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Abstract: We present a new formula for the Fourier transform of a Lorentz invariant temperate
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1. Introduction and notation

Our personal motivation for this paper was a futile attempt to derive the Fourier
transform of the function f([x, x]) = ([x, x] + c2)−1, c2 ∈ C \R, i.e., the temper-
ate fundamental solution of the Klein–Gordon operator, by employing Strichartz’
formula, see [23, Thm. 1, p 509]. Although Strichartz’ formula refers to the more
general case of distributions invariant with respect to the pseudo-orthogonal group
O(p, q), Lorentz invariance constituting the special case of p = 1, q = n− 1, sim-
ple insertion of f(s) = (s + c2)−1 does not yield the final result. On the one
hand, Strichartz’ formula applies formally only to rapidly decreasing test func-
tions φ(s) ∈ S(R1), on the other hand, more importantly, the integrals arising
from this formula can be evaluated immediately only if [x, x] > 0 and the dimen-
sion n is odd. We then observed that, for [x, x] < 0 and for n even, respectively,
the resulting integrals can be simplified by means of the residue theorem.

Due to the importance of the fundamental solutions of the Klein–Gordon op-
erator [∂, ∂]− c2, it seems justified to reconsider the subject of Fourier transforms
of Lorentz invariant distributions. Let us describe now the content and the set-up
of this article.

In Section 2, we first review some facts on Lorentz invariant distributions mak-
ing use of the more general treatments in [14], [4], [24]. In Proposition 1, we
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determine the Fourier transforms of δs([x, x]), s ∈ R. This yields a formula equiv-
alent to Strichartz’ formula cited above ([23, Thm. 1, p 509]) if we take into account
the representation of a Lorentz invariant test function in the form

φ([x, x]) =
∫

R

φ(s)δs([x, x]) ds, φ ∈ S(R).

We compare our formulas in Proposition 1 also with those in [5, Ch. III] and in
[25]. In Corollary 1, the particular cases of the dimensions n = 2, 3, 4 are listed in
more explicit form. In Propositions 2,3,4, representations of the Fourier transforms
of Lorentz invariant locally integrable functions f([x, x]) are given.

In Section 3, we transform the formulas of Proposition 1 so as to yield simple
results also in the cases [x, x] < 0 or ([x, x] > 0 and even dimension). For the
evaluation of Fourier transforms of Lorentz invariant distributions, we have the
following table:

[x, x] > 0 [x, x] < 0
n even Proposition 5 Proposition 5
n odd Proposition 1 Proposition 5

In Section 4, we derive the unique temperate fundamental solutions of the
iterated Klein–Gordon operator ([∂, ∂] − c2)m, m ∈ N, c2 ∈ C \R, see Proposi-
tion 6. We therefrom then rederive the temperate fundamental solutions of the
Klein–Gordon operators in “low” dimensions, i.e., for n = 2, 3, 4.

Let us introduce some notation. We shall always suppose that the space di-
mension n is at least 2; we write x0, . . . , xn−1 for the coordinates in the space Rn,
and we equip it with the Lorentz metric [x, y] = x0y0 − x1y1 − · · · − xn−1yn−1.

We employ the standard notation for the distribution spaces D′, S ′, the dual
spaces of the spaces D, S of “test functions” and of “rapidly decreasing functions”,
respectively, see [22], [7]. The Heaviside function is denoted by Y, and we write
δs ∈ D′(R1), s ∈ R, for the delta distribution with support in s, which is the
derivative of Y (x − s), i.e., 〈φ, δs〉 = φ(s) for φ ∈ D(R1). In contrast, δ without
any subscript stands for the delta distribution at the origin. For a distribution
T ∈ D′ = D′(Rn), we denote by Ť its reflection at the origin.

The pullback h∗T = T ◦ h ∈ D′(Ω) of a a distribution T in one variable t with
respect to a submersive C∞ function h : Ω → R, Ω ⊂ Rn open, is defined as in [3,
Section 7.2, p. 81], i.e.,

〈φ, h∗T 〉 =
〈 d
dt

(∫

{x∈Ω; h(x)<t}
φ(x)dx

)
, T

〉
, φ ∈ D(Ω). (1.1)

We use the Fourier transform F in the form

(Fφ)(ξ) :=
∫

e−iξxφ(x)dx, φ ∈ S(Rn),

this being extended to S ′ by continuity. (Herein and also elsewhere, the Euclidean
inner product (ξ, x) 7→ ξx is simply expressed by juxtaposition.)
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2. The Fourier transform of Lorentz invariant distributions

Let us first review some facts concerning the structure of Lorentz invariant tem-
perate distributions, cf. [14], [4]. We denote the proper Lorentz group by L(Rn),
i.e.,

L(Rn) = {A = (aij)06i,j6n−1 ∈ Gl(Rn); det A > 0, a00 > 0,

and ∀x ∈ Rn : [Ax,Ax] = [x, x]}.

The space S ′L of temperate Lorentz invariant distributions is given by

S ′L = S ′L(Rn) = {T ∈ S ′(Rn); ∀A ∈ L(Rn) : T ◦A = T}.

Obviously, S ′L is the direct sum of the spaces of even and of odd invariant distri-
butions, i.e., S ′L = S ′L,+ ⊕ S ′L,−, where

S ′L,± = {T ∈ S ′L; Ť = ±T},

cf. also [14, p. 228], [4, p. 45].
If T ∈ S ′L,− and n > 3, then suppT ⊂ {x ∈ Rn; [x, x] > 0}. This implies

that T is determined as a pullback of a one-dimensional distribution supported in
[0,∞), i.e., symbolically, we have

T = sign(x0) · S([x, x]), S ∈ S ′(R+).

Here
S ′(R+) = {S ∈ S ′(R1); suppS ⊂ [0,∞)},

and the isomorphism relating S and T is given in a precise way by

S ′(R+) ∼−→ S ′L,−(Rn) : S 7−→ (T : φ 7→ 〈N(φ), S〉), n > 3,

where

N(φ)(t) =
∫

Rn−1

φ(
√

t + |x′|2, x′)− φ(−
√

t + |x′|2, x′)
2
√

t + |x′|2 dx′, t > 0.

Note that N(φ) arises by applying formula (1.1) to define 〈φ, sign(x0) · S([x, x])〉;
the application of S to N(φ) is justified by the fact that N(φ) can be continued
C∞ to the whole real line, cf. [4, Thm. 8.2, p. 52].

For S ′L,+, the situation is more complicated. Outside the origin, T ∈ S ′L,+ is
generated by S ∈ S ′(R), i.e.,

S ′(R) ∼−→ {T |Rn\{0}; T ∈ S ′L,+} : S 7−→ S([x, x]),

cf. [4, Lemma 8.1, p. 46]. However, the space S ′L,+ itself is isomorphic to the
space H ′ defined in [4, pp. 48, 49]. Note that if S ∈ S ′(R) with 0 6∈ suppS, then
T = S([x, x]) ∈ S ′L,+ is defined unambiguously by the requirements 0 6∈ suppT



136 Norbert Ortner, Peter Wagner

and T = S([x, x]) in Rn \ {0}. In particular, this is the case for T = δs([x, x]) =
δ(s− [x, x]) if s ∈ R\{0}; for n > 3, we can also define δ([x, x]) by continuity, i.e.,
δ([x, x]) = lims→0 δs([x, x]). Explicitly, we have

〈φ, δ([x, x])〉 =
∫

Rn−1

φ(|x′|, x′) + φ(−|x′|, x′)
2|x′| dx′, φ ∈ D(Rn), n > 3.

It is also clear that the distributions Y (±x0)δs([x, x]) ∈ S ′L are well-defined for
s > 0.

In the following proposition, we determine the Fourier transforms of the dis-
tributions Y (x0)δs([x, x]), s > 0, and δs([x, x]), s < 0, which correspond to
uniform mass distributions on the upper sheet of the two-sheeted hyperboloid
[x, x] = s, s > 0 and on the one-sheeted hyperboloid [x, x] = s, s < 0, respec-
tively.

Proposition 1.
(1) For s > 0, let S = Y (x0)δs([x, x]) ∈ S ′L be defined as above. Then its

Fourier transform FS is the value at λ = n−2
2 of the entire distribution-

valued function λ 7→ Tλ, which, for Reλ < 1, is given by the locally integrable
function

Tλ(x) = (2π)(n−2)/2Y (−[x, x])
( s

−[x, x]

)λ/2

Kλ

(√−s[x, x]
)

(2.1)

− 2n/2−2πn/2Y ([x, x])
( s

[x, x]

)λ/2[
N−λ

(√
s[x, x]

)

+ i sign(x0)J−λ

(√
s[x, x]

)]
.

In other words,

F(
Y (x0)δs([x, x])

)
= T(n−2)/2, s > 0.

(2) For s < 0, the Fourier transform of δs([x, x]) ∈ S ′L,+ is the value at λ = n−2
2

of the entire distribution-valued function λ 7→ Uλ, which, for Reλ < 1, is
given by the locally integrable function

Uλ(x) =− 2(n−2)/2πn/2Y (−[x, x])
( s

[x, x]

)λ/2

Nλ

(√
s[x, x]

)
(2.2)

+ 2n/2π(n−2)/2Y ([x, x]) cos(λπ)
( −s

[x, x]

)λ/2

Kλ

(√−s[x, x]
)
.

In other words,

F(
δs([x, x])

)
= U(n−2)/2, s < 0.

Proof. (1) If s > 0 and Fx0 and Fx′ denote the partial Fourier transforms with
respect to the variables x0 and x′ = (x1, . . . , xn−1), respectively, see [24, §20.5,
p. 198], then

F(
Y (x0)δs([x, x])

)
= Fx0

(
Fx′

(
Y (x0)δs([x, x])

))
.
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Since the distributions

Y (x0)δ(x2
0 − s− |x′|2) =

Y (x0 −
√

s)
2
√

x2
0 − s

δ
(|x′| −

√
x2

0 − s
)

continuously depend on x0 for n > 4, i.e.,

Y (x0)δ(x2
0 − s− |x′|2) ∈ C(R1

x0
,S ′(Rn−1

x′ )
)
, n > 4,

are still piecewise continuous in x0 with a jump at x0 =
√

s for n = 3, and are still
locally integrable with respect to x0 for n = 2, we can fix the variable x0 in order
to calculate the partial Fourier transform with respect to x′.

From the Poisson–Bochner formula, see [22, (VII,7;22), p. 259], [19, (7), p. 127],
[5, Ch. II, 3.4, p. 198], i.e.,

F(
δ(|x′| −R)

)
= (2πR)(n−1)/2|x′|−(n−3)/2J(n−3)/2(R|x′|) ∈ S ′(Rn−1), R > 0,

(2.3)
we infer that

F(
Y (x0)δs([x, x])

)
= 2(n−3)/2π(n−1)/2

×Fx0

(
Y

(
x0 −

√
s
)
(x2

0 − s)(n−3)/4|x′|(3−n)/2J(n−3)/2

(|x′|
√

x2
0 − s

))
.

The distribution-valued function

T̃λ : {λ ∈ C; Reλ > − 1
2} −→ S ′(Rn) :

λ 7−→ Y
(
x0 −

√
s
)
(x2

0 − s)(2λ−1)/4|x′|1/2−λJ−1/2+λ

(|x′|
√

x2
0 − s

)

is holomorphic and can analytically be continued to an entire function due to the
recursion formula ∂T̃λ

∂x0
= x0T̃λ−1. Therefore, F

(
Y (x0)δs([x, x])

)
is the value at λ =

n−2
2 of the entire function λ 7→ 2(n−3)/2π(n−1)/2Fx0(T̃λ), cf. [9, Proposition (2.1.5)

(i)], [17, Proposition 1.6.2, p. 28].
For − 1

2 < Reλ < 0 and fixed x′, the function x0 7→ T̃λ(x0, x
′) is absolutely

integrable. Hence the Fourier transform with respect to x0 can be calculated
classically and yields, by [16, 14.57, p. 82; 14.32, p. 176],

Fx0(T̃λ) = |x′|1/2−λ

∫ ∞

√
s

e−ix0t(t2 − s)(2λ−1)/4J−1/2+λ

(|x′|
√

t2 − s
)
dt

=

√
2
π

Y (−[x, x])
( s

−[x, x]

)λ/2

Kλ(
√
−s[x, x])

−
√

π

2
Y ([x, x])

( s

[x, x]

)λ/2[
N−λ(

√
s[x, x]) + i sign(x0)J−λ(

√
s[x, x])

]
.
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This yields formula (2.1). (2) Similarly, for s < 0,

F(
δs([x, x])

)
= Fx0

(
Fx′

(
δ(x2

0 − s− |x′|2))
)

= 2(n−3)/2π(n−1)/2

×Fx0

(
(x2

0 − s)(n−3)/4|x′|(3−n)/2J(n−3)/2

(|x′|
√

x2
0 − s

))
.

The distribution-valued function

Ũλ : C −→ S ′(Rn) : λ 7−→ (x2
0 − s)(2λ−1)/4|x′|1/2−λJ−1/2+λ

(|x′|
√

x2
0 − s

)

is plainly entire and F(
δs([x, x])

)
coincides with 2(n−3)/2π(n−1)/2Fx0(Ũ(n−2)/2).

For Re λ < 1, this partial Fourier transform with respect to x0 can be calculated
classically by fixing x′. For x′ 6= 0, s < 0, [16, 14.22, p. 78] furnishes

Fx0(Ũλ) = 2|x′|1/2−λ

∫ ∞

0

cos(x0t)(t2 − s)(2λ−1)/4Jλ−1/2(|x′|
√

t2 − s)dt

= −
√

2π Y (−[x, x])
( s

[x, x]

)λ/2

Nλ(
√

s[x, x])

+

√
8
π

Y ([x, x]) cos(λπ)
( −s

[x, x]

)λ/2

Kλ(
√
−s[x, x]).

This implies formula (2.2) and completes the proof. ¥

Remarks.

(1) Comparing our formulas (2.1) and (2.2) in Proposition 1 with formula (7)
in [5, Ch. III, 2.10, p. 294] we note that they are both representations of
F(

δs([x, x])
)
, s ∈ R, as analytic continuations, but with respect to different

parameters: Our formulas are continuations with respect to the index λ of
the Bessel functions, whereas in [5], the quadratic form [x, x] is interpreted
as boundary value of the non-degenerate complex quadratic form [x, x] +
iε|x|2, ε > 0. We also observe that (2.1), (2.2) above yield immediately an
explicit result outside the light cone [x, x] = 0.

(2) For s > 0, the Fourier transforms of Y (x0)δs([x, x]) are special
cases of the formulas (II,3;3/4), p. 84, in [25]. There, more generally,
T = F(

Y (x0)δ
(k)
s ([x, x])

)
is considered. However, the results given in [25]

are only partially correct. This can be seen, e.g., by comparing Corollary 1,
(b) below with [25, (II,3;4)] in the case k = 0, n = 3. The method used in
[25] consists in decomposing Rn into three open sets C1, Cf , Cb and the light
cone C̄ = {x ∈ Rn; [x, x] = 0}, see [25, (I,3;1–4), p. 76]. The restriction of
the investigated Fourier transforms to the closed set C̄ is not defined since,
generally, distributions cannot be restricted to closed sets, and this leads
to the erroneous term in [25, (II,3;4)]. We also point out that the restric-
tion T |C1 , say, which is a C∞ function and hence also a distribution in C1
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cannot be conceived in a canonical way as a distribution in Rn. Hence a
formula as T = T |C1 + T |Cf

+ T |Cb
+ T |C̄ coming from “adding the results”

(see [25, p. 79]) does not make sense. Similarly, formula (II,1;1) in [25] for
F(

Y (x0)δs([x, x])
)
in the case n = 4 is correct only if interpreted in the

sense of our Corollary 1 d) below, i.e., by conceiving T |C1 + T |Cf
+ T |Cb

as
a principal value distribution.

Let us yet formulate the results in (2.1) and (2.2) more explicitly in the case
of small dimensions n.

Corollary 1.
(a) If s > 0 and n = 2, then

F(
Y (x0)δs([x, x])

)
= Y (−[x, x])K0(

√
−s[x, x])

− π

2
Y ([x, x])

[
N0(

√
s[x, x])

+ i sign(x0)J0(
√

s[x, x])
] ∈ L1

loc(R
2).

(In R2, this formula also encompasses the case of F(
δs([x, x])

)
, s < 0, by

reflection.)
(b) If s > 0 and n = 3, then

F(
Y (x0)δs([x, x])

)
=

πY (−[x, x])√
−[x, x]

e−
√
−s[x,x]

− πY ([x, x])√
[x, x]

[
sin(

√
s[x, x])

+ i sign(x0) cos(
√

s[x, x])
] ∈ L1

loc(R
3).

(c) If s 6 0 and n = 3, then

F(
δs([x, x])

)
=

2πY (−[x, x])√
−[x, x]

cos(
√

s[x, x]) ∈ L1
loc(R

3).

(d) If s > 0 and n = 4, then

F(
Y (x0)δs([x, x])

)
= iπ2 sign(x0)

[
Y ([x, x])

√
s

[x, x]
J1

(√
s[x, x]

)− 2δ([x, x])
]

+ π vp
(√

s

|[x, x]|
[
2Y (−[x, x])K1

(√−s[x, x]
)

+ πY ([x, x])N1

(√
s[x, x]

)]) ∈ D′(R4).

(Herein the principal value has the following meaning:

vp
(
f(x)

)
= lim

ε↘0

(
Y (|[x, x]| − ε)f(x)

)
,

the limit converging in D′(R4).)
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(e) If s = 0 and n = 4, then

F(
Y (x0)δ([x, x])

)
= −2π vp

( 1
[x, x]

)
− 2iπ2 sign(x0)δ([x, x]).

(f) If s < 0 and n = 4, then

F(
δs([x, x])

)
= −2π vp

(√∣∣∣ s

[x, x]

∣∣∣
[
2Y ([x, x])K1

(√−s[x, x]
)

+ πY (−[x, x])N1

(√
s[x, x]

)])
.

Proof. The formulas in (a), (b) and (c) follow immediately from Proposition 1
since Tλ and Uλ are locally integrable functions for Reλ < 1, and this is the case
for λ = n−2

2 , n = 2, 3.
If n = 4, then λ = 1, and the values of T1 and U1 can be obtained as limits,

i.e., T1 = limλ↗1 Tλ, U1 = limλ↗1 Uλ. From the elementary formula

lim
λ↘−1

|t|λ sign t = vp(t−1) in S ′(R1
t ),

we infer that

lim
λ↗1

[
2πY (−[x, x])

( s

−[x, x]

)λ/2

Kλ(
√
−s[x, x])

− π2Y ([x, x])
( s

[x, x]

)λ/2

N−λ(
√

s[x, x])
]

= π vp
(√

s

|[x, x]|
[
2Y (−[x, x])K1

(√−s[x, x]
)

+ πY ([x, x])N1

(√
s[x, x]

)])
.

This yields the second part in (d), and an analogous reasoning furnishes the formula
in (f).

On the other hand, for s > 0 and Reλ < 1, the function

Sλ(t) = Y (t)
(s

t

)λ/2

J−λ(
√

st)

is locally integrable in R1
t and depends holomorphically on λ. Since Sλ+1 = 2 d

dtSλ

holds for Reλ < 0, the distribution-valued function λ 7→ Sλ can analytically be
continued to the whole complex λ-plane. In particular,

S1 = 2
d
dt

S0 = 2
d
dt

[
Y (t)J0(

√
st)

]
= 2δ − Y (t)

√
s

t
J1(
√

st),

and the composition with t = [x, x] yields the formula in (d). Finally, (e) follows
from (d) by performing the limit s ↘ 0. The proof is complete. ¥
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Remarks.

(1) For the formula in (d), cf. [20, 29.4, p. 186, and 31.5, p. 200]; [21, pp. 83,
84]; [2, App. E, (E4), p. 334]; [10, Ch. IV, (5.6/7), pp. 136, 137]; [12,
(IV,1/2), p. 67]. A part of the formulas in Corollary 1 can also be obtained
by specializing formula (5) in [5, Ch. III, 2.9, p. 291].

(2) If, by abuse of notation, we write generally Y (t)(s/t)λ/2J−λ(
√

st) for the
distribution-valued function Sλ, λ ∈ C, considered in the proof above, then
the recursion formula Sλ+1 = 2 d

dtSλ implies the following equation, which
holds in D′(R1

t ) for fixed s > 0 and k ∈ N :

Y (t)
(s

t

)k/2

J−k(
√

st)

= 2k
k−1∑

j=0

(−s)j

22jj!
δ(k−j−1)(t) + (−1)kY (t)

(s

t

)k/2

Jk(
√

st).

A similar formula appears in [11, (1.12), p. 188], where a proof by develop-
ment in a power series is given.

The Fourier transforms in Corollary 1 are the analogues in the Lorentz case
of the Poisson–Bochner formula (2.3). They yield formulas for the Fourier trans-
forms of Lorentz invariant functions f([x, x]). Since the necessary assumptions on
f depend on the dimension n, we consider the cases n = 2, 3, 4 separately.

Proposition 2. Let f ∈ L1
loc(R

1) such that
f(s) log2 |s|
(1 + |s|)1/4

is integrable. If x ∈ R2

with [x, x] = x2
0 − x2

1, then f([x, x]) ∈ L1
loc(R

2), and the Fourier transform of
f([x, x]) is locally integrable, continuous outside the light cone, and given by

F(
f([x, x])

)
=

∫ ∞

−∞
f(s) · [2Y (−s[x, x])K0(

√
−s[x, x])

− πY (s[x, x])N0(
√

s[x, x])
]
ds.

Proof. The mapping

R \ {0} −→ S ′(R2) : s 7−→ δs([x, x])

is continuous and hence can be integrated against a test function in D(R \ {0}).
Therefore, the formula in (a) of Corollary 1 yields the result by Fubini’s theorem
if f ∈ D(R \ {0}). This can then be extended by density to the class of functions
in Proposition 2 using Lebesgue’s theorem and the asymptotic properties of the
Bessel functions at 0 and ∞. ¥

Proposition 3. Let f ∈ L1(R1) and x ∈ R3 with [x, x] = x2
0 − x2

1 − x2
2. Then

f([x, x]) ∈ L1
loc(R

3), and the Fourier transform of f([x, x]) is locally integrable,
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continuous outside the light cone, and given by

F(
f([x, x])

)
= −2πY ([x, x])√

[x, x]

∫ ∞

0

f(s) sin
(√

s[x, x]
)
ds

+
2πY (−[x, x])√

−[x, x]

∫ ∞

0

[
f(s) e−

√
−s[x,x] + f(−s) cos

(√−s[x, x]
)]

ds.

Proof. This follows from Corollary 1 (b), (c) in an analogous way as Proposition 2.
¥

Proposition 4. Let f ∈ L1
loc(R

1) such that f(s)|s|1/4 ∈ L1(R). If x ∈ R4 with
[x, x] = x2

0 − x2
1 − x2

2 − x2
3, then f([x, x]) ∈ L1

loc(R
4), and the Fourier transform of

f([x, x]) is continuous outside the light cone [x, x] = 0, and generally a principal
value given by

F(
f([x, x])

)
= 2π vp

(
1

[x, x]

∫ ∞

−∞
f(s)

[
πY (s[x, x])

√
s[x, x] N1

(√
s[x, x]

)
(2.4)

− 2Y (−s[x, x])
√
−s[x, x] K1

(√−s[x, x]
)]

ds

)
.

(The meaning of the principal value is as explained in Corollary 1 (d).)

Proof. The parts (d), (e) and (f) of Corollary 1 yield the following representation
of F(

δs([x, x])
)

:

F(
δs([x, x])

)
= vp

(
1

[x, x]
· g(s[x, x])

)
, s ∈ R, (2.5)

where
g(t) = 2π2Y (t)

√
tN1(

√
t)− 4πY (−t)

√−tK1(
√−t).

We observe that g(t) is C∞ outside the origin and continuous at t = 0. More
precisely, the behavior of g at 0 and at ∞, respectively, is determined by

g(t) = −4π + πt log |t|+O(t) for t → 0, and g(t) = O(|t|1/4) for |t| → ∞,

with O denoting, as usual, Landau’s symbol. In particular,

∃C > 0 : ∀t ∈ R : |g(t)− g(0)| 6 C|t|1/4. (2.6)

Let us consider the Banach space

M = {µ Radon measure on R; |s|1/4µ is an integrable measure}

with the norm ‖µ‖ =
∫
R
|s|1/4 d|µ|(s). For µ ∈M, the function

hµ(u) =
∫

R

g(su)dµ(s)
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is well-defined and continuous. Furthermore, taking C as in (2.6) we obtain

|hµ(u)− hµ(0)| 6 C

∫

R

|su|1/4 d|µ|(s) = C‖µ‖ · |u|1/4,

which implies that

vp
(

hµ([x, x])
[x, x]

)
∈ S ′(R4)

is well-defined for µ ∈M.

By (2.5),

F(
µ([x, x])

)
= vp

(
hµ([x, x])

[x, x]

)
(2.7)

holds for µ = δs, s ∈ R. Note, however, that the vector space V of linear combi-
nations of δs, s ∈ R, is not dense in M with respect to the norm topology. In
contrast, V is dense in M if we equip it with the weak topology σ with respect to
the space

{f ∈ C(R); (1 + |s|)−1/4f(s) is bounded}.
Since (2.7) holds for each µ in V and both sides depend, as elements of S ′(R4) with
the weak topology, continuously on µ in M with respect to σ, we conclude that
(2.7) holds for each µ ∈M. In particular, for f ∈ L1

loc(R
1) such that f(s)|s|1/4 ∈

L1(R), we infer that

F(
f([x, x])

)
= vp

(
1

[x, x]

∫ ∞

−∞
f(s)g(s[x, x]) ds

)
,

and this completes the proof. ¥

3. Representations of F(
f([x, x])

)
derived by contour deformation

In Section 2, we deduced formulas for F(
f([x, x])

)
which apply to “arbitrary”

functions f satisfying suitable, dimension-dependent growth conditions. In this
section, we shall, in contrast, assume that f is the boundary value of a meromor-
phic function f(z) defined in the complex upper half-plane Im z > 0, and we shall
express F(

f([x, x])
)
in part by residues.

Proposition 5. Let f(z) be meromorphic in the complex upper half-plane Im z > 0
with the poles z1, . . . , zm, m ∈ N0, and assume that f is of polynomial growth, i.e.,

∃N > 0 : ∀z ∈ C with Im z > 0 : |f(z)| 6 N(1 + |z|)N .

We suppose, furthermore, that f(s + iε) converges locally uniformly for ε ↘ 0 and
that the limit fulfills f(s)(1 + |s|)(n−3)/4 ∈ L1(R).
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Then S := f([x, x]) ∈ S ′(Rn) and FS is given in [x, x] 6= 0 by

FS = 2i(2π)n/2
(
Y (−[x, x]) + e−(n−2)πi/2Y ([x, x])

)

×
m∑

j=1

Res
z=zj

[
f(z)

( z

−[x, x]

)(n−2)/4

K(n−2)/2

(√−z[x, x]
)]

+
i
2

(2π)n/2Y (−[x, x])
∫ 0

−∞
f(s)

( s

[x, x]

)(n−2)/4

J(n−2)/2

(√
s[x, x]

)
ds

+
i
2

(2π)n/2Y ([x, x])
{

2
π

sin
(

n−2
2 π

)

×
∫ 0

−∞
f(s)

(
− s

[x, x]

)(n−2)/4

K(n−2)/2

(√−s[x, x]
)
ds

+
∫ ∞

0

f(s)
( s

[x, x]

)(n−2)/4[
J−(n−2)/2

(√
s[x, x]

)

− 2e−(n−2)πi/2J(n−2)/2

(√
s[x, x]

)
ds

]}
.

(With respect to the residues, we note that z(n−2)/4K(n−2)/2(
√

z) can be considered
as a holomorphic function of z ∈ C \ (−∞, 0].)

Proof. First observe that F(
δs([x, x)

)
is, according to formulas (2.1) and (2.2) in

Proposition 1, infinitely differentiable in the region G of Rn where
[x, x] 6= 0; furthermore, for fixed x in G, F(

δs([x, x)
)
is bounded by a multiple of

(1 + |s|)(n−3)/4 if |s| → ∞. Hence we can employ the formula

FS = F(
f([x, x)

)
=

∫ ∞

−∞
f(s)F(

δs([x, x)
)
ds

in G.
Setting G = G+ ∪ G− with G± = {x ∈ Rn; ±[x, x] > 0}, and W± :=

F(
f([x, x)

)|G± , respectively, we obtain

W− = 2n/2π(n−2)/2|[x, x]|(2−n)/2

×
[∫ ∞

0

f(s)(−s[x, x])(n−2)/4K(n−2)/2

(√−s[x, x]
)
ds

− π

2

∫ 0

−∞
f(s)(s[x, x])(n−2)/4N(n−2)/2

(√
s[x, x]

)
ds

]

= 2n/2π(n−2)/2|[x, x]|(2−n)/2

×
[∫ ∞

−∞
f(s)(−s[x, x])(n−2)/4K(n−2)/2

(√−s[x, x]
)
ds

+
iπ
2

∫ 0

−∞
f(s)(s[x, x])(n−2)/4J(n−2)/2

(√
s[x, x]

)
ds

]
. (3.1)
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In the integral over (−∞, 0] we have used the formula

(t + i0)λ/2Kλ(
√

t + i0) = −π

2
|t|λ/2

[
Nλ(

√
|t|) + iJλ(

√
|t|)], λ =

n− 2
2

,

valid for t = −s[x, x] < 0, see [6, 8.407.2, 8.476.8].
Finally, we apply the residue theorem to the integral in (3.1) which contains

the function K(n−2)/2

(√−s[x, x]
)
, and we infer that the following equation holds

for [x, x] < 0 :

FS = 2i(2π)n/2
m∑

j=1

Res
z=zj

[
f(z)

( z

−[x, x]

)(n−2)/4

K(n−2)/2

(√−z[x, x]
)]

+
i
2

(2π)n/2

∫ 0

−∞
f(s)

( s

[x, x]

)(n−2)/4

J(n−2)/2

(√
s[x, x]

)
ds.

Similarly, Proposition 1 furnishes

W+ = 2n/2π(n−2)/2[x, x](2−n)/2

×
[
cos

(
n−2

2 π
) ∫ 0

−∞
f(s)(−s[x, x])(n−2)/4K(n−2)/2

(√−s[x, x]
)
ds

− π

2

∫ ∞

0

f(s)(s[x, x])(n−2)/4N−(n−2)/2

(√
s[x, x]

)
ds

]

= 2n/2π(n−2)/2[x, x](2−n)/2

×
[
e−(n−2)πi/2

∫ ∞

−∞
f(s)(−s[x, x])(n−2)/4K(n−2)/2

(√−s[x, x]
)
ds

+ i sin
(

n−2
2 π

) ∫ 0

−∞
f(s)(−s[x, x])(n−2)/4K(n−2)/2

(√
s[x, x]

)
ds

+
iπ
2

∫ ∞

0

f(s)(s[x, x])(n−2)/4

× [
J−(n−2)/2

(√
s[x, x]

)− 2e−(n−2)πi/2J(n−2)/2

(√
s[x, x]

)]
ds

]
.

Here we have used the identity

(t− i0)λ/2Kλ(
√

t− i0) = −π

2
|t|λ/2eiλπ

[
N−λ(

√
|t|)

+ iJ−λ(
√
|t|)− 2i e−iλπJλ(

√
|t|)], λ =

n− 2
2

,

valid for t = −s[x, x] < 0 (see [6, 8.407.2, 8.476.1, 8.476.3]), in order to replace
the function N−(n−2)/2

(√
s[x, x]

)
. If the integral involving K(n−2)/2

(√−s[x, x]
)
is

expressed by residues, we obtain the terms of the formula in Proposition 5 referring
to the region G+. This completes the proof. ¥
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4. Temperate fundamental solutions of the iterated Klein–Gordon
operator

The iterated Klein–Gordon operator (∂2
0 −∆n−1 − c2)m = ([∂, ∂] − c2)m, c ∈ C,

m ∈ N, is hyperbolic in the direction x0 = t, and hence this operator possesses
one and only one fundamental solution with support in the half-space x0 > 0, see
[18, pp. 89, 90], [22, (VI,5;30), p. 179], [12], [10], [8, Thm. 12.5.1, p. 120]. This
fundamental solution is calculated best by means of the many-dimensional Laplace
transformation, see [26, § 9], [13]. Note that the Laplace transformation can be
applied since this fundamental solution has its support inside a convex cone.

In contrast, we are aiming here at deriving a temperate fundamental solution E
of (∂2

0−∆n−1−c2)m by Fourier transformation. Under the assumption of c2 ∈ C\
R, we have ([x, x]+c2)−m ∈ OM (Rn) and hence E = (−1)mF−1

(
([x, x]+c2)−m

) ∈
O′C(Rn), and this is the only temperate fundamental solution of (∂2

0−∆n−1−c2)m.
Except for the case of odd n and [x, x] > 0, the application of Proposition 5 proves
to be advantageous to that of Proposition 1.

Proposition 6. Let c ∈ C with Re c > 0, Im c 6= 0, and define zλ = eλ log z by
Im(log z) ∈ (−π, π) for z ∈ C \ (−∞, 0].

(1) The holomorphic distribution-valued function

Eλ : C −→ O′C(Rn) : λ 7−→ F−1
(
([x, x] + c2)−λ

)

has, for Reλ > n
2 − 1, the representation

Eλ(x) =
e−i sign(Im c)(n−1)π/2

(2π)n/22λ−1Γ(λ)

( c√
[x, x]

)n/2−λ

Kn/2−λ

(
c
√

[x, x]
) ∈ L1

loc(R
n).

(4.1)
Here we set

√
[x, x] = −i sign(Im c)

√
−[x, x] if [x, x] < 0.

(2) Eλ : C → O′C(Rn) is a group homomorphism from the additive group C
into the convolution group O′C , i.e., Eλ ∗ Eµ = Eλ+µ for each λ, µ ∈ C.

(3) In particular, E−m = (−[∂, ∂] + c2)mδ, and the only temperate fundamental
solution of the iterated Klein–Gordon operator (∂2

0 − ∆n−1 − c2)m is E =
(−1)mEm.

Proof. Due to the assumptions on c, Im([x, x] + c2) 6= 0 for x ∈ Rn, and hence
the powers ([x, x] + c2)−λ, λ ∈ C, are defined by means of the determination of
the logarithm given in the proposition. Therefore λ 7→ Eλ is an entire function
with values in O′C . Since, obviously,

([x, x] + c2)−λ · ([x, x] + c2)−µ = ([x, x] + c2)−λ−µ, λ, µ ∈ C,

the mapping λ 7→ Eλ is a group homomorphism from(C,+) into (O′C , ∗).
In order to calculate Eλ, let us first assume that both Re c and Im c are positive,

and let us distinguish four cases according to whether n is even or odd, and whether
[x, x] is positive or negative, respectively.
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If n is odd and [x, x] > 0, then Proposition 1 yields, by [6, 8.465.2] and [15,
4.23, p. 36], the following for Reλ > n−1

4 :

Eλ = F−1
(
([x, x] + c2)−λ

)

= − 1
2(2π)n/2[x, x](n−2)/4

∫ ∞

0

s(n−2)/4

(s + c2)λ
N−(n−2)/2

(√
s[x, x]

)
ds

=
(−1)(n−1)/2

(2π)n/2[x, x](n−2)/4

∫ ∞

0

un/2

(u2 + c2)λ
J(n−2)/2

(
u
√

[x, x]
)
du

=
(−1)(n−1)/2

(2π)n/22λ−1Γ(λ)

( c√
[x, x]

)n/2−λ

Kn/2−λ

(
c
√

[x, x]
)
.

On the other hand, if n is arbitrary, [x, x] < 0 and Reλ > n+1
4 , then Proposi-

tion 5 furnishes with f(z) = (z + c2)−λ

Eλ =
i
2
(2π)−n/2

∫ 0

−∞
(s + c2)−λ

( s

[x, x]

)(n−2)/4

J(n−2)/2

(√
s[x, x]

)
ds

=
i e−iλπ

(2π)n/2(−[x, x])(n−2)/4

∫ ∞

0

un/2

(u2 − c2)λ
J(n−2)/2

(
u
√
−[x, x]

)
du

=
i e−iλπ

(2π)n/22λ−1Γ(λ)

( −ic√
−[x, x]

)n/2−λ

Kn/2−λ

(−ic
√
−[x, x]

)
.

Due to
( −ic√

−[x, x]

)n/2−λ

=
(
e−iπ

c√
[x, x]

)n/2−λ

=
( c√

[x, x]

)n/2−λ

eiλπe−inπ/2,

the last expression coincides with the result in (4.1) for [x, x] < 0.
Finally, let us consider the case of n even and [x, x] positive. Then Proposition 5

and [6, 8.404.2] yield

Eλ =
i [x, x](2−n)/4

2(2π)n/2

∫ ∞

0

s(n−2)/4

(s + c2)λ

×
[
J−(n−2)/2

(√
s[x, x]

)− 2e(n−2)πi/2J(n−2)/2

(√
s[x, x]

)]
ds

=
i (−1)n/2

(2π)n/2([x, x])(n−2)/4

∫ ∞

0

un/2

(u2 + c2)λ
J(n−2)/2

(
u
√

[x, x]
)
du

=
e−iπ(n−1)/2

(2π)n/22λ−1Γ(λ)

( c√
[x, x]

)n/2−λ

Kn/2−λ

(
c
√

[x, x]
)
.

So in each case, we have obtained the result announced in Proposition 6, at
least for [x, x] 6= 0. Let us observe that, for Reλ > n

2 − 1,

( c√
[x, x]

)n/2−λ

Kn/2−λ

(
c
√

[x, x]
) ∈ L1

loc(R
n)
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due to
Kν(z) ∼ 1

2Γ(ν)( 1
2z)−ν , z → 0, Re ν > 0,

see [1, 9.6.9, p. 375]. For sufficiently large Reλ, the distribution Eλ must be locally
integrable, as one can see by approximation from F−1

(
(α2x2

0 − x2
1 − · · · − x2

n−1 −
c2)λ

)
, α = 1 + iε, ε → 0. Therefore, formula (4.1) in the proposition holds for all

complex λ satisfying Reλ > n
2 −1 by analytic continuation. To conclude the proof,

we employ the relation Eλ,c = Eλ̄,c̄ in order to reduce the case of Im c < 0 to that
of Im c > 0. ¥

Remarks.

(1) [5] arrives at a formula comparable to (4.1) using analytic continuation with
respect to the coefficients of the quadratic form [x, x], see [5, Ch. III, 2.8,
(8), p. 289].

(2) Let us emphasize again (cfȧlso the introduction) that the formulas (2.1),
(2.2) in Proposition 1, respectively the one in [23, Thm. 1, p. 509], which
refers to F(

φ([x, x])
)
, φ ∈ S(R), do not directly yield the simple result in

Proposition 6, except for the case of n odd and [x, x] > 0.

Corollary 2. Let c ∈ C with Re c > 0, Im c 6= 0, and set, as in Proposition 6,√
[x, x] = −i sign(Im c)

√
−[x, x] for [x, x] < 0. Let E denote the uniquely deter-

mined temperate fundamental solution of ∂2
0 −∆n−1 − c2.

(a) If n = 2, then

E =
i sign(Im c)

2π
K0

(
c
√

[x, x]
) ∈ L1

loc(R
2).

(b) If n = 3, then

E =
e−c

√
[x,x]

4π
√

[x, x]
∈ L1

loc(R
3).

(c) If n = 4, then

E = − i sign(Im c)
4π2

vp
(

c√
[x, x]

K1

(
c
√

[x, x]
))

+
1
4π

δ([x, x]).

Proof. For n = 2 or n = 3, Proposition 6 immediately yields the results, since
then E = −E1 ∈ L1

loc(R
n). For n = 4, in contrast, we have to determine E =

−E1 = − limλ↘1 Eλ, since Eλ ∈ L1
loc(R

4) holds only for Reλ > n
2 − 1 = 1.

If n = 4, Reλ > 1 and Im c > 0, then

Eλ(x) =
i

4π2 · 2λ−1Γ(λ)

( c√
[x, x]

)2−λ

K2−λ

(
c
√

[x, x]
)

=
i

2λ+1π2Γ(λ)
lim
ε↘0

[
([x, x]− iε)λ−2

(
c
√

[x, x]
)2−λ

K2−λ

(
c
√

[x, x]
)]
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because of
√

[x, x] = −i
√

[x, x] for [x, x] < 0, which implies

lim
ε↘0

[
([x, x]− iε)λ−2

(
c
√

[x, x]
)2−λ

]
=

( c√
[x, x]

)2−λ

.

Sokhotski’s formula furnishes for the boundary values

lim
ε↘0

([x, x]− iε)λ−2 =: ([x, x]− i0)λ−2

the following limit relation in S ′(R4) :

lim
λ↘1

([x, x]− i0)λ−2 = vp
( 1

[x, x]

)
+ iπδ([x, x]).

Since the function f(t) = ctK1(ct), t ∈ R, is C1, it can be multiplied with the
principal value and with the delta function, and therefore

E = − i
4π2

vp
(

c√
[x, x]

K1

(
c
√

[x, x]
))

+
1
4π

δ([x, x]).

As before, for Im c < 0, we use E1,c = E1,c̄. ¥

Remark. For n = 4, the limits with respect to c = iε, ±ε ↘ 0, yield the following
fundamental solutions E± of the wave operator ∂2

0 − ∂2
1 − ∂2

2 − ∂2
3 = ¤4 :

E± = ∓ i
4π2

vp
(

1
[x, x]

)
+

1
4π

δ([x, x]) = ∓ i
4π2

vp
(
([x, x]∓ i0)−1

)
.

Note that F(
δ([x, x])

)
= −4π vp

(
[x, x]−1

)
by Corollary 1 (e), and hence

¤4 vp
(
[x, x]−1

)
= 0, i.e., vp

(
[x, x]−1

)
is a solution of the homogeneous wave equa-

tion in R4. On the other hand,

ReE± =
1
4π

δ([x, x]) =
δ(|x0| − |x′|)

8π|x0| , x′ = (x1, x2, x3)T ,

originates as convex combination of the retarded and the advanced fundamental
solution δ(x0 ∓ |x′|)/(4π|x′|).
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