THE NUMBER OF CUBEFULL NUMBERS IN AN INTERVAL (SUPPLEMENT)

H.-Q. Liu

Abstract

We derive a new result which extends the range of validity of the asymptotic formula for cubefull integers in an interval.

Keywords: cubefull numbers, exponential sums

1. Introduction

In 1991 Shiu [S] first studied the asymptotic distribution of cubefull numbers in a interval (a positive integer n is called a cubefull number, if whenever $p \mid n$ we also have $p^{3} \mid n$ for any prime number p) by means of the techniques of estimating exponential sums, who showed that

$$
\begin{equation*}
Q_{3}\left(x+x^{\frac{2}{3}+\mu}\right)-Q_{3}(x)=C x^{\mu}(1+o(1)) \tag{1}
\end{equation*}
$$

for $\frac{140}{1123}<\mu<\frac{1}{3}$, here $\frac{140}{1123}=0.12466 \ldots\left(Q_{3}(x)\right.$ is the number of cubefull numbers not exceeding x, and C is some positive constant). In 1993 in [L1] we extended Shiu's range to

$$
\mu>\frac{11}{92}=0.11956 \ldots
$$

by using the current techniques of exponential sums. In 1998 Wu ([W], Theorem 2) obtained the better range $\mu>\frac{19}{159}=0.11949 \ldots$ by using a result of [SW] on multiple exponential sums. Based on the work of [L1],[L2] and [RS], in this paper we shall deduce a new result. We have

Theorem. (1) holds for any $\mu>\frac{5}{42}=0.1190 \ldots$.
(If we use Theorem 2 of [L2] then this result may also be improved slightly).

2. Proof of our result

In view of Theorem 2 of [L1] and the treatments of p. 6 of [L1], to derive the Theorem it suffices for us to show that

$$
x^{-\frac{\varepsilon}{2}} S(M, N) \ll x^{\theta},
$$

for any $\varepsilon>0$, where $\theta=\frac{5}{42}$. Instead of (3) of p. 9 of [L1], we now have

$$
\begin{equation*}
x^{-\varepsilon} S(M, N) \ll \sqrt[24]{x^{2} M^{7} N^{5}}+x^{\frac{1}{9}} . \tag{2}
\end{equation*}
$$

To explain this, note that we can use Theorem 1 of [L2] to replace Lemma 3.2 of [L1] in (1) of [L1] for deducing Lemma 1 of [L1], which gives(note that in Theorem 1 of [L2] we have " " F " $\approx H F \gg " X Y$ " $\approx H F \frac{N}{M}$ " in the present situation, and thus the second term of Theorem 1 of [L2] can be removed as compared with the leading term of it)

$$
\Phi(H, M, N) \ll \sqrt[6]{(H F)^{2}(M N)^{3}}+(H F)^{\frac{1}{2}}+x^{\frac{1}{12}} \log x .
$$

Putting this into (0) of [L1] and choosing $K \in(0, M N)$ optimally via Lemma 3.4 of [L1], and using the fact that $F:=\left(x M^{-b} N^{-c}\right)^{\frac{1}{a}} \ll\left(x M^{-4} N^{-5}\right)^{\frac{1}{3}}$ for any permutation (a, b, c) of $(3,4,5)$, we get our (2) of here. We can then use Theorem 1 of [RS] to replace Lemma 3.1 of [L1] for deriving Lemmas 2 and 3 of [L1], and we obtain respectively(comparing (4) and (7) of [L1])

$$
\begin{equation*}
x^{-\varepsilon} S(M, N) \ll \sqrt[12]{x M^{-1} N^{7}}+\sqrt[15]{x^{2} M^{-2} N^{-1}}+x^{\frac{1}{9}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{-\varepsilon} S(M, N) \ll \sqrt[7]{x M^{-1} N^{-2}}+\sqrt[6]{x M^{-1} N^{-3}}+\sqrt[15]{x^{2} M^{-2} N^{-1}}+x^{\frac{1}{9}} \tag{4}
\end{equation*}
$$

where we have used the assumption $M \gg N$. It is then quite easy to deduce our result from (2), (3) and (4). In fact, from (2) and (3) we get

$$
\begin{equation*}
x^{-\varepsilon} S(M, N) \ll R_{1}+R_{2}+x^{\frac{1}{9}}, \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{1}=\min \left(\sqrt[24]{x^{2} M^{7} N^{5}}, \sqrt[12]{x M^{-1} N^{7}}\right) \leqslant \sqrt[12]{x N^{6}} \\
& R_{2}=\min \left(\sqrt[24]{x^{2} M^{7} N^{5}}, \sqrt[15]{x^{2} M^{-2} N^{-1}}\right) \\
& \quad \ll \min \left(\sqrt[24]{x^{2} M^{7} N^{5}}, \sqrt[60]{x^{8}\left(M^{7} N^{5}\right)^{-1}}\right) \ll x^{\theta}
\end{aligned}
$$

Similarly, from (2) and (4) we get

$$
\begin{equation*}
x^{-\varepsilon} S(M, N) \ll R_{3}+R_{4}+x^{\theta}, \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{3}=\min \left(\sqrt[24]{x^{2} M^{7} N^{5}}, \sqrt[7]{x M^{-1} N^{-2}}\right) \leqslant \sqrt[73]{x^{9} N^{-9}} \\
& R_{4}=\min \left(\sqrt[24]{x^{2} M^{7} N^{5}}, \sqrt[6]{x M^{-1} N^{-3}}\right) \leqslant \sqrt[66]{x^{9} N^{-16}}
\end{aligned}
$$

Now the required estimate follows from (5) and (6) respectively according as $N<x^{\frac{2}{21}}$ or $N \geqslant x^{\frac{2}{21}}$.

References

[L1] H.-Q. Liu, The number of cubefull numbers in an interval, Acta Arith. 67(1) (1994), 1-12.
[L2] H.-Q. Liu, On the estimate for double exponential sums, ibid, 129(3) (2007), 203-247.
[RS] O. Robert and P. Sargos, Three dimensional exponential sums with monomials, J. Reine Angew. Math. 591 (2006), 1-20.
[S] P. Shiu, The distribution of cubefull numbers in an interval, Galsgow Math. J. 33 (1991), 287-295.
[SW] P. Sargos and J. Wu, Multiple exponential sums with monomials and their applications in number theory, Acta Math. Hungar. 88 (2000), 333-357.
[W] J. Wu, On the distribution of square-full and cube-full integers, Monatsh. Math. 126 (1998), 353-367.

Address: Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P.R.China E-mail: mnpqr@163.com
Received: 14 July 2009; revised: 24 October 2009

