs. Similarly as in the proof of Theo-
rem 1 one gets in E a dense Baire subspace F of codimension 2ℵ0 (the Continuum
Hypothesis is assumed). Fix 0 < p < 1. Then the quotient space E/F admits
a strictly finer separable and metrizable complete vector topology µ such that
(E/F, µ) is isomorphic to the space Lp[0, 1]. It is well-known that the topological
dual of Lp[0, 1] equals {0}.

As in Theorem 1 there exists on E a stronger vector topology υ such that
ξ|F = υ|F and υ/F = µ. By [52], or [43, Theorem 2] it follows that (E/F, µ)
contains a dense non- Baire hyperplane. But then E contains a dense non Baire
hyperplane as well. Indeed, let H be a υ/F -dense non Baire hyperplane in E/F .
Then E contains a unique dense hyperplane L such that L ⊃ H and L/F = H.
Note that L is non-Baire as well. Since (E/F, µ) has no non-zero continuous linear
functionals and F is ξ-dense, then (as easily seen) we have (E, ξ)′ = (E, υ)′. ¥

A family {Kα : α ∈ NN} of sets of a topological space E is called a compact
resolution if Kα are compact in E covering E and Kα ⊂ Kβ if α 6 β. We proved
in [23] that a Baire topological vector space admitting a compact resolution is
a metrizable, complete and separable space. Note that every separable Fréchet
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space has a compact resolution. Indeed, for a countable and dense sequence (xn)n

in E set

Kα :=
∞⋂

k=1

nk⋃

j=1

B(xj , k
−1),

where B(xj , k
−1) is the closed ball in E with the center at point xj and radius k−1

for α = (nk) ∈ NN and all j, k ∈ N. Then {Kα : α ∈ NN} is a compact resolution.
Having this in mind and results of Arians de Reina-Valdivia-Saxon one may

ask if every separable Fréchet space admits a dense hyperplane with compact
resolution.

A positive answer might provide another approach to solve the mentioned prob-
lem. Drewnowski in [14] being motivated by [23] proved however that a hyperplane
which admits a compact resolution must be closed.

3. The Sobczyk property is not a three-space property

Let N denote the set of positive integers, and let F be a family of almost pairwise
disjoint infinite subsets of N, which is maximal with respect to almost disjointness
(MAD family, or MADF for short).

Our example is based on a few properties of a locally compact topology defined
on the set N ∪ F : the topology has as a base all singletons {n} for n ∈ N and all
sets of the form {A}∪B where A ∈ F and B is a cofinite subset of A. This space is
often denoted by Ψ(F) (see [21]); its fundamental properties were described in the
1954 paper by Mrówka [34], and in 1977 Mrówka [35, pp. 86-90] studied further
properties of Ψ(F).

The properties of the Mrówka space Ψ(F) which are useful for our purposes
are collected in the lemma below (their proofs are given in [34, 35]).

Lemma 3. Let F be a MADF in N, and set Ψ = Ψ(F). Then
(i) every singleton {n}, where n ∈ N, is isolated in Ψ,
(ii) F is closed in Ψ and discrete,
(iii) the space Ψ is locally compact and noncompact,
(iv) N is an open and dense subset of Ψ, and so
(v) Ψ is separable and uncountable (i.e., card(Ψ) = card(F) = 2ℵ0).

Let K(F) = Ψ ∪ {∞} be the one-point compactification of Ψ (see Lemma 3
(iii)). Because the succesive derived sets of K(F) are of the form: F ∪{∞}, {∞},
and ∅,

the space K(F) is scattered. (2)

From part (v) of Lemma 3, from [46, Proposition 8.5.7] (=a compact scattered
space is metrizable iff it is countable) and from (2) we obtain that

the space K(F) is separable and not metrizable. (3)

Now we are ready to prove the main theorem of this section (here F still denotes
a MADF in N).
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Theorem 5. Set E := C(K(F)), and Y = {x ∈ E : x|F∪{∞} = 0}. Then
(i) Y is isometric to c0,
(ii) E/Y is isomorphic to c0(Γ) where card(Γ) = 2ℵ0 ,
(iii) E is not a DENS space, and hence (by (1)) not a (WCG) space,
(iv) Y is not complemented in E.

Consequently, the Sobczyk property is not a three-space property.

Proof. Let 1n denote the characteristic function of the singleton {n}, where
n ∈ N.

Part (i). It is plain that

lin{1n : n ∈ N} ⊂ Y,

the former space isometric to c0. For the reversed inclusion it is enough to show
that, for every ε > 0 and every x ∈ Y , the set

Dε := {t ∈ K(F) : |x(t)| > ε}
is included in N and is finite. Since Dε is closed in K(F) and x ∈ Y , the first
claim is obvious.

For the second one, assume, by way of contradiction, that Dε is infinite.
Hence Dε is a closed infinite subset of Ψ. Now we use the following result in-
cluded implicitly in the proof of [16, Lemma 5]: For every infinite subset A of N
the closure A in Ψ equals A ∪ FA, where

FA = {B ∈ F : B ∩A is infinite}.
Hence, since Dε is closed,

FDε = Dε \Dε = ∅.
This follows that for every B ∈ F the set Dε ∩ B is finite. Hence Dε is not
in F , and so F ∪ {Dε} is an almost disjoint family including F properly. This
contadicts, however, maximality of F . Consequently, every set Dε is finite, as
claimed. Finally, Y is isometric to c0.

Part (ii). By Lemma 3 (ii), F ∪{∞} is an Alexandroff compactification of the
discrete space F . This follows that the quotient space E/Y is isometric to

C(F ∪ {∞}),
and it is known that the latter space is isomorphic to c0(F) (indeed, the subspace
C0(F) of functions vanishing at ∞ is of codimension 1 in E and is isometric to
c0(F)). Now we apply Lemma 3 (v).

Part (iii). If E were a DENS space then, since K(F) is separable, we have that

d(E) = w∗ − d(E′) = ℵ0.

Thus, E = C(K(F)) would be separable. Hence, the space K(F) would be metriz-
able, but this contradicts property (3).
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Part (iv). If Y were complemented in E then, by the just proved parts (i)
and (ii) of our theorem, E would be isomorphic to c0(F). Thus, E would be
a (WCG) space, which is impossible by part (iii) of our theorem. Therefore Y is
not complemented in E. ¥

From the above theorem we obtain another proof that (WCG) is not a three-
space property. (Similarly, by the use of the DENS property, one obtains that
neither (WCD) nor (WLD) - see [53, pp. 1760-1762] for their definitons and
properties - is a three-space property; this, however, follows also from the Corson’s
example.) Moreover, the result below is yet another consequence of Theorem 5
and the first sequence of implications in (1).

Corollary 1. The Separable Complementation Property is not a three-space prop-
erty.

Remark 1. The classical Mrówka space Ψ was applied successfully in studies of
some problems of Banach spaces; see, e.g., [16, 21, 28]. In [17] we prove an analogue
of Theorem 5 for a generalized Mrówka space and apply it for Banach spaces with
the so-called Controlled Separable Projection Property.

4. Something more about weakly Lindelöf Σ-spaces

This section mainly recalls some already known facts about duality between tight-
ness and Lindelöf property for lcs. We hope to present more light to some results
of this type.

From Proposition 1 it follows that to know if a lcs E is σ(E, E′)-angelic and
σ(E, E′) has countable tightness it is enough to know if the weak dual (E′, σ(E′, E))
is a Lindelöf Σ-space. Indeed, this follows from Proposition 1 and the inclusion
(E, σ(E, E′)) ⊂ Cp(E′, σ(E′, E)). But then angelicity of (E, σ(E, E′)) yields the
angelic property for any stronger topology ξ on E (not necessarily vector) by
Fremlin angelic lemma, see again [18, Lemma 3.1]. This combined with Cascales
[4, Corollary 1.1] allow us to say that to determine if (E, ξ) is K-analytic it is
enough to find on (E, ξ) a compact resolution. In general every K-analytic space
admits such a resolution but the converse fails, [4], [48].

On the other hand, if for a lcs E the weak topology σ(E, E′) has count-
able tightness, we know in general only that (E′, σ(E′, E)) is realcompact, i.e.
(E′, σ(E′, E)) is homeomorphic to a closed subspace of a product of real lines.
Indeed, by Corson criterium, see [51, p.137], it is enough to show that every linear
functional f on E which is σ(E, E′)-continuous on each σ(E, E′)-closed separable
vector subspace is continuous. Observe that the kernel K := f−1(0) is closed
in E. In fact, if y ∈ K, then there is countable D ⊂ K with y ∈ D (the clo-
sure in σ(E, E′)). By assumption we have f |lin (D) is σ(E,E′)-continuous; hence
f(y) ∈ f(lin (D)) ⊂ f(K) = {0}, so y ∈ K and f ∈ E′.

In [24] we provided some sufficient conditions for a lcs E to have its weak
dual (E′, σ(E′, E)) a Lindelöf Σ-space. In particular, if Cp(X) admits a finer
metrizable vector topology, then Cp(X) has countable tightness iff its weak dual
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(Cp(X)′, σ(Cp(X)′, Cp(X)) is a Lindelöf Σ-space. In general the Lindelöf Σ pro-
perty of (E′, σ(E′, E)) can be described through the descriptive theory of sets as
follows.

We showed in [24] the following

Proposition 3. For a `∞-barrelled lcs E the following conditions are equivalent:
(i) (E′, σ(E′, E)) is a Lindelöf Σ-space;
(ii) (E, σ(E, E′)) has countable tightness and E is covered by a family

{Aα : α = (an) ∈ Σ} of sets for some Σ ⊂ NN such that each sequence
xk ∈ Cn1,nn,...,nk

is bounded in E, where Cn1,nn,...,nk
:=

⋃{Aβ = (bn) ∈
Σ : an = bn, n 6 k}.

Proposition 3 at the first glance looks somewhat technical but it covers many
concrete classes of topological vector spaces, for example each (df)-space Cc(X)
has its weak dual Lindelöf Σ as `∞-barrelled by [22, Corollary 3.3] and having a
family of sets as in (ii): If (Sn)n is a fundamental sequence of bounded sets in
Cc(X) set Aα :=

⋂
n anSn for α = (an) ∈ NN.

The following typical situation provides a nice motivation for Proposition 4
below covering a large class of locally convex spaces. Indeed, let E be a metrizable
locally convex space and let (Un)n be a decreasing basis of absolutely convex
closed subsets of E. Let U◦

n be the polar of Un for each Rn ∈ N. Then clearly
each U◦

n is σ(E′, E)-compact and E′ =
⋃

n U◦
n. Then (E′, σ(E′, E)) is K-analytic

as the countably union of compact sets. On the other hand, it is well-known by
Kaplansky that (E′σ(E, E′)) has countable tightness.

One gets a general fact describing the link between countable tightness and
K-analyticity via duality pairs. Namely, there is a large class of lcs (introduced
by Cascales and Orihuela in [5] under the name class G) containing among the
others all (LM)-spaces (hence all metrizable lcs) and dual metric spaces (hence
(DF )-spaces) for which the following Proposition 4 due to Cascales, Kąkol and
Saxon [7] holds.

First we recall [6] that a lcs E is said to be in class G if there is a family
{Aα : α ∈ NN} of subsets of its topological dual E′ (called its G-representation)
such that:

(a) E′ =
⋃{Aα : α ∈ NN},

(b) Aα ⊂ Aβ when α 6 β,
(c) in each Aα, sequences are equicontinuous,
Condition (c) implies that every set Aα is σ(E′, E)-relatively countably com-

pact. Therefore the weak dual (E′, σ(E′, E)) of a lcs E in class G has a relatively
countably compact resolution. The class G contains (among the others) (LM)-
spaces (hence (LF )-spaces), the dual metric spaces (hence (DF )-spaces), the space
of distributions D′(Ω) and the space A(Ω) of the real analytic functions for open
Ω ⊂ RN, see e.g. [8], [15]. The class G is stable by taking subspaces, separated
quotients, completions, countable direct sums and countable products [6].

Proposition 4. If E is a lcs in class G, then (E, σ(E′, E′)) has countable tightness
iff (E′, σ(E′, E)) is K-analytic.
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This shows also that every lcs in class G admits a family of sets as stated in
(ii) of Proposition 3.

Example 1. Proposition 4 fails if E is not in class G.

Proof. Step 1. First notice that Cp(X) belongs to class G iff X is countable.
Indeed, assume that Cp(X) belongs to class G. As Cp(X) ⊂ KX is a dense
subspace, where K ∈ {R,C} is the scalar field, then KX also belongs to class G
by applying [5]. But then as a Baire space in class G must be metrizable by [7].
This shows that X is countable.

Step 2. Next assume that X is an uncountable Lindelöf P -space. Then any
finite product Xn is Lindelöf and [1, Corollary II.1.5] applies to deduce that Cp(X)
has countable tightness.

Step 3. On the other hand, the weak dual

Lp(X) := (Cp(X)′, σ(Cp(X)′, Cp(X)))

is not K-analytic. Otherwise, as X is closed in Lp(X), then X is K-analytic as
well. We reached to the conclusion that X is an uncountable K-analytic space
whose every compact subset is finite (the last property holds since X is a P -space,
see [19]). But X as K-analytic admits a compact resolution {Kα : α ∈ NN}. This
yields that X =

⋃{Kα : α ∈ NN} and every compact set Kα finite and Kα ⊂ Kβ

whenever α 6 β. Finally, by [1, Proposition IV.6.15] the space X is countable. ¥

Note the following very general fact concerning class G which can be used to
get last Proposition 4. The first claim is the crucial basis point and has been
proved in [24] and essentially depends on our previous work [15].

Proposition 5. Let E be a lcs in class G. Then (E′, σ(E′, E)) is quasi-Suslin and
υ(E′, σ(E′, E)) is a K-analytic space, where υX means the realcompactification of
a space X.

Proof. Set
E′

σ := (E′, σ(E′, E)).

In [15] we proved that E′
σ is quasi-Suslin, i.e. there exists a set-valued map T from

NN into X covering E′ such that if αn → α in NN and xn ∈ T (αn), then (xn)n has
a cluster point in T (α). Every T (α) is countably compact, so its closure T (α) in
υE′

σ is compact. The map α → T (α) is (usco), so

Z :=
⋃

α∈NN
T (α)

is K-analytic. Since E′
σ ⊂ Z ⊂ υE′

σ, then Z = υZ = υE′
σ is K-analytic. ¥

As a consequence we note the following two result from [6].

Corollary 2. Let E be a lcs in class G. Then every σ(E, E′)- compact set K ⊂ E
is Talagrand compact, i.e. Cp(K) is K-analytic.
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Proof. Since E′
σ is quasi-Suslin, it is web-compact in sense of [37] and then

[6, Theorem 2] applies via the relation (E, σ(E,E′)) ⊂ Cp(E′
σ). ¥

As we have already noticed if a lcs E has countable tightness in the weak
topology σ(E, E′), then E′

σ is realcompact, hence E′
σ = υE′

σ. This together with
Proposition 5 provides an alternative approach to Proposition 4.

This might suggest also a question about another good sufficient conditions for
E ∈ G to have its weak dual E′

σ realcompact.
If E is a Banach space, then the Mackey dual (E′, µ(E′, E)) is not metrizazble,

except the case when E is reflexive. It is well-known that (E′, µ(E′, E)) is a com-
plete lcs. If B′ is the dual unit ball in the dual E′ of E, then one may expect that
some cases (different from reflexivity in general case) may provide metrizability of
(B′, µ(E′, E)|B′).

In [44] Schlüchtermann and Wheeller introduced strongly weakly compactly gen-
erated ((SWCG) shortly) Banach spaces. They called a Banach space (SWCG) if
the space (B′, µ(E′, E)|B′) is metrizable, see also [45].

The following Theorem 6 (from [44, Theorem 2.1]) characterizes (SWCG) Ba-
nach spaces in term of some density condition. Theorem 6 shows also that every
(SWCG) Banach space is (WCG).

In [44, Theorem 2.5] it is proved that every (SWCG) Banach space is weakly
sequentially complete. Hence the space c0 although is a (WCG) space is not
(SWCG).

Theorem 6. The following conditions are equivalent for a Banach space E with
a closed unit balls B ⊂ E and B′ ⊂ E′.

(i) (B′, µ(E′, E)|B′) is metrizable;
(ii) There exists a sequence (Kn)n of weakly compact absolutely convex subsets

of E such that for every weakly compact set L ⊂ E and every ε > 0 there
exists n ∈ N such that L ⊂ Kn + εB;

(iii) There exists a weakly compact absolutely convex set K ⊂ E such that for
each weakly compact set L ⊂ E and every ε > 0 there is n ∈ N such that
L ⊂ nK + εB.

Assume now that E is a separable (SWCG) Banach space. Then clearly the
space (E′, µ(E′, E)) is separable. Since (E′, µ(E′, E)) is separable, then B′ is sepa-
rable as well. Indeed, let F(E′) be the set of all absolutely convex neighbourhoods
of zero in µ(E′, E) and let Um ∈ F(E′), m ∈ N, such that

(B′ ∩ [Um + Um])m

is a basis of neighbourhoods of zero in B′. By separability there exists a countable
set Bm such that

E′ ⊂ Bm + Um,

and then there exists in B′ a countable subset Cm such that

B′ ⊂ Cm + Um + Um.
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Since E′ =
⋃

n nB′ and each nB′ is metrizable separable and complete. Then
the space (E′, µ(E′, E)) is analytic. Therefore we have

Proposition 6. Let E be a (SWCG) Banach space. Then (E′, µ(E′, E)) is ana-
lytic iff E is separable.

Let (S, Σ, µ) is a finite measure space. L1(µ,E) denotes a Banach space of
Bochner integrable functions on S into a Banach space E. In [44, Theorem 3.2]
Schlüchtermann and Wheller studied a problem when L1(µ, E) is (SWCG). Tala-
grand [49], see also Diestel [13], proved that L1(µ,E) is (WCG) if E is a (WCG)
Banach space.

If E is a separable Banach space, then the Mackey dual (E′, µ(E′, E)) is
a separable but the strong dual (E′, β(E′, E)) need not be separable. Clearly
(E′, β(E′, E)) is analytic iff (E′, β(E′, E)) is separable.

Theorem 6 and Proposition 6 may suggest the following question:

Let E be a separable Banach space. Is it true that the Mackey dual
(E′, µ(E′, E)) of E is an analytic space?

The Mackey dual (E′, µ(E′, E)) of a Banach space has been studied also in
[45] and [27]. In [45] the authors proved among the others that if E is a separable
(SWCG) Banach space, then (E, σ(E,E′)) (which is clearly analytic) is an ℵ0-
space, i.e., it has a countable pseudobase.

A collection P of subsets of a topological space E is called a pseudobase if for
any open set U ⊂ E and compact K ⊂ U there exists P ∈ P with K ⊂ P ⊂ U .
Recall also that every ℵ0-space is separable and Lindelöf and every closed set is
a Gδ-set, [32], [45, Theorem 4.1]. In [27] Kirk studied the Mackey dual for spaces
C(K) with compact K.

On the other hand, by Batt and Hiermeyer [2, 2.6], (see also [44], [45, p.274] and
[45, Theorem 4.2]) there exists a separable Banach space E for which (E, σ(E, E′))
is not an ℵ0-space. It is known also [32], [45, Theorem 4.1], that a regular topo-
logical space is both an ℵ0-space and a k-space iff it is a quotient of a separable
metric space. Therefore it seems to be natural to ask when for a Banach space E
the space (E, σ(E,E′)) is a k-space.

Recall that a Hausdorff space X is a k-space if a set A ⊂ X is closed in X iff
A ∩K is closed in K for each compact set K ⊂ X. We shall need the following
fact due to Grothendieck [20, p.134].

Lemma 4. Let A ⊂ E′ be µ(E′, E)-compact for a Banach space E. Then every
σ(E, E′)-convergent sequence in E converges uniformly on A.

It turns out that for infinite-dimensional Banach spaces E the space
(E, σ(E, E′)) is never a k-space.

Proposition 7. If E is a Banach space for which (E, σ(E, E′)) is a k-space, then
E is finite-dimensional.
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Proof. Let γ be the topology on E of uniform convergence on µ(E′, E)-compact
sets. Clearly σ(E, E′) 6 γ. Since σ(E, E′) and γ have the same sequentially
compact sets by Lemma 4, then the both topologies have the same compact sets
(recall that σ(E′, E) and γ are angelic). Assume that (E, σ(E,E′)) is a k-space,
then we have σ(E, E′) = γ.

Let (xn)n be a null-sequence in the norm topology of E′. Since the set {0} ∪
{xn : n ∈ N} is µ(E′, E)-compact, then the sequence (xn)n has finite-dimensional
linear span. This yields that the dual space E′ (hence also E) is finite-dimensional.

¥
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