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ON MAXIMAL WEIGHT SOLUTIONS IN A TRUNCATED
TRIGONOMETRIC MATRIX MOMENT PROBLEM

Andreas Lasarow

Abstract: The truncated trigonometric matrix moment problem is a well studied object. In
particular, one can find in the literature the extremal value concerning the weight assigned to
some point of the unit circle within the solution set of that matrix moment problem for the
so-called non-degenerate situation and some special measure which realizes the extremal value.
The primary concern of the paper is to give a basic proof for the fact that this distinguished
measure is uniquely determined by that extremal feature.
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1. Introduction

Moment problems or associated interpolation problems for holomorphic functions
have been earned a fixed position in mathematical analyses and applications in
engineering. There is an extensive literature on several types of such problems
(see, e.g., the books [1], [3], [5], [8], [9], [11], [18], and the references therein). The
present paper deals with an extremal question concerning the weight assigned to
some point of the open unit disk within the solution set of a truncated trigono-
metric matrix moment problem.

Throughout the paper, let n be a non-negative integer, let q be a positive
integer, let C be the set of all complex numbers, and let Cq×q be the set of all
complex q × q matrices. Let T := {z ∈ C : |z| = 1} and let BT be the σ-
algebra of all Borel subsets of T. The matricial version of the classical truncated
trigonometric moment problem consists of the following:

Problem (M). Let C0,C1, . . . ,Cn ∈ Cq×q. Describe the set M[(C`)n
`=0] of all

non-negative Hermitian q × q measures F defined on BT such that

C` =
∫

T
z−` F (dz), ` = 0, 1, . . . , n.
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As is generally known (see, e.g., [9, Theorems 2.2.1 and 3.4.1]), the solution set
M[(C`)n

`=0] is nonempty (with C−s := C∗
s for s = 1, 2, . . . , n) if and only if the

block Toeplitz matrix (Cj−k)n
j,k=0 is non-negative Hermitian. The considerations

below on Problem (M) are restricted to the so-called non-degenerate situation, i.e.
to the circumstance that the corresponding block Toeplitz matrix (Cj−k)n

j,k=0 is
positive Hermitian. In doing so, for some fixed point u ∈ T, the studies here tie
in with those in [14, Section 9] on the extremal question regarding the maximal
value of the matrix F ({u}) with respect to the Löwner semiordering of Hermitian
matrices when F varies over the solution set M[(C`)n

`=0].

Concerning the truncated trigonometric moment problem in the scalar situa-
tion q = 1, a result closely related to the extremal feature stated in [14, Theo-
rem 9.2] was obtained by Geronimus in [15, Theorem 20.1]. From today’s point of
view, this treatment of Geronimus is connected with those about para-orthogonal
polynomials on T (see, e.g., [6], [7], and [16] as well as [4] and [5, Chapter 5] for a
rational extension of that topic). For a comprehensive exposition of the discussion
of extremal questions (similar to [15, Theorem 20.1]) associated with several scalar
power moment problems we refer to Krĕın [17, Section 2 in Chapter I] as well as
to Krĕın and Nudelman [18, Section 3 in Chapter III].

With a view to former considerations of extremal questions in the matrix case
like those in the present paper we point particularly at Arov [2], where underlying
sets given by certain linear fractional transformations were analyzed in this regard.
Based on [2], the extremal question on maximal weight assigned to a point u ∈ T
was somewhat more explicitly discussed in [14, Section 9] with respect to the
matricial Carathéodory problem for the non-degenerate situation. In particular,
some information about the structure of a distinguished solution which realizes the
extremal value was given by using the theory of orthogonal matrix polynomials
on T. We will also mention [10], where by taking advantage of the theory of ortho-
gonal matrix polynomials on the real line results on maximal weight solutions
concerning a truncated matrix moment problems in that context were obtained.

In comparison with the classical investigations, the matrix case is more com-
plicated. The extremal problems in question offer in the scalar case q = 1 solu-
tions which are uniquely determined. For instance, this fact can be deduced from
elementary results on para-orthogonal polynomials on T. In the matrix case,
it is not that simple to catch on whether this uniqueness is available or not.
The bottom line is, the question concerning uniqueness in the matrix case seems
to be not completely answered so far. In fact, that question is not touched in [2]
(or in [10]). Moreover, in [14] just some special situations are discussed, where
uniqueness can be met. In the final analysis, these special situations are closely
related to the scalar case q = 1 in a way and far from the general state of affairs.
However, we will verify that the uniqueness is generally on hand. This will be done
in Section 3, based on a suitable study of the rank of associated block Toeplitz
matrices. Before, in Section 2, we will briefly recall some convenient results on the
distinguished solutions already come by in [14, Section 9].
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2. Preliminaries

In the following (cf. [9, Section 1.2]), if P is a complex q × q matrix polynomial
of degree not greater than k (with some non-negative integer k), then P [k] stands
for the complex q × q matrix polynomial which is uniquely determined by P via

P [k](z) = zk
(
P (z)

)∗
, z ∈ T.

Henceforth, with a view to Problem (M), let C0,C1, . . . ,Cn ∈ Cq×q be such that
the block Toeplitz matrix (Cj−k)n

j,k=0 is positive Hermitian (where C−` = C∗
` for

` = 0, 1, . . . , n). Thus, the matrix T` := (Cj−k)`
j,k=0 and, if v ∈ C, then the values

A`(v) :=
(
v0Iq v1Iq · · · v`Iq

)
T−1

`




v0Iq

v1Iq
...

v`Iq


 ,

C`(v) :=
(
v`Iq v`−1Iq · · · v0Iq

)
T−1

`




v`Iq

v`−1Iq
...

v0Iq




are positive Hermitian for ` = 0, 1, . . . , n, where Iq stands for the identity matrix
of size q × q. In particular, the matrix C0 is positive Hermitian and the matrix√

C0
−1, i.e. the inverse of the non-negative Hermitian square root of C0, is well-

defined. Moreover, the set M[(C`)n
`=0] is nonempty and there exist orthonormal

systems (P`)n
`=0 and (Q`)n

`=0 corresponding to some F ∈ M[(C`)n
`=0], where P`

and Q` are complex q × q matrix polynomials of degree not greater than ` for
` = 0, 1, . . . , n and where

(∫

T
Pj(z)F (dz)

(
Pk(z)

)∗)n

j,k=0

= I(n+1)q

and (∫

T

(
Qj(z)

)∗
F (dz)Qk(z)

)n

j,k=0

= I(n+1)q

(cf. [9, Lemma 3.6.4] and [14, Section 4]). In fact, one can fix a distinguished
pair of such orthonormal systems [(P`)n

`=0, (Q`)n
`=0] which is uniquely determined

by (C`)n
`=0 via the initial condition that P0 and Q0, respectively, is the constant

function on C with value
√

C0
−1 as well as the recurrence relations

P`(v) =
√

Iq −E`E∗`
−1

(
vP`−1(v) + E`Q

[`−1]
`−1 (v)

)

and
Q`(v) =

(
vQ`−1(v) + P

[`−1]
`−1 (v)E`

) √
Iq −E∗`E`

−1
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for v ∈ C and ` = 1, 2, . . . , n, where the strictly contractive q × q matrix E` is
given by

E` := π` E0` ρ`

in what E0` stands for the upper right q×q block in T−1
` as well as the complex q×q

matrices π` and ρ` are successively chosen such that π`π
−1
`−1 and ρ−1

`−1ρ` are positive
Hermitian matrices with π0 :=

√
C0 and ρ0 :=

√
C0 as well as π∗` π` =

(
A`(0)

)−1

and ρ`ρ
∗
` =

(
C`(0)

)−1 (cf. [9, Section 3.6] and [14, Section 5]). Corresponding
to [(P`)n

`=0, (Q`)n
`=0] there is a dual pair of orthonormal systems of q × q matrix

polynomials [(P#
` )n

`=0, (Q
#
` )n

`=0] which is given by the slightly modified recursions

P#
` (v) =

√
Iq −E`E∗`

−1
(
vP#

`−1(v)−E`(Q
#
`−1)

[`−1](v)
)

and
Q#

` (v) =
(
vQ#

`−1(v)− (P#
`−1)

[`−1](v)E`

)√
Iq −E∗`E`

−1

for v ∈ C and ` = 1, 2, . . . , n, where P#
0 and Q#

0 , respectively, is the constant
function on C with value

√
C0 (cf. [9, Section 3.6] and [14, Section 6]).

Recall that a matrix function Ω : D → Cq×q which is holomorphic in the
open unit disk D := {w ∈ C : |w| < 1} and for which Ω(w) +

(
Ω(w)

)∗ is non-
negative Hermitian for each w ∈ D is called q × q Carathéodory function (in D).
In particular, if F is a non-negative Hermitian q× q measure defined on BT, then
Ω : D→ Cq×q given by

w 7→
∫

T

z + w

z − w
F (dz)

is a q × q Carathéodory function (see, e.g., [9, Theorem 2.2.2]). We will call this
function Ω the Riesz–Herglotz transform of (the matrix measure) F .

Based on the interplay between matrix measures and matricial Carathéodory
functions one can get descriptions ofM[(C`)n

`=0] in terms of the associated Riesz–
Herglotz transforms via linear fractional transformations, where the orthonormal
matrix polynomials Pn, Qn, P#

n , and Q#
n of the pairs [(P`)n

`=0, (Q`)n
`=0] and

[(P#
` )n

`=0, (Q
#
` )n

`=0] are involved (see, e.g., [14, Section 6]). Following this train
of thoughts, if u ∈ T and if Fu is the non-negative Hermitian q × q measure
defined on BT with Riesz–Herglotz transform Ωu : D→ Cq×q given by

w 7→
(
(P#

n )[n](w)
(
P [n]

n (u)
)∗+ wuQ#

n (w)
(
Qn(u)

)∗)

×
(
P [n]

n (w)
(
P [n]

n (u)
)∗− wuQn(w)

(
Qn(u)

)∗)−1

then in view of [14, Corollary 6.6, Remark 6.8, and Proposition 9.2] and [9, Theo-
rem 2.2.2] we know that Fu belongs to M[(C`)n

`=0] and that the maximal value of
the matrix F ({u}) with respect to the Löwner semiordering of Hermitian matrices
is precisely Fu({u}) when F varies over the set M[(C`)n

`=0].
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Let u ∈ T. The structure of Ωu implies that Fu admits the representation

Fu = εu

(
An(u)

)−1 +
r∑

s=1

εus
As (2.1)

with some positive integer r, pairwise different points u1, u2, . . . , ur ∈ T, and non-
negative Hermitian matrices A1,A2, . . . ,Ar ∈ Cq×q, where εz denotes the Dirac
measure defined on BT for certain z ∈ T (cf. [14, Remark 9.10]). In fact, since
Hu : C→ Cq×q given by

v 7→ P [n]
n (v)

(
P [n]

n (u)
)∗ − vuQn(v)

(
Qn(u)

)∗

is a q × q matrix polynomial of degree not greater than n + 1, it follows that
r∑

s=1

rankAs 6 nq (2.2)

(q.v. [14, Lemma 6.4, Lemma 9.7, Proposition 9.8, and Corollary 9.9]). Particularly
(cf. [14, Remark 6.8]), in the special case n = 0 we get Fu = εu

(
An(u)

)−1.
Note casually that, since u ∈ T, in any case we have apparently An(u) = Cn(u).

3. The principal item

Somewhat surprising, beside taking advantage of some information about the
structure of the distinguished solution Fu recapitulated in the preceding section
and a well-known statement concerning uniqueness in the truncated trigonometric
matrix moment problem, we only need the following auxiliary result. This deliv-
ers some insight into the regularity of block Toeplitz matrices corresponding to
non-negative Hermitian matrix measures on BT which are molecular (q.v. [12,
Section 6]). In doing so, with a view to Problem (M), if F is a non-negative
Hermitian q × q measure defined on BT, we use the notations

C(F )
` :=

∫

T
z−`F (dz) and T(F )

m :=
(∫

T
zk−jF (dz)

)m

j,k=0

(
=

(
C(F )

j−k

)m

j,k=0

)

for some integer ` and some non-negative integer m.

Lemma 3.1.Let m be a positive integer, let u0, u1, . . . , ur ∈ T be pairwise differ-
ent points with some non-negative integer r, let A0,A1, . . . ,Ar ∈ Cq×q be non-
negative Hermitian, where A0 is non-singular, and let the matrix measure

F :=
r∑

s=0

εusAs (3.1)

be such that the block Toeplitz matrix T(F )
m is non-singular. Then r > 1 and the

matrix T(F̃ )
m−1 is non-singular, where F̃ is the matrix measure given by

F̃ :=
r∑

s=1

εusAs. (3.2)
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Proof. A straightforward calculation (see, e.g., [12, Example 3.11]) yields that
the rank of the block Toeplitz matrix T(εu0A0)

m coincides with the rank of A0,
i.e. that rank is q. Therefore, the choice of F implies r > 1. We prove now by
contraposition that the matrix T(F̃ )

m−1 is non-singular. So, we suppose that T(F̃ )
m−1

is a singular matrix. Hence (see, e.g., [12, Theorem 5.8]), we find a complex q × q
matrix polynomial Q of degree not greater than m− 1 such that Q(v) is not equal
to the zero matrix 0q×q of size q × q for some v ∈ C, but

∫

T

(
Q(z)

)∗
F̃ (dz)Q(z) = 0q×q.

By using (3.2) and some elementary facts from integration theory with respect to
non-negative Hermitian q × q measures on BT we get

r∑
s=1

(
Q(us)

)∗
AsQ(us) = 0q×q.

Since the matrices A1,A2, . . . ,Ar are non-negative Hermitian, we obtain
(
Q(us)

)∗
AsQ(us) = 0q×q, s = 1, 2, . . . , r.

Thus, P : C→ Cq×q defined by (v − u0)Q(v) for v ∈ C is a complex q × q matrix
polynomial of degree not greater than m not equal to the constant function with
value 0q×q such that

∫

T

(
P (z)

)∗
F (dz) P (z) =

r∑
s=0

(
P (us)

)∗
AsP (us)

=
r∑

s=0

|us − u0|2
(
Q(us)

)∗
AsQ(us) = 0q×q.

Admittedly (see again [12, Theorem 5.8]), this is contrary to the assumption that
the matrix T(F )

m is non-singular. ¥

In the following, we will write A > B (respectively, A > B) when A and B are
Hermitian matrices of the same size such that A−B is a non-negative Hermitian
(respectively, positive Hermitian) matrix.

Theorem 3.2. Let C0,C1, . . . ,Cn ∈ Cq×q be such that the block Toeplitz matrix
(Cj−k)n

j,k=0 with C−s := C∗
s for s = 1, 2, . . . , n is positive Hermitian. Further-

more, let u ∈ T as well as let An(u) and Fu be given as in Section 2. Then

(
An(u)

)−1 > F ({u}) (3.3)

for each F ∈M[(C`)n
`=0], where equality holds in (3.3) if and only if F = Fu.
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Proof. In view of [14, Theorem 9.2] and the matricial version of the Riesz–
Herglotz Theorem (see, e.g., [9, Theorem 2.2.2]) we already know that (3.3) is
fulfilled for each F ∈M[(C`)n

`=0] and that equality holds in (3.3) when F coincides
with the measure Fu. It remains to prove that the equality F ({u}) =

(
An(u)

)−1

implies F = Fu as well. In doing so, we comment firstly that the setting

F̃u := Fu − εu

(
An(u)

)−1 (3.4)

leads to a well-defined non-negative Hermitian q × q measure on BT because of
(2.1). Note that (3.4) entails particularly the relation

T(Fu)
n = T(εu(An(u))−1)

n + T(F̃u)
n . (3.5)

By virtue of (3.4), (3.5), and Fu ∈ M[(C`)n
`=0] one can conclude that Fu is the

unique element within the set M[(C`)n
`=0] such that equality holds in (3.3) if and

only if the solution set M[(C(F̃u)
` )n

`=0] consists of exactly one element, namely
F̃u. As is known (use, e.g., [9, Lemma 1.1.7, Lemma 1.1.9, Theorem 2.2.1, Theo-
rem 3.4.1, and Remark 3.4.3]), the latter condition is equivalent to

rankT(F̃u)
n = rankT(F̃u)

n−1 , (3.6)

where T(F̃u)
n−1 stands for the zero matrix in the case of n = 0. Therefore, to complete

the proof, we will verify (3.6). If n = 0, then (3.6) is obviously fulfilled, since
Fu = εu

(
An(u)

)−1 in that situation (see Section 2). We suppose now that n is a
positive integer. Since Fu ∈ M[(C`)n

`=0] and since (Cj−k)n
j,k=0 is a non-singular

(n + 1)q × (n + 1)q matrix, we obtain

rankT(Fu)
n = rank (Cj−k)n

j,k=0 = (n + 1)q. (3.7)

Because of (3.4) and (2.1) we get that the measure F̃u admits the representation

F̃u =
r∑

s=1

εusAs (3.8)

with some positive integer r, pairwise different points u1, u2, . . . , ur ∈ T, and non-
negative Hermitian matrices A1,A2, . . . ,Ar ∈ Cq×q such that (2.2) is satisfied.
By (3.8), (2.2), and [12, Remark 3.9 and Theorem 6.6] we have on the one hand

rankT(F̃u)
n 6

r∑
s=1

rankAs 6 nq

and, since [12, Remark 3.9 and Example 3.11] results in rankT(εu(An(u))−1)
n = q,

by using (3.7) and (3.5) we catch on the other hand

nq = rankT(Fu)
n − rankT(εu(An(u))−1)

n 6 rankT(F̃u)
n .
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Accordingly, it follows

rankT(F̃u)
n =

r∑
s=1

rankAs = nq. (3.9)

In addition, from (2.1), (3.7), and (3.8) along with Lemma 3.1 we perceive that

rankT(F̃u)
n−1 = nq.

Finally, this equality and (3.9) give rise to (3.6) in that case. ¥

Corollary 3.3. Let C0,C1, . . . ,Cn ∈ Cq×q be such that the matrix (Cj−k)n
j,k=0

with C−s := C∗
s for s = 1, 2, . . . , n is positive Hermitian. If u ∈ T, then Fu admits

(2.1) with some positive integer r, pairwise different points u1, u2, . . . , ur ∈ T, and
non-negative Hermitian matrices A1,A2, . . . ,Ar ∈ Cq×q, where

r∑
s=1

rankAs = nq. (3.10)

In particular, if F∈M[(C`)n
`=0] such that F (T \∆) = 0q×q and

∑

z∈∆

rankF ({z}) 6= (n + 1)q

for some set ∆ ⊆ T, then equality does not hold in (3.3) for each u ∈ T.
Proof. Let u ∈ T. As already explained in Section 2, the measure Fu admits
the representation (2.1) with some positive integer r, pairwise different points
u1, u2, . . . , ur ∈ T, and non-negative Hermitian matrices A1,A2, . . . ,Ar ∈ Cq×q,
where the rank estimate subject to (2.2) holds. In the special case n = 0, from (2.2)
it follows immediately (3.10). If n is a positive integer, then the argumentation
in the proof of Theorem 3.2 (see particularly (3.9)) yields (3.10). Since equality
in (3.3) for some F ∈ M[(C`)n

`=0] implies F = Fu according to Theorem 3.2, the
remaining part of the assertion is an easy consequence of (3.10). ¥

Corollary 3.4. Let C0,C1, . . . ,Cn ∈ Cq×q be such that the corresponding block
Toeplitz matrix (Cj−k)n

j,k=0 with C−s := C∗
s for s = 1, 2, . . . , n is positive Hermi-

tian and let F ∈M[(C`)n
`=0]. If the matrix T(F )

n+1 is non-singular, then

(
An(u)

)−1
> F ({u}), u ∈ T. (3.11)

In particular, if there exist some n+2 pairwise different points u0, u1, . . . , un+1 ∈ T
such that the value F ({us}) is non-singular for s = 0, 1, . . . , n+1, then (3.11) holds.

Proof. Let u ∈ T. Moreover, suppose that T(F )
n+1 is non-singular. Hence, we get

An+1(u) > An(u),
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where the value An+1(u) is given as in Section 2 concerning (C`)n+1
`=0 in what

Cn+1 := C(F )
n+1 (cf. [14, Remarks 4.1 and 4.2]). Therefore, Theorem 3.2 with

respect to M[(C`)n+1
`=0 ] yields

(
An(u)

)−1
>

(
An+1(u)

)−1 > F ({u}).

Thus, the estimate in (3.11) is satisfied when T(F )
n+1 is a non-singular matrix.

Finally, we consider the case that there exist n + 2 pairwise different points
u0, u1, . . . , un+1 ∈ T such that the value F ({us}) is a non-singular q × q ma-
trix for s = 0, 1, . . . , n + 1. Since this choice implies in view of [12, Remark 5.12
and Theorem 6.11] that the matrix T(F )

n+1 is non-singular, from the already proven
part one can reason that (3.11) is fulfilled in that situation. ¥

Remark 3.5. The case n = 0 in Theorem 3.2 represents that, if C0 is a positive
Hermitian q×q matrix and if u ∈ T, then C0 > F ({u}) for each F ∈M[(C`)0`=0],
where equality holds if and only if F = εuC0. The case n = 0 is a special
situation of the given data in Problem (M) which is in a way related to that in
[14, Proposition 9.13]. In particular, the uniqueness part of Theorem 3.2 for n = 0
is somewhat easier to catch (cf. [14, Remark 9.16]).

In addendum to Corollary 3.3, the next result emphasizes that the rank identity
in (3.10) can be actually used to characterize equality in (3.3) for some u ∈ T.
Proposition 3.6. Let C0,C1, . . . ,Cn ∈ Cq×q be such that the block Toeplitz ma-
trix (Cj−k)n

j,k=0 with C−s := C∗
s for s = 1, 2, . . . , n is positive Hermitian. Fur-

thermore, let F ∈ M[(C`)n
`=0] fulfilling (3.1) for some non-negative integer r,

pairwise different points u0, u1, . . . , ur ∈ T, and non-negative Hermitian matrices
A0,A1, . . . ,Ar ∈ Cq×q, where A0 is non-singular. Then equality holds in (3.3)
with respect to u = u0 if and only if (3.10).

Proof. Let u = u0. From Theorem 3.2 and Corollary 3.3 we already know that
equality in (3.3) implies (3.10). Conversely, we suppose now that (3.10) is sat-
isfied. By virtue of [9, Lemma 1.1.7 and Lemma 1.1.9], [12, Remark 3.9 and
Theorem 6.6], and (3.10) we get

rankT(F )
n 6 rankT(F )

n+1 6
r∑

s=0

rankAs = (n + 1)q.

Moreover, because of F ∈ M[(C`)n
`=0] it follows that rankT(F )

n = (n + 1)q.
Therefore, we obtain rankT(F )

n = rankT(F )
n+1. By using this fact in combination

with some well-known results on the extension of block Toeplitz matrices (see,
e.g., [9, Theorem 2.2.1, Theorem 3.4.1, and Remark 3.4.3]), the matricial version
of the Riesz–Herglotz Theorem (see, e.g., [9, Theorem 2.2.2]), and some insight on
descriptions of the matricial Carathéodory problem (see, e.g., [13, Corollary 2.7
and Section 5] and [14, Lemma 10.1]) one can realize that the Riesz–Herglotz
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transformation Ω of the measure F admits the representation

Ω(w) =
(
(P#

n )[n](w)− wQ#
n (w)U

)(
P [n]

n (w) + wQn(w)U
)−1

, w ∈ D,

with some unitary q × q matrix U. Since the choice of F subject to (3.1) yields

Ω(w) =
r∑

s=0

us + w

us − w
As, w ∈ D,

where u = u0 and where A0 is a non-singular q× q matrix, one can conclude that
the value P

[n]
n (u) + uQn(u)U is the zero matrix 0q×q. Hence (cf. [14, Proposi-

tion 9.8]), the function Ω coincides with the Riesz–Herglotz transformation of the
measure Fu, i.e. F = Fu. ¥

Corollary 3.7. Let C0,C1, . . . ,Cn ∈ Cq×q be such that the block Toeplitz matrix
(Cj−k)n

j,k=0 with C−s := C∗
s for s = 1, 2, . . . , n is positive Hermitian. Further-

more, let u ∈ T, let ∆ ⊂ T be a finite set, and let F ∈ M[(C`)n
`=0] be such that

F (T \∆) = 0q×q and ∑

z∈∆

rankF ({z}) = (n + 1)q.

Then equality holds in (3.3) if and only if F ({u}) is a non-singular matrix.

Proof. Use Theorem 3.2 in combination with Proposition 3.6. ¥

In the scalar case q = 1, the distinguished solution Fu which realizes equality
in (3.3) concerning the point u ∈ T actually fulfills that extremal property with
respect to all of its mass points (see, e.g., [14, Proposition 9.17]). The following
example shows particularly that this state of affairs does not be generally on hand
in the matrix case (cf. [14, Proposition 9.13]).

Example 3.8. Let E := ε1A0 + εiA1 + ε−iA2, where

A0 :=
(

1 0
0 1

)
, A1 :=

(
1 0
0 0

)
, and A2 :=

(
0 0
0 1

)
.

Furthermore, let

C0 :=
(

2 0
0 2

)
, C1 :=

(
1− i 0

0 1 + i

)
, and C−1 :=

(
1 + i 0

0 1− i

)
.

Then T(E)
1 = (Cj−k)1j,k=0, the matrix T(E)

1 is non-singular, A1 and A2 are singular
matrices, and A0 > F ({1}) for each F ∈ M[(C`)1`=0], where F ({1}) = A0 holds
if and only if F = E.
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Proof. Clearly, A1 and A2 are singular matrices and E({1}) = A0. Moreover,
we have the identities

∫

T
E(dz) =

(
2 0
0 2

)
and

∫

T
z−1 E(dz) =

(
1− i 0

0 1 + i

)

which implies that T(E)
1 = (Cj−k)1j,k=0, i.e. that the measure E belongs to

M[(C`)1`=0], and that (use, e.g., [9, Lemma 1.1.9]) the matrix T(E)
1 is non-singular.

The remaining part of the assertion is then a consequence of Theorem 3.2 along
with Proposition 3.6. ¥

In view of Example 3.8 and Proposition 3.6 one can see that equality in (3.3)
for the matrix measure Fu concerning u ∈ T does not generally imply the analo-
gous equality with respect to the trace measure trace Fu, the corresponding com-
plex numbers traceC0, traceC1, . . . , traceCn, and the point u ∈ T (note [12, Re-
mark 3.15 and Remark 5.14]).
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