CYCLE-LENGTHS OF A CLASS OF MONIC BINOMIALS

W乇adysŁaw Narkiewicz

Abstract

Let K be an algebraic field of degree N and let p be an odd prime. It is shown that if K does not contain p-th primitive roots of unity and $f(X)=X^{p^{k}}+c$ with $k \geqslant 1$ and non-zero $c \in K$, then the length of cycles of f in K is bounded by a value depending only on K and p. If $p>2^{N}$, then this bound depends only on N.

Keywords: polynomial cycles, algebraic number fields.

1. Let F be a polynomial with coefficients in a field K. A sequence $a_{1}, a_{2}, \ldots, a_{k}$ of distinct elements of K is said to be a cycle of length k for F provided one has $F\left(a_{i}\right)=a_{i+1}$ for $i=1,2, \ldots, k-1$ and $F\left(a_{k}\right)=a_{1}$.

It has been conjectured by P.Russo and R.Walde in [RW] that the length of a cycle for a quadratic polynomial in the rational number field is bounded by an absolute constant. One expects this constant to be equal to 3. P.Morton ([Mo]) proved that quadratic polynomials cannot have a cycle of length four in the rational field, and T.Erkama ([Er]) showed that the same happens in the field $\mathbf{Q}(i)$. The impossibility of a cycle of length five in the rational case has been established by E.V.Flynn, B.Poonen and E.F.Schaefer ([FPS]), and M.Stoll ([S]) showed that the conjecture of Birch and Swinnerton-Dyer implies the non-existence of 6-cycles. The Russo-Walde conjecture was later extended by P.Morton and J.Silverman ([MS]), who conjectured that there is a constant $B(n, d)$ such that the union of all finite orbits of polynomials of degree d in an algebraic number field K of degree n cannot have more than $B(n, d)$ elements.

In this note we shall consider binomials $F(X)=X^{n}+c$ with $n=p^{r}$, where p is an odd prime. If K is a real field, then F is increasing hence it cannot have in K cycles longer than 1 . This argument is not applicable to totally complex algebraic number fields but we shall show that if K does not contain primitive p-th roots of unity, then the lengths of cycles of F in K are bounded by a value depending

[^0]on K and p, and if $p>2^{[K: \mathbf{Q}]}$, then this bound depends only on the degree of K. Note that the assumption about roots of unity implies that every finite orbit of F forms necessarily a cycle.

Theorem. Let K be a totally complex extension of the rationals of degree $N>1$, denote by R its ring of integers and let D be the maximal order of a primitive root of unity contained in K. Let p be a prime not dividing D, and put $F(X)=$ $X^{n}+c \in K[X]$ with n being a power of p and $c \neq 0$. Then the lengths of cycles of F in K are bounded by a constant depending only on K and p. If $p>2^{N}$, then this constant can be taken to be $N 2^{N+1}\left(2^{N}-1\right)$.
2. In this section R will be an arbitrary Dedekind domain, and K its field of fractions. For a prime ideal \mathfrak{p} we denote by $\nu_{\mathfrak{p}}$ the corresponding additive valuation of K. We shall deal with polynomials $F(X)=X^{n}+c$ with $c \in K \backslash R$. This implies that there exist prime ideals \mathfrak{p} with $\nu_{\mathfrak{p}}(c)<0$. We shall denote the m-th iterate of polynomial F by F_{m}.

We start with a simple observation:
Lemma 1. Let $n \geqslant 2, F(X)=X^{n}+c$ with $c \in K \backslash R$, let

$$
r_{1} \mapsto r_{2} \mapsto \ldots \mapsto r_{k} \mapsto r_{1}
$$

be a cycle of F, lying in K, and prolong this cycle periodically by putting $r_{m+k}=$ r_{m} for $m=1,2, \ldots$. Then all r_{j} 's are non-zero, and if \mathfrak{p} is a prime ideal of R with $\nu_{\mathfrak{p}}\left(r_{j}\right)<0$ for some j, then $\nu_{\mathfrak{p}}(c)<0$.

Proof. Let \mathfrak{p} be a prime ideal with $\lambda=\nu_{\mathfrak{p}}(c)<0$ and assume $r_{i}=0$ for some i. We may assume $i=k$. Then $r_{1}=F\left(r_{k}\right)=F(0)=c$, hence $\nu_{\mathfrak{p}}\left(r_{1}\right)=\lambda$, and in view of $r_{2}=F\left(r_{1}\right)=F(c)=c^{n}+c$ and $\nu_{\mathfrak{p}}\left(c^{n}\right)=n \lambda<\lambda$ we get

$$
\nu_{\mathfrak{p}}\left(r_{2}\right)=\nu_{\mathfrak{p}}\left(c^{n}\right)=n \lambda<\lambda .
$$

An easy induction leads now to

$$
\nu_{\mathfrak{p}}\left(r_{j}\right)=n^{j-1} \lambda
$$

for $j=2,3, \ldots$, hence $\nu_{\mathfrak{p}}\left(r_{k}\right)=n^{k-1} \lambda$, contradicting $r_{k}=0$.
To prove the second assertion observe that if $\nu_{\mathfrak{p}}(c) \geqslant 0$, then $F \in R_{\mathfrak{p}}[X], R_{\mathfrak{p}}$ being the closure of R in the completion $K_{\mathfrak{p}}$ of K. Since $R_{\mathfrak{p}}$ is integrally closed and F is monic, all elements of its cycle in K, being roots of the monic polynomial $F_{k}(X)-X$ lie in R_{p}.

Note, that the assumption $c \notin R$ is essential, as the example $K=\mathbb{Q}(i), f(X)=$ $X^{3}+i$, with $0 \mapsto i \mapsto 0$ shows.

The following lemma generalizes slightly the results obtained in [RW] and [CG] (Corollary 6.7), where the case $n=2$ has been considered.

Lemma 2. Let $n \geqslant 2, F(X)=X^{n}+c$ with $c \in K \backslash R$, and assume that

$$
r_{1} \mapsto r_{2} \mapsto \ldots \mapsto r_{k} \mapsto r_{1}
$$

is a cycle of length $k \geqslant 3$ for F, lying in K. Put $I_{0}=c R, I_{j}=r_{j} R(j=$ $1,2, \ldots, k)$, and define the fractional ideals A_{j}, B_{j} by

$$
I_{j}=A_{j} B_{j}^{-1} \quad(j=0,1, \ldots, k),
$$

where $A_{0}, A_{1}, \ldots, A_{k}, B_{0}, B_{1}, \ldots, B_{k}$ are ideals of R satisfying $\left(A_{j}, B_{j}\right)=R$ for $j=0,1, \ldots, k$. Then the ideal B_{0} is an n-th power, say $B_{0}=B^{n}$, and for $j=1,2, \ldots, k$ one has $B_{j}=B$.

Proof. It follows from Lemma 1 that none of the r_{j} 's vanishes, hence the ideals A_{j}, B_{j} are well-defined. Note also that in view of $c \notin R$ we have $B_{0} \neq R$. Let \mathfrak{p} be a prime ideal dividing B_{0} and denote, for shortness, $\nu_{\mathfrak{p}}(x)$ by $\nu(x)$. Putting $r_{k+1}=r_{1}$ we have $r_{j+1}=r_{j}^{n}+c$ for $j=1,2, \ldots, k$, hence

$$
\begin{equation*}
\nu\left(r_{j+1}\right) \geqslant \min \left\{n \nu\left(r_{j}\right), \nu(c)\right\}, \tag{1}
\end{equation*}
$$

with equality in the case $n \nu\left(r_{j}\right) \neq \nu(c)$. Observe first that we must have

$$
\begin{equation*}
\nu(c) \leqslant n \nu\left(r_{j}\right) \tag{2}
\end{equation*}
$$

for all j. Indeed, if for some i one would have

$$
\begin{equation*}
\nu(c)>n \nu\left(r_{i}\right) \tag{4}
\end{equation*}
$$

then (1) would imply

$$
\begin{equation*}
\nu\left(r_{i+1}\right)=n \nu\left(r_{i}\right) . \tag{3}
\end{equation*}
$$

Since $\nu(c)<0$ we get $\nu\left(r_{i}\right)<0$, and (3) leads to $\nu\left(r_{i+1}\right)<\nu\left(r_{i}\right)$, hence

$$
n \nu\left(r_{i+1}\right)=n^{2} \nu\left(r_{i}\right)<n \nu\left(r_{i}\right)<\nu(c),
$$

so we may repeat this argument to obtain that the sequence $\nu\left(r_{j}\right)$ decreases indefinitely, contradiction.

If for a certain i we would have $n \nu\left(r_{i}\right)>\nu(c)$, then $\nu\left(r_{i+1}\right)=\nu(c)<0$, hence $n \nu\left(r_{i+1}\right)=n \nu(c)<\nu(c)$, contradicting (2). Finally we see that for all prime ideals \mathfrak{p} dividing B_{0} and all j one has

$$
\begin{equation*}
\nu_{\mathfrak{p}}(c)=n \nu_{\mathfrak{p}}\left(r_{j}\right) . \tag{4}
\end{equation*}
$$

This shows that if a prime ideal divides B_{0}, then it divides B_{1}, \ldots, B_{k}. On the other hand Lemma 1 implies that every prime ideal dividing B_{j} divides B_{0}, and therefore (4) holds for all $\mathfrak{p} \mid B_{j}$, showing that the ideal B_{0} is an n-th power of an ideal, say B, and for all j one has $B_{j}=B$, as asserted.

Lemma 3. Let $F(X)=X^{n}+c$ with $n \geqslant 2$ and $c \in K \backslash R$, and assume that $r_{1} \mapsto \ldots \mapsto r_{k} \mapsto r_{1}$ is a cycle of length $k \geqslant 3$ for F lying in K.

Then there is a class \mathcal{X} in the class-group of ideals of R such that if the ideal I lies in \mathcal{X} and is prime to B, then there exist $a, b, N_{1}, \ldots, N_{k} \in R$ such that

$$
c=\frac{a}{b^{n}}, \quad r_{j}=\frac{N_{j}}{b}, \quad\left(a R, b^{n} R\right)=I^{n}, \quad\left(N_{j} R, b R\right)=I, \quad(j=1,2, \ldots, k)
$$

If we extend the sequence N_{j} be periodicity, putting $N_{j+k}=N_{j}$ for $j \geqslant 1$, then the following holds:
(i) The sequence N_{j} satisfies the recurrence $b^{n-1} N_{j+1}=N_{j}^{n}+a$,
(ii) One has

$$
\prod_{i=1}^{k}\left(N_{i+1}^{n-1}+N_{i+1}^{n-2} N_{i}+\cdots+N_{i}^{n-1}\right)=b^{k(n-1)}
$$

(iii) For $i=1,2, \ldots, k$ one has $\left(N_{i} R, B\right)=R$.

Note that in case $n=2$ and $R=\mathbb{Z}$ the equality (ii) is a simple consequence of Theorem 1 in [Be].

Proof. Let A_{i}, B_{i} be as in Lemma 2, let \mathcal{Y} be the ideal class containing B, let $\mathcal{X}=\mathcal{Y}^{-1}$, and choose an ideal $I \in \mathcal{X}$ with $(I, B)=R$. Then with some $b \in R$ we have $I B=b R$. If we now put $a=c b^{n}$ and $N_{j}=r_{j} b$ for $j=1,2, \ldots, k$, then

$$
N_{j} R=r_{j} b R=r_{j} I B=I_{j} I B=A_{j} B^{-1} I B=A_{j} I \subset R,
$$

hence $N_{j} \in R$, and we obtain

$$
\left(N_{j} R, b R\right)=\left(A_{j} I, B I\right)=I
$$

In view of $B_{0}=B^{n}$ we get

$$
\left(a R, b^{n} R\right)=\left(c b^{n} R, b^{n} R\right)=\left(A_{0} B_{0}^{-1} I^{n} B^{n}, I^{n} B^{n}\right)=\left(A_{0} I^{n}, B^{n} I^{n}\right)=I^{n}
$$

Now (i) results from

$$
\frac{N_{j+1}}{b}=r_{j+1}=r_{j}^{n}+c=\left(\frac{N_{j}}{b}\right)^{n}+\frac{a}{b^{n}}
$$

and to obtain (ii) multiply for $i=1, \ldots, k$ the equalities

$$
b^{n-1}\left(N_{i+2}-N_{i+1}\right)=\left(N_{i+1}-N_{i}\right)\left(N_{i+1}^{n-1}+N_{i+1}^{n-2} N_{i}+\cdots+N_{i}^{n-1}\right)
$$

which follow from (i). Finally (iii) follows from the equality $N_{i} R=A_{i} I$ and $\left(A_{i}, B\right)=(I, B)=R$.
3. Now let R be the ring of integers of an algebraic number field K of degree N over the rationals.

We shall need three auxiliary results. The first is well-known, the second has been proved by T.Pezda ([Pe], Theorem 1 (ii)), and the third is a theorem of Bauer ([Ba]), of which a proof can be found in [Na] (Corollary 1 to Theorem 7.38):

Lemma 4.

(i) If R is the ring of integers of a finite extension of the rationals, $a \neq b$ are non-zero elements of R and n is a power of an odd prime p, then for every prime ideal \mathfrak{p} of R containing $\left(a^{n}-b^{n}\right) /(a-b)$ either \mathfrak{p} divides both $a R$ and $b R$, or $\mathfrak{p} \mid p R$ and $a \equiv b(\bmod \mathfrak{p})$, or, finally, one has $N \mathfrak{p} \equiv 1(\bmod p), N \mathfrak{p}$ denoting the norm of \mathfrak{p}.
(ii) Let q be a prime, let L be a finite extension of the q-adic field \mathbb{Q}_{q} and let \mathbb{Z}_{L} be its ring of integers. The lengths of cycles in \mathbb{Z}_{L} of any polynomial $f \in \mathbb{Z}_{L}[X]$ are bounded by a constant $B(L)$, depending only on L. More precisely, one has

$$
B(L)=N(\mathfrak{Q})(N(\mathfrak{Q})-1) q^{1+\log _{2} e},
$$

where \mathfrak{Q} is the the unique prime ideal of \mathbb{Z}_{L} and e is the ramification index of the extension L / \mathbb{Q}_{q}.
(iii) If K is an algebraic number field, p is a rational prime and for all except finitely many prime ideals \mathfrak{p} of the first degree one has

$$
N(\mathfrak{p}) \equiv 1 \quad(\bmod p),
$$

then K contains p-th primitive roots of unity.
4. Proof of the Theorem: In the proof we may assume $c \notin R$, as otherwise all assertions of Theorem 3 are direct consequences of results of Pezda ([Pe]).

Observe first that to establish our assertion it suffices to find a prime ideal \mathfrak{P} not dividing B whose norm is bounded in terms of K and p. Indeed, if $K_{\mathfrak{P}}$ is the completion of K at \mathfrak{P} and $R_{\mathfrak{P}}$ is its ring of integers, then $F(X) \in R_{\mathfrak{P}}[X]$ and as every cycle of F in K lies in $R_{\mathfrak{P}}$ the Theorem will follow from Lemma 4 (ii).

We shall use now the notation of Lemma 3. Let \mathfrak{p} be a prime ideal dividing B. Since $\mathfrak{p} \mid b R$ it follows from part (ii) of Lemma 3 that \mathfrak{p} contains an integer of the form $\left(N_{i+1}^{n}-N_{i}^{n}\right) /\left(N_{i+1}-N_{i}\right)$. Lemma 4 (i) implies now that one has either
(i) $\mathfrak{p} \mid\left(N_{i} R, N_{i+1} R\right)$, or
(ii) $\mathfrak{p} \mid p R$, or
(iii) $N \mathfrak{p} \equiv 1(\bmod p)$.

Observe that (i) is impossible due Lemma 3 (iii). This shows that every prime ideal \mathfrak{P} with $\mathfrak{P} \nmid p R$, and $N(\mathfrak{P}) \not \equiv 1(\bmod p)$ does not divide B, thus satisfies our needs. It remains thus to find such \mathfrak{P} with bounded norm.

First assume $p>2^{N}$. In that case if \mathfrak{p}_{2} is a prime ideal containing 2 , then its norm does not exceed 2^{N}, hence $N\left(\mathfrak{p}_{2}\right) \leqslant 2^{N}<p$, violating (iii). Since $p \neq 2$
condition (ii) is also impossible. Therefore $\mathfrak{p}_{2} \nmid B$, and Lemma 4 (ii) gives the bound $N 2^{N+1}\left(2^{N}-1\right)$ for any cycle of F in K.

If $p \leqslant 2^{N}$, then recall that K does not contain p-th roots of unity, hence by Lemma 4 (iii) there exist $N+1$ prime ideals, say $\mathfrak{P}_{1}, \mathfrak{P}_{2}, \ldots, \mathfrak{P}_{N+1}$ with $N\left(\mathfrak{P}_{j}\right) \not \equiv 1$ $(\bmod p)$. Since the prime p can lie in at most N distinct prime ideals, hence at least one \mathfrak{P}_{i} does not not divide $p R$. Therefore $\mathfrak{P}_{i} \nmid B$ and the application of Lemma 4 (ii) bounds the length of any cycle of F in K by a number depending only on K and p.

References

[Ba] M. Bauer, Zur Theorie der algebraischen Zahlkörper, Math. Ann., 77, 1916, 353-356.
[Be] R.L. Benedetto, An elementary product identity in polynomial dynamics, Amer. Math. Monthly, 108, 2001, 860-864.
[CG] G.S. Call, S.W. Goldstine, Canonical heights on projective space, J. Number Theory, 63, 1997, 211-243.
[Er] T. Erkama, Periodic orbits of quadratic polynomials, Bull. London Math. Soc., 38, 2006, 804-814.
[FPS] E.V. Flynn, B. Poonen, E.F. Schaefer, Cycles of quadratic polynomials and rational points on a genus 2-curve, Duke Math.J., 90, 1997, 435-463.
[Mo] P. Morton, Arithmetic properties of periodic points of quadratic maps, Acta Arith., 62, 1992, 343-372.
[MS] P. Morton, J.H. Silverman, Rational periodic points of rational functions, Intern. Math. Res. Notices, 1994, 97-109.
[N] W. Narkiewicz, Polynomial Mappings, Lecture Notes in Math., 1600, Springer 1989.
[Na] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer 2004.
[Pe] T. Pezda, Polynomial cycles in certain local domains, Acta Arith., 66, 1994, 11-22.
[RW] P. Russo, R. Walde, Rational periodic points of the quadratic function $Q_{c}(x)=x^{2}+c$, Amer. Math. Monthly, 101, 1994, 318-331.
[S] M. Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS Journal of Comput. Math., 11, 2008, 367-380.

Address: Institute of Mathematics, Wrocław University, Poland.
E-mail: narkiew@math.uni.wroc.pl
Received: 27 July 2009; revised: 17 November 2009

[^0]: 2010 Mathematics Subject Classification: primary: 11R09; secondary: 37C25, 37E15, 37F10.

