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FRÉCHET SPACES INVARIANT UNDER DIFFERENTIAL
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Abstract: A Fréchet space of distributions which is stable under differential operators is con-
tinuously included in C∞. We give extensions of this result to the ultradifferentiable setting and
show their connection with the problem of iterates of differential operators.
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1. Introduction

M. Langenbruch and J. Voigt proved in [14] that a Fréchet space of distributions
which is stable under differential operators is continuously included in C∞. As
they assert in [14], this result was more or less folklore. They also showed that
to guarantee this continuous inclusion it is enough to assume that the Fréchet
space is stable under a single hypoelliptic differential operator P (D) and that this
property in fact characterizes the hypoellipticity of the operator. Our aim is to
provide extensions of these results to the ultradifferentiable setting and show their
connection with the problem of iterates of differential operators.

The study of several classes of ultradifferentiable functions and ultra- distribu-
tions has been a very active area of research during the last two decades. These
are intermediate classes between real analytic functions and the class of all C∞-
functions. There are essentially two ways to introduce them, the theory of Ko-
matsu [11], in which one looks at the growth of the derivatives on compact sets,
and the theory developed by Björck [1] in 1966, following the ideas previously
announced by Beurling, in which one pays attention at the growth of the Fourier
transforms. We will work with ultradifferentiable functions as defined by Braun,
Meise and Taylor [5]. Their point of view permits a unified treatment of both
theories, contains the most relevant cases of Komatsu’s theory and it is strictly
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larger than Beurling-Björck ’s one. The relation between both theories has been
clarified in [3].

Observe that the class of ultradistributions of Roumieu type E := D′{ω}(Rd)
is a Fréchet space invariant under differential operators which is not included
in C∞(Rd). Nevertheless, a similar result to that of Langenbruch and Voigt can
be obtained after imposing the extra assumption that E is stable under suitable
differential operators of infinite order, available in any non quasianalytic class other
than C∞(Rd). This is the content of Theorem 5.

Each hypoelliptic linear partial differential operator with constant coefficients
is also Gevrey hypoelliptic for some Gevrey class depending on the operator, hence
it makes sense to study whether Fréchet spaces of distributions invariant under
a single hypoelliptic operator and satisfying some extra assumptions should be
contained not only in the space of all smooth functions but in a smaller class of
ultradifferentiable functions. This question is related to the problem of iterates,
which roughly speaking consists in characterizing the functions in a given non-
quasianalytic class in terms of the behaviour of the iterates of a fixed differential
operator when acting on these functions.

Let us recall that in 1960, H. Komatsu [10], using tools introduced by L. Hör-
mander [8], proved that given a elliptic differential operator P (D) of order m, a
function f ∈ C∞(Ω) is real analytic if and only if for each compact subset K ⊂⊂ Ω
there exists a constant C > 0 such that for each j ∈ N0

‖P j(D)f‖2,K 6 Cj+1(j!)m,

where P j(D) is the j-th iterate of P (D), i.e., P j(D) = P (D) ◦ · · · ◦︸ ︷︷ ︸
j

P (D). In 1973,

E. Newberger and Z. Zielezny [16] considered extensions of this result to the setting
of Gevrey classes: let Gs(Ω) be the Gevrey class of exponent s > 1 and let Gs

P (Ω)
be the class of smooth functions in Ω such that for each K ⊂⊂ Ω there exists a
constant C > 0 such that for any j ∈ N0,

‖P j(D)f‖2,K 6 Cj+1(j!)s,

then
Gs(Ω) = Gms

P (Ω)

whenever P is an elliptic polynomial with degree m.
The problem of the iterates consists in giving conditions on P in order to

guarantee the equality Gs(Ω) = Gms
P (Ω).

In a recent paper, the third author [12] has considered the problem of iter-
ates for non-quasianalytic classes in the sense of Braun, Meise and Taylor. He
has shown that for a given elliptic polynomial P of degree m we always have
E

P,∗(t 1
m )

(Ω) = E∗(t)(Ω). Moreover, for weight functions ω verifying a growth con-
dition considered by J. Bonet, R. Meise and S.N. Melikhov in [3] the ellipticity of
the polynomial is necessary in order to achieve the equality above.
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In the last part of the paper we address the question whether a Fréchet space
E ⊂ D′(ω)(R

d) which is invariant under the action of a single one elliptic oper-
ator P (D) that satisfies some extra assumptions on equicontinuity is necessarily
contained in E(ω)(Rd). The case that ellipticity is replaced by the weaker assump-
tion of (ω)−hypoellipticity is also considered. As a consequence we obtain several
results related to the problem of iterates for non-quasianalytic classes.

2. Notation and Preliminaries

First we introduce the spaces of functions and ultradistributions and most of the
notation that will be used in the sequel.

Definition 1 ([5]). A non-quasianalytic weight function is an increasing contin-
uous function ω : [0,∞[→ [0,∞[ with the following properties:

(α) there exists L > 0 with ω(et) 6 L(ω(t) + 1) for all t > 0,
(β)

∫∞
1

ω(t)
t2 dt < ∞,

(γ) log(t) = o(ω(t)) as t tends to ∞,
(δ) ϕ : t → ω(et) is convex.

The condition (β) is called non-quasianalytic condition and it implies ω(t) =
o(t) as t tends to ∞. Moreover, it implies the existence of functions with compact
support in the class of ultradifferentiable functions.

The Young conjugate ϕ∗ : [0,∞[→ R of ϕ is given by

ϕ∗(s) := sup{st− ϕ(t), t > 0}.

There is no loss of generality to assume that ω vanishes on [0, 1]. Then ϕ∗ has
only non-negative values, it is convex and ϕ∗(t)/t is increasing and tends to ∞ as
t →∞ and ϕ∗∗ = ϕ.

Example 2. The following functions are, after a change in some interval [0, M ],
examples of weight functions:

(i) ω(t) = td for 0 < d < 1.

(ii) ω(t) = (log(1 + t))s, s > 1.

(iii) ω(t) = t(log(e + t))−β , β > 1.

(iv) ω(t) = exp(β(log(1 + t))α), 0 < α < 1.

Definition 3. ([5]) Let ω be a weight function. For an open set Ω ⊂ Rd we set

E(ω)(Ω) := {f ∈ C∞(Ω) : |f |K,λ < ∞ for every λ > 0, and every K ⊂ Ω compact},

where

|f |K,λ := sup
x∈K

sup
α∈NN

0

|f (α)(x)|exp(−λϕ∗(
|α|
λ

)).
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E(ω)(Ω) is a Fréchet space, that is, a complete and metrizable locally convex
space and its topology can be described in terms of L2-norms, i.e., we can replace
| · |K,λ by the seminorms

qK,λ(f) := sup
α∈NN

0

∥∥∥f (α)
∥∥∥

2,K
exp

(
−λϕ∗

( |α|
λ

))
,

where
‖f‖2,K =

( ∫

K

|f |2)
1
2 .

By D(ω)(K), K ⊂ Ω compact, we denote the collection of all those f ∈ E(ω)(Ω)
with support contained in K. Then D(ω)(Ω) = indn→D(ω)(Kn), where (Kn) is any
compact exhaustion of Ω. The elements of D′(ω)(Ω) are called ultradistributions of
Beurling type.

Definition 4 ([12]). Let ω be a weight function. Given a polynomial P , an open
set Ω of Rd, a compact subset K ⊂⊂ Ω and λ > 0, we define

Eλ
P,ω(K) = {f ∈ C∞(K) : ‖f‖K,λ := sup

j∈N0

‖P j(D)f‖2,K exp
(
−λϕ∗(

j

λ
)
)

< +∞}.

The spaces of ultradifferentiable functions of Beurling type with respect to the suc-
cessive iterates of P are defined as follows:

EP,(ω)(Ω) = {f ∈ C∞(Ω) : ‖f‖Kn,n < +∞ for each n ∈ N}

where {Kn}n∈N is a compact exhaustion of Ω.

This is a metrizable locally convex space whose topology is defined by the
fundamental system of seminorms {‖ · ‖Kn,n}n∈N. EP,(ω)(Ω) is complete if and
only if P is a hypoelliptic polynomial (see [12]).

Let G ∈ H(Cd) be an entire function such that log |G(z)| = O(ω(|z|)) as |z|
tends to infinity. Then

TG(ϕ) :=
∑

α∈Nd
0

(−i)|α|
G(α)(0)

α!
ϕ(α)(0)

defines an ultradistribution TG ∈ E ′(ω)(R
d) whose support reduces to {0} and with

Fourier transform T̂G(z) = G(−z). The operator

G(D) : D′(ω)(R
d) → D′(ω)(R

d), G(D)ν := TG ∗ ν

is called an ultradifferential operator of class (ω). It has the important property
that its restriction to E(ω)(Rd) can be interpreted as a differential operator of
infinite order

G(D) : E(ω)(Rd) → E(ω)(Rd).
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More precisely, for every f ∈ E(ω)(Rd) one has,

G(D)f(x) =
∑

α∈Nd
0

i|α|
G(α)(0)

α!
f (α)(x).

The ultradifferential operator G(D) is called elliptic if G(D)−1
(A(Rd)

) ⊂
A(Rd), where A(Rd) denotes the class of real analytic functions on Rd. It is said to
be (ω)-hypoelliptic if G(D)−1

(E(ω)(Rd)
) ⊂ E(ω)(Rd). The ellipticity and the (ω)-

hypoellipticity of an ultradifferential operator are characterized in terms of the
distribution of zeros and the growth of the entire function G(z) (see [6] and [2]).
We will say that the (ω)-hypoelliptic ultradifferential operator G(D) is strongly
(ω)-hypoelliptic if there is a constant C > 0 such that

Cω(|x|) 6 log |G(x)| , x ∈ Rd.

The existence of strongly (ω)-hypoelliptic ultradifferential operators follows from
[4, 13].

3. Results

Our first result is an extension of [14, Theorem 1] to the ultradifferentiable setting.

Theorem 5. Let E be a Fréchet space which is continuously included in D′(ω)(R
d)

and such that G(D)E ⊂ E for some strongly (ω)-hypoelliptic ultradifferential op-
erator G(D) of class (ω). Then E ⊂ E(ω)(Rd) with continuous inclusion.

Proof. We need some preparation. Let (Kj) denote the closed ball centered at
the origin and with radius j and

Xj := {µ ∈ E ′(ω)(R
d); supp µ ⊂ Kj , ||µ||∗j := sup

z∈CN

|µ̂(z)| e−jω(|z|)−j|Im z| < ∞}

where µ̂ denotes the Fourier-Laplace transform of µ (see [5]). Then Xj is a Banach
space and

E ′(ω)(R
d) = indj→Xj .

For every j ∈ N, the bilinear form

B : E ×D(ω)(Kj+1) → C, B(h, ϕ) := 〈h, ϕ〉 ,
is separately continuous, hence it is continuous. Consequently, if we fix a fun-
damental system of seminorms (pm) of E then there are constants Cj > 0 and
mj ∈ N, such that

|〈h, ϕ〉| 6 Cjpmj (h) |ϕ|mj
∀h ∈ E, ϕ ∈ D(ω)(Kj+1),

where
|ϕ|m := sup

x∈Rd

sup
α∈Nd

0

∣∣∣ϕ(α)(x)
∣∣∣ exp

(−mϕ∗(
|α|
m

)
)
.
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According to property (α) in Definition 1, there is a constant L ∈ N such that

ω(et) 6 L(1 + ω(t)) ∀t > 0. (3.1)

By assumption there is a constant C > 0 with Cω(|x|) 6 log |G(x)| for every
x ∈ Rd. Now, for each j we define Gj(z) as a suitable power of G(z) such that

(1 + j + 2mjL) ω(|x|) 6 log |Gj(x)| , x ∈ Rd. (3.2)

Then Gj(D) is an ultradifferential operator of (ω)-class which is strongly (ω)-

hypoelliptic. Let now ψj ∈ D(ω)(
◦
Kj+1) be a test function which is constant

ψj = 1 on a neighborhood of Kj . For any µ ∈ Xj we define

f(x) =
1

(2π)d

∫

Rd

µ̂(t)
Gj(t)

ei<x,t> dt.

Then we can decompose

µ = Gj(−D)f = Gj(−D)
(
ψjf

)
+ Gj(−D)

(
(1− ψj)f

)
.

Moreover, we can apply (3.2) and

|tα|e−mω(t) 6 exp
(
mϕ∗(

|α|
m

)
) ∀ m ∈ N, α ∈ Nd

0,

to conclude that f ∈ C∞(Rd) and

|f |2Lmj := sup
α∈Nd

0

sup
x∈Rd

∣∣∣f (α)(x)
∣∣∣ exp

(− 2mjLϕ∗(
|α|

2mjL
)
)

6 Dj ||µ||∗j

for some constant Dj > 0 which does not depend on µ. Our aim is to prove that
each ultradistribution h ∈ E can be extended to a continuous and linear map

Th : E ′(ω)(R
d) → C.

First we claim that the linear map

Φ : Xj → E(ω)(Rd), µ 7→ (
1− ψj(x)

) 1
(2π)d

∫

Rd

µ̂(t)
Gj(t)

ei<x,t> dt

is well-defined and continuous. In fact, since Gj(−D) is an (ω)-hypoelliptic oper-
ator and Gj(−D)f = µ we have, for every µ ∈ Xj ,

sing(ω)supp f ⊂ sing(ω)supp µ ⊂ Kj ,

hence
(1− ψj)f ∈ E(ω)(Rd).
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On the other hand, from the convexity of ϕ∗ and (3.1) we get, for every x ∈ Rd

and α ∈ Nd
0,

∣∣∣(ψjf)(α)(x)
∣∣∣ 6

∑

β6α

(
α
β

) ∣∣∣ψ(β)
j (x)

∣∣∣
∣∣∣f (α−β)(x)

∣∣∣

6 |f |2Lmj
|ψj |2Lmj

exp
(
α + 2Lmjϕ

∗(
|α|

2Lmj
)
)

6 |f |2Lmj
|ψj |2Lmj

exp
(
2mjϕ

∗(
|α|
2mj

) + mj

)

and, consequently

|ψjf |2mj
6 emj |f |2Lmj

|ψj |2Lmj
6 Dje

mj |ψj |2Lmj
||µ||∗j . (3.3)

Moreover, it follows from the previous estimates that Φ : Xj → D′(ω)(R
d) is weakly

continuous, hence Φ : Xj → E(ω)(Rd) is continuous by the closed graph theorem
and the claim is proved.

We now fix h ∈ E and consider a regularizing family (ηε)ε↓0, ηε ∈ D(ω)(Rd).
Define

Tj : Xj → C

by
Tj(µ) = lim

ε→0
〈Gj(D)h, (ψjf) ∗ ηε〉+

〈
h,Gj(−D)

(
(1− ψj)f

)〉
,

where
f(x) =

1
(2π)d

∫

Rd

µ̂(t)
Gj(t)

ei<x,t> dt.

Let us prove that Tj is a well-defined linear map. Since Gj(D)h ∈ E and (ψjf) ∗
ηε ∈ D(ω)(Kj+1) we get

|〈Gj(D)h, (ψjf) ∗ (ηε1 − ηε2)〉| 6 Cjpmj

(
Gj(D)h

) |(ψjf) ∗ (ηε1 − ηε2)|mj
.

On the other hand, using (3.3), we have

lim
ε→0

|(ψjf) ∗ ηε − (ψjf)|mj
= 0,

from where it follows that
( 〈Gj(D)h, (ψjf) ∗ ηε〉

)
ε↓0

is a Cauchy net. On the other hand,

Gj(−D)
(
(1− ψj)f

)
= µ−Gj(−D)(ψjf)

is compactly supported, hence

Gj(−D)
(
(1− ψj)f

) ∈ D(ω)(Rd).



52 Carmen Fernández, Antonio Galbis and Jordi Juan-Huguet

Consequently Tj is a well-defined linear map. From (3.3) and the continuity of

Gj(−D) ◦ Φ : Xj → D(ω)(Kj+1)

we conclude that there is a positive constant Mj such that

|Tj(µ)| 6 Cjpmj

(
Gj(D)h

) |ψjf |mj
+ |〈h, (Gj(D) ◦ Φ)µ〉| 6 Mj ||µ||∗j ,

which proves that
Tj : Xj → C

is a continuous and linear form. Moreover, for µ ∈ Xj ∩ D(ω)(Rd) we have

Tj(µ) = lim
ε→0

( 〈h,Gj(−D)(ψjf) ∗ ηε〉
+ 〈h,Gj(−D)((1− ψj)f) ∗ ηε〉

)

= lim
ε→0

〈h,Gj(−D)f ∗ ηε〉
= lim

ε→0
〈h, µ ∗ ηε〉 = 〈h, µ〉 .

Since the restriction of Tj+1 to Xj coincides with Tj , we finally conclude that
there is a continuous and linear form T : E ′(ω)(R

d) → C with the property that
T (µ) = 〈h, µ〉 for all µ ∈ D(ω)(Rd). That is, as ultradistributions,

h = T ∈ E(ω)(Rd). ¥

As we already mentioned in the introduction, the space of ultradistributions of
Roumieu type E := D′{ω}(Rd) is a Fréchet space which is stable under differential
operators but which is not contained in E(ω)(Rd).

We refer to [5] for the definition and properties of the spaces of Roumieu type.
Next, given a weight ω and a natural number m we put ωm(t) = ω(t

1
m ). We

denote ϕ∗ = ϕ∗ω and observe that ϕ∗ωm
(x) = ϕ∗(mx).

Definition 6. Let E be a Fréchet space such that E ⊂ D′(ω)(R
d) with continuous

inclusion and let P (D) be a differential operator of degree m. Then E is said to
be (ω, P (D))−stable if P (D)E ⊂ E and, moreover, for every k ∈ N, the sequence
of operators

P j(D)e−kϕ∗(m j
k ) : E → E

is equicontinuous, that is, for every k ∈ N and every continuous seminorm r on E
there is a continuous seminorm s on E with

r
(
P j(D)f

)
6 ekϕ∗(m j

k )s(f) ∀j ∈ N, f ∈ E. (3.4)

Example 7. For every hypoelliptic polynomial P and for every m ∈ N the Fréchet
space EP,(ωm)(Rd) is (ω, P (D))−stable.
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In the limit case ω(t) = log(1 + t), (ω, P (D))−stability simply means that
P (D)E ⊂ E.

We now consider the following question. Given a differential operator P (D)
and an (ω, P (D))−stable Fréchet space E ⊂ D′(ω)(R

d), we want to analyze whether
E consists of smooth functions or even E ⊂ E(λ)(Rd) for some weight λ related to
ω. We observe that, for an arbitrary polynomial P (D), the space

E := {S ∈ D′{ω}(Rd) : P (D)S = 0},
consisting of the ultradistributions of Roumieu type in the Kernel of P (D), is an
(ω, P (D))−stable Fréchet space. Hence in order to have a positive answer to the
previous question the polynomial P has to be hypoelliptic.

As proved in [12], for any elliptic polynomial P of degree m the space EP,(ωm)(Rd)
is contained in E(ω)(Rd). This fact and [14] permit us to prove a similar result for
arbitrary (ω, P (D))−stable Fréchet spaces of distributions.

Proposition 8. Let P (D) be an elliptic differential operator of degree m. If the
Fréchet space E ⊂ D′(Rd) is (ω, P (D))−stable then E ⊂ E(ω)(Rd) with continuous
inclusion.

Proof. According to Langenbruch, Voigt [14, Theorem 1], E is continuously in-
cluded in C∞(Rd). Hence, for any f ∈ E, k ∈ N and K ⊂ Rd,

sup
j∈N0

‖ P j(D)f ‖2,K e−kϕ∗(m j
k ) < ∞,

which means that
f ∈ EP,(ωm)(Rd).

Since P is an elliptic operator, we can apply [12, Corollary 4.10] to conclude that
f ∈ Eω(Rd). ¥

This result can be partially extended to Fréchet spaces of ultradistributions.

Theorem 9. Let P (D) be an elliptic differential operator of degree m such that its
principal part has real coefficients. If the Fréchet space E ⊂ D′(ω)(R

d) is (ω, P (D))-
stable then E ⊂ E(ω)(Rd) with continuous inclusion.

Proof. We will see that E is invariant under the action of a strongly (ω)-hypoelliptic
operator and then the conclusion follows applying Theorem 5. Throughout the
proof, in order to simplify the notation, we will put σ := ωm.

According to [13, Corollary 1.4] there are an entire function g ∈ H(C) without
zeros on the real line and a conic neighborhood Γ of R \ {0}, defined by |Im z| <
ε|Re z|, such that

|g(z)| 6 AeBσ(|z|) ∀z ∈ C and |g(z)| > aebσ(|z|) ∀z ∈ Γ. (3.5)

We now put
P = Q + Pm,
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where Pm is the principal part of P and Q is a polynomial of degree at most m−1.
For each ξ ∈ Rn we have, for some d > 0 and for |ξ| large enough,

∣∣∣∣
Im P (ξ)
Re P (ξ)

∣∣∣∣ 6 |Q(ξ)|
|Pm(ξ)| − |Q(ξ)| 6 |Q(ξ)|

d|ξ|m − |Q(ξ)| .

Hence, there is R > 0 such that P (ξ) ∈ Γ whenever ξ ∈ Rd and |ξ| > R. We now
define G ∈ H(Cd) by

G(z) := g
(
ε0P (z)

)
,

where ε0 > 0 is such that G(ξ) 6= 0 for every ξ ∈ Rd with |ξ| 6 R. Hence G(ξ) 6= 0
for every ξ ∈ Rd. Then, for some constants C,D > 0, we have

|G(z)| 6 AeBσ(ε0|P (z)|) 6 CeDσ(|z|m) = CeDω(|z|)

for every z ∈ Cd. On the other hand, there is δ > 0 with |P (ξ)| > δ|ξ|m for |ξ|
large enough. Consequently, there is q ∈ N such that

|G(ξ)| > aebσ(ε0|P (ξ)|) > aebω(2−q|ξ|)

for each ξ ∈ Rd with |ξ| large enough. Since G does not vanish on Rd, we finally
deduce

|G(ξ)| > a′eb′ω(|ξ|)

for ξ ∈ Rd. To conclude that G(D) is a strongly (ω)-hypoelliptic ultradifferential
operator of (ω)-class it is enough to show that (see [2, Theorem 2.1])

lim
|z|→∞
G(z)=0

|Im z|
ω(|z|) = ∞.

We are going to prove that each z ∈ Cd with |Imz| 6 Aω(|z|) also satisfies
|ImP (z)| < ε|ReP (z)| provided that |z| is big enough, and consequently G(z) =
g(P (z)) 6= 0. Since ω(t) = o(t) we may assume |Imz| 6 Aω(|Rez|) for some differ-
ent constant A. Clearly,

|ImQ(z)| 6 |Q(z)| 6 C|z|m−1 6 C(1 + A)m|Rez|m−1.

On the other hand, by Taylor formula

Pm(z) = Pm(Rez + iImz) = Pm(Rez) +
∑

α 6=0

P
(α)
m (Rez)

α!
(iImz)α.

Each term in the sum above is estimated as follows

|P (α)
m (Rez)(iImz)α| 6 |Rez|m−|α||Imz||α|.

Therefore, for |z| big enough, the whole sum is not bigger than D|Rez|m−1|Imz|.
Since the principal part of P has real coefficients we finally have

|ImP (z)| 6 D′|Rez|m−1|Imz| 6 D′A|Rez|m−1ω(|Rez|)
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whereas

|ReP (z)| > |Pm(Rez)| −D′A|Rez|m−1ω(|Rez|)
> d|Rez|m −D′A|Rez|m−1ω(|Rez|)
> L|Rez|m.

Hence, it is clear that
|ImP (z)| < ε|ReP (z)|

provided that |z| is big enough.
We now check that G(D)E ⊂ E. Since the entire function

g(z) =
∑

j∈N0

ajz
j

satisfies (3.5), we can use the convexity of ϕ∗ and Cauchy inequalities to find k ∈ N
and C > 0 such that

|aj | 6 Ce−kϕ∗(m j
k ) ∀j ∈ N0.

Moreover,
G(D) =

∑

j∈N0

ajP
j(D).

If r is a continuous seminorm on E then there is another continuous seminorm s
on E such that, for every f ∈ E,

∑

j∈N0

|aj |r
(
P j(D)f

)
6 CD sup

j∈N0

e−2kϕ∗(m j
2k )r

(
P j(D)f

)
6 CDs(f),

where

D =
∑

j∈N0

e2kϕ∗(m j
2k )

ekϕ∗(m j
k )

< +∞.

This proves that the series
∑

j∈N0

ajP
j(D)f converges in the Fréchet space E

and G(D)f ∈ E. ¥

Remark 10. If E is invariant under complex conjugation, the assumption that
the principal part of P should be real is redundant. Indeed, (ω, P (D))-stability
then implies (ω, Q(D))-stability where Q(D) = P (D)P (D) = P (D)P (−D) and
the principal part of Q has real coefficients.

According to Hörmander [9, 11.1.3], for every hypoelliptic differential operator
P (D) of degree m, there are c > 0 and 0 < r < 1 such that |P (ξ)| > c|ξ|rm and
|P (α)(ξ)| 6 c−1|P (ξ)||ξ|−r|α| if ξ ∈ Rd and |ξ| is large enough. Let us take a weight

function ω such that lim
t→∞

ω(t)
tr

= 0. In the sequel we will consider λ(t) := ω(tr).
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Proposition 11. We assume that the hypoelliptic differential operator P (D) of
degree m satisfies

lim
x∈Rd,|x|→∞

ImP (x)
ReP (x)

= 0.

If the Fréchet space E ⊂ D′(λ)(R
d) is (ω, P (D))−stable then E ⊂ E(λ)(Rd) with

continuous inclusion.

Proof. Let (Kj) denote the closed ball centered at the origin and with radius j
and

Xj := {µ ∈ E ′(λ)(R
d); supp µ ⊂ Kj , ||µ||∗j := sup

z∈Cd

|µ̂(z)| e−jλ(|z|)−j|Im z| < ∞}.

Then Xj is a Banach space and

E ′(λ)(R
d) = indj→Xj .

For every j ∈ N, the bilinear form

B : E ×D(λ)(Kj+1) → C, B(h, ϕ) := 〈h, ϕ〉 ,
is separately continuous, hence it is continuous. Consequently, if we fix a funda-
mental system of seminorms (pm) of E there are constants Cj > 0 and mj ∈ N,
such that

|〈h, ϕ〉| 6 Cjpmj (h) |ϕ|mj
∀h ∈ E, ϕ ∈ D(λ)(Kj+1),

where
|ϕ|m := sup

x∈Rd

sup
α∈Nd

0

∣∣∣ϕ(α)(x)
∣∣∣ exp

(−mϕ∗λ(
|α|
m

)
)
.

As in the proof of Theorem 9, there are an entire function g ∈ H(C) without
zeros on the real line and a conic neighborhood Γ of R \ {0}, defined by |Im z| <
ε|Re z|, such that

|g(z)| 6 AeBω(|z| 1
m ) ∀z ∈ C and |g(z)| > aebω(|z| 1

m ) ∀z ∈ Γ.

We now define G ∈ H(Cd) by G(z) := g
(
P (z)

)
and we check that G(D) is

(ω)−hypoelliptic. In fact, for some constants C, D > 0,

|G(z)| 6 AeBω(|P (z)| 1
m ) 6 CeDω(|z|)

for every z ∈ Cd and
|G(ξ)| > aebω(|ξ|r) = aebλ(|ξ|)

for some a, b > 0 and every ξ ∈ Rd. We now check that

lim
|z|→∞
G(z)=0

|Im z|
ω(|z|) = ∞.
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To this end we observe that G(z) = 0 implies |Im P (z)| > ε|Re P (z)|. Hence,
it suffices to prove that, for any A > 0, the inequality |Im z| < Aω(|z|) implies
|Im P (z)| < ε|Re P (z)| whenever |z| is large enough. Since ω(t) = o(t) we may
assume |Imz| 6 Aω(|Rez|) for some different constant A. Using Taylor’s formula
we have, for z = x + iy, x, y ∈ Rd,

P (z) = P (x) +
∑

α 6=0

P (α)(x)
α!

(iy)(α).

Now, since P is hypoelliptic get, for some positive constant C (which depends on
A),

∣∣ ∑

α 6=0

P (α)(x)
α!

(iy)(α)
∣∣ 6 C

∣∣P (x)
∣∣ ∑

α 6=0

1
α!

(ω(|x|)
|x|r

)|α|
.

Therefore, using lim
t→∞

ω(t)
tr

= 0 and limx∈Rd,|x|→∞
ImP (x)
ReP (x) = 0 we deduce that

∣∣ ∑

α 6=0

P (α)(x)
α!

(iy)(α)
∣∣ < min (

ε

2
,
1
2
)|ReP (x)|

for |x| large enough (equivalently, for |z| large enough, since |y| 6 Aω(|x|) and
ω(|x|) = o(|x|) as |x| tends to ∞). Therefore, for |z| large enough,

|Im P (z)| < ε

2
|Re P (x)|

while

|Re P (z)| > |Re P (x)| − ∣∣ ∑

α 6=0

P (α)(x)
α!

(iy)(α)
∣∣ > 1

2
|Re P (x)|.

Hence,
|Im P (z)| < ε|Re P (z)|,

as we wanted to check. Consequently, G(D) is (ω)−hypoelliptic [2, Theorem 2.1].
Proceeding as in Theorem 9 we conclude that G(D)E ⊂ E and G(D) : E → E
is continuous and linear map. To finish the proof, let µ ∈ Xj be given and take
lj ∈ N with

blj −mj > j + 1

(where mj is as large as needed later) and define Gj(D) = Glj (D) and

fj(x) :=
1

(2π)d

∫

Rd

µ̂(t)
Gj(t)

ei<x,t> dt.

Since, for every α ∈ Nd
0,

∣∣ tαµ̂(−t)
Gj(t)

∣∣ 6
||µ||∗j

a
e(−blj+j)λ(t)+|α| log(t) 6

||µ||∗j
a

e−λ(t)e
mjϕ∗λ(

|α|
mj

)
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then
fj ∈ C∞(Rd) ⊂ D′(ω)(R

d)

and
sup
x∈Rd

sup
α∈Nd

0

∣∣∣f (α)
j (x)

∣∣∣ e
−mjϕ∗λ(

|α|
mj

)
< +∞.

Moreover
Gj(−D)fj = µ

in D′(ω)(R
d). Let ψj ∈ D(ω)(

◦
Kj+1) be such that ψj = 1 on a neighborhood of Kj .

As in Theorem 9 we will prove that each ultradistribution h ∈ E can be extended
to a continuous and linear map

Th : E ′(λ)(R
d) → C.

Since Gj(−D) is (ω)−hypoelliptic then

sing(ω)suppfj ⊂ conv (sing(ω)suppfj) ⊂ Kj

and the mapping

Xj → E(ω)(Rd), µ 7→ (1− ψj(x))
1

(2π)d

∫

Rd

µ̂(t)
Gj(t)

ei<x,t> dt

is well-defined. Moreover, as in the proof of Theorem 5, the mapping Xj →
E(λ)(Rd) is continuous. Hence, by the closed graph theorem, also

Xj → E(ω)(Rd)

is continuous. We now fix h ∈ E and consider a regularizing family (ηε) of test
functions in D(ω)(Rd). If mj is big enough, we may guarantee that

lim
ε→0

|(ψjfj) ∗ ηε − (ψjfj)|mj
= 0,

from where it follows that
( 〈Gj(D)h, (ψjfj) ∗ ηε〉

)
ε↓0

is a Cauchy net. Define
Tj : Xj → C

by
Tj(µ) = lim

ε→0
〈Gj(D)h, (ψjfj) ∗ ηε〉+ 〈h,Gj(−D)((1− ψj)fj)〉 .

The same argument as in Theorem 5 gives that Tj is a continuous linear form,
the restriction of Tj+1 to Xj coincides with Tj and Tj(µ) = 〈h, µ〉 for every µ ∈
Xj ∩ D(ω)(Rd). That is, there is f ∈ E(λ)(Rd) such that

〈f, µ〉 = 〈h, µ〉
for every µ ∈ D(ω)(Rd). Since D(ω)(Rd) is dense in D(λ)(Rd) then h = f ∈ E(λ)(Rd).

¥
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Corollary 12. We assume that the differential operator P (D) of degree m satisfies
(1) P is hypoelliptic and has real coefficients

or
(2) P is semi-elliptic with real generalized principal part.

If the Fréchet space E ⊂ D′(λ)(R
d) is (ω, P (D))−stable then E ⊂ E(λ)(Rd) with

continuous inclusion.

Proof. It is straightforward to check that in both cases

lim
x∈Rd,|x|→∞

ImP (x)
ReP (x)

= 0

(see the proof of [9, Theorem 11.1.11] for the semi-elliptic case). Then Proposi-
tion 11 applies. ¥

A weight ω is called a strong weight if it satisfies the additional condition:
(ε) there exists C > 1 such that for all y > 0,

∫ ∞

1

ω(ty)
t2

dt 6 Cω(y) + C.

Examples of weight functions with and without property (ε) can be found in [15].

Corollary 13. Let ω be a strong weight and P (D) a (ω)−hypoelliptic differential
operator of degree m such that

lim
x∈Rd,|x|→∞

ImP (x)
ReP (x)

= 0.

Then EP,(ωm)(Rd) is continuously contained in E(λ)(Rd) for some non-quasianalytic
weight λ.

Proof. According to [7, 3.7], there is 0 < r < 1 such that P (D) is {tr}−hypoelliptic
and lim

t→∞
ω(t)
tr

= 0. Then Proposition 11 implies that E = EP,(ωm)(Rd) is continu-

ously contained in E(λ)(Rd) for λ(t) := ω(tr). ¥

Under the additional assumption that there exists a constant H > 1 such that
for all t > 0

2ω(t) 6 ω(Ht) + H, (3.6)

the third author proved in [12, Theorem 4.12] that the ellipticity of the polynomial
is necessary in order to achieve the equality EP,(ωm)(Rd) = E(ω)(Rd). However, it
follows from Corollary 15 below that this is not the case for arbitrary weights. The
growth condition (3.6) was considered by J. Bonet, R. Meise and S.N. Melikhov
in [3]. Observe that the weights ω(t) = logβ(1 + t), β > 1, do not satisfy (3.6).

We recall that two hypoelliptic polynomials P and Q are equally strong if Q(ξ)
P (ξ)

and P (ξ)
Q(ξ) are bounded at infinity in Rd. The next Lemma can be proved proceeding

as in [12, Theorems 4.4 and 4.5].
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Lemma 14. Let P and Q be hypoelliptic polynomials and let Ω be an open subset
of Rd.

(1) If P and Q are equally strong then there is m0 such that m > m0 implies
EP,(ωm)(Ω) = EQ,(ωm)(Ω).

(2) The converse is true under the additional assumption that ω satisfies (3.6).

Corollary 15. Let ω(t) = logβ(1+ t), β > 1, be given and P (D) a differential op-
erator of degree m. Then EP,(ωm)(Rd) = E(ω)(Rd) if, and only if, P is hypoelliptic.

Proof. It follows from [12, Lemma 4.11] that the hypoellipticity of P is a necessary
condition in order to get the identity EP,(ωm)(Rd) = E(ω)(Rd). We now assume that
P is hypoelliptic and denote P (ξ) := P (ξ) the conjugate of P. The polynomials P
and P are equally strong and ωm is an equivalent weight to ω, hence we deduce
from the previous Lemma that EP,(ω)(Rd) = EP,(ω)(Rd). In particular, EP,(ω)(Rd)
is an (ω, P (D) ◦ P (D))−stable Fréchet space. Since the hypoelliptic polynomial
(of degree 2m) PP has real coefficients we can apply Proposition 11 to finally
conclude that EP,(ω)(Rd) is contained in E(ω)(Rd). The converse inclusion always
holds. ¥
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