SOME L^{p} INEQUALITIES FOR POLYNOMIALS

Abdullah Mir, Kum K. Dewan, Naresh Singh

Abstract

In this paper we establish some L^{p} inequalities for polynomials having no zeros in $|z|<k$, where $k \geqslant 1$. Our results not only generalizes some known polynomial inequalities, but also a variety of interesting results can be deduced from these by a fairly uniform procedure.

Keywords: Polynomials, Zygmund inequality, L^{p} inequalities, zeros.

1. Introduction and statement of results

Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree at most n and $p^{\prime}(z)$ its derivative, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant n \max _{|z|=1}|p(z)| \tag{1}
\end{equation*}
$$

and for every $r \geqslant 1$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leqslant n\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{2}
\end{equation*}
$$

Inequality (1) is a classical result of Bernstein [13] (see also [16]), whereas inequality (2) is due to Zygmund [17] who proved it for all trigonometric polynomials of degree n and not only for those which are of the form $p\left(e^{i \theta}\right)$. Arestov [1] proved that (2) remains true for $0<r<1$ as well. If we let $r \rightarrow \infty$ in inequality (2), we get (1).

If we restrict ourselves to the class of polynomials having no zeros in $|z|<1$, then both the inequalities (1) and (2) can be sharpened. In fact, if $p(z) \neq 0$ in $|z|<1$, then (1) and (2) can be respectively replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant \frac{n}{2} \max _{|z|=1}|p(z)| \tag{3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leqslant n C_{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{4}
\end{equation*}
$$

\]

where

$$
C_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{r} d \alpha\right\}^{-\frac{1}{r}}
$$

Inequality (3) was conjectured by Erdös and later verified by Lax [11], whereas inequality (4) was found out by De-Bruijn [6] for $r \geqslant 1$. Rahman and Schmeisser [15] have shown that (4) holds for $0<r<1$ also. If we let $r \rightarrow \infty$ in (4), we get (3).

As a generalization of (3) Malik [12] proved that if $p(z) \neq 0$ in $|z|<k, k \geqslant 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{5}
\end{equation*}
$$

whereas under the same hypothesis, Govil and Rahman [10] extended inequality (4) by showing that

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leqslant n E_{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{6}
\end{equation*}
$$

where

$$
E_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k+e^{i \alpha}\right|^{r} d \alpha\right\}^{-\frac{1}{r}}, \quad r \geqslant 1
$$

It was shown by Gardner and Weems [9] that inequality (6) also holds for $0<r<1$.

Chan and Malik [5] generalized (5) in a different direction and proved that, if $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geqslant 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant \frac{n}{1+k^{t}} \max _{|z|=1}|p(z)| \tag{7}
\end{equation*}
$$

Inequality (7) was independently proved by Qazi [14, Lemma 1] who also under the same hypothesis proved that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant\left(\frac{n}{1+S_{1}}\right) \max _{|z|=1}|p(z)| \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{1}=k^{t+1}\left(\frac{\left(\frac{t}{n}\right)\left|\frac{a_{t}}{a_{0}}\right| k^{t-1}+1}{\left(\frac{t}{n}\right)\left|\frac{a_{t}}{a_{0}}\right| k^{t+1}+1}\right) \tag{9}
\end{equation*}
$$

If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v} \neq 0$ in $|z|<k, k \geqslant 1$, then $\frac{t}{n}\left|\frac{a_{t}}{a_{0}}\right| k^{t} \leqslant 1$, which can also be taken as equivalent to $S_{1} \geqslant k^{t}$. Hence inequality (8) is an improvement of inequality (7).

Recently, Aziz and Shah [4] investigated the dependence $\max _{|z|=1}|p(R z)-p(z)|$ on $\max _{|z|=1}|p(z)|$ and proved that if $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree $n, p(z) \neq 0$ in $|z|<k, k \geqslant 1$, then for every $R>1$ and $|z|=1$,

$$
\begin{equation*}
|p(R z)-p(z)| \leqslant\left\{\frac{R^{n}-1}{1+\psi_{1}(R)}\right\} \max _{|z|=1}|p(z)| \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{1}(R)=k^{t+1}\left(\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left|\frac{a_{t}}{a_{0}}\right| k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left|\frac{a_{t}}{a_{0}}\right| k^{t+1}+1}\right) . \tag{11}
\end{equation*}
$$

If we divide the two sides of (10) by $R-1$, make $R \rightarrow 1$ and noting that $\psi_{1}(R) \rightarrow S_{1}$ as $R \rightarrow 1$, we get (8).

The following result which is due to Gardner, Govil and Weems [8] is of independent interest, because it provides generalizations and refinements of inequalities (3), (5), (7) and (8).

Theorem A. If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree n having no zeros in $|z|<k$ where $k \geqslant 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqslant\left(\frac{n}{1+S_{0}}\right)\left\{\max _{|z|=1}|p(z)|-m\right\} \tag{12}
\end{equation*}
$$

where $m=\min _{|z|=k}|p(z)|$ and

$$
\begin{equation*}
S_{0}=k^{t+1}\left(\frac{\left(\frac{t}{n}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{t}{n}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right) \tag{13}
\end{equation*}
$$

In this paper, we shall generalize inequalities (10) and (12) to the L^{r} norm of $p(z)$ for every $r>0$. We first prove the following interesting generalization of (12). Theorem 1. Let $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, be a polynomial of degree n which does not vanish in $|z|<k, k \geqslant 1$. Then for every complex number β with $|\beta| \leqslant 1$ and for each $r>0$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+\frac{m n \beta}{1+S_{0}}\right|^{r} d \theta\right\}^{\frac{1}{r}} \leqslant n C_{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{14}
\end{equation*}
$$

where

$$
m=\min _{|z|=k}|p(z)|, \quad C_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|S_{0}+e^{i \alpha}\right|^{r} d \alpha\right\}^{-\frac{1}{r}}
$$

and S_{0} is as defined in Theorem A.
If we let $r \rightarrow \infty$ in (14), noting that $C_{r} \rightarrow \frac{1}{1+S_{0}}$ and choose argument of β with $|\beta|=1$ suitably, we get (12). For $k=1=t$ and $\beta=0$, Theorem 1 reduces to De-Bruijn's Theorem.

If we do not have the knowledge of $\min _{|z|=k}|p(z)|$, we obtain the following result which is a special case of Theorem 1.

Corollary 1. If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree n having no zeros in $|z|<k, k \geqslant 1$, then for each $r>0$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leqslant n D_{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|S_{1}+e^{i \alpha}\right|^{r} d \alpha\right\}^{-\frac{1}{r}} \tag{16}
\end{equation*}
$$

and S_{1} is defined by formula (9).
If we let $r \rightarrow \infty$ in (15), we get (8). Several other interesting results easily follow from Corollary 1. Here, we mention a few of these. Since it is well known that $S_{1} \geqslant k^{t}$. Using this fact in inequality (15), we immediately get the following corollary.

Corollary 2. If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree n having no zeros in $|z|<k, k \geqslant 1$, then for each $r>0$,

$$
\begin{align*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leqslant & \frac{n}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k^{t}+e^{i \alpha}\right|^{r} d \alpha\right\}^{\frac{1}{r}}} \\
& \times\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{17}
\end{align*}
$$

For $t=1$, inequality (17) reduces to inequality (6) for $r>0$.
Instead of proving Theorem 1, we prove the following more general result which includes not only Theorem 1 and inequality (10) as special cases, but also leads to a standard development of interesting generalizations of some well known results.

Theorem 2. If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree n which does not vanish in $|z|<k, k \geqslant 1$, and $m=\min _{|z|=k}|p(z)|$, then for every complex number β with $|\beta| \leqslant 1, r>0, R>1$ and α real,

$$
\begin{align*}
&\left\{\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)+\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m \beta\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leqslant\left(R^{n}-1\right) B_{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{18}
\end{align*}
$$

where

$$
B_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\psi_{0}(R)+e^{i \alpha}\right|^{r} d \alpha\right\}^{-\frac{1}{r}}
$$

and

$$
\begin{equation*}
\psi_{0}(R)=k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\} \tag{19}
\end{equation*}
$$

If we let $r \rightarrow \infty$ in (18) and choose argument of β with $|\beta|=1$ suitably, we get

$$
\begin{equation*}
\max _{|z|=1}|p(R z)-p(z)| \leqslant\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right)\left\{\max _{|z|=1}|p(z)|-m\right\} . \tag{20}
\end{equation*}
$$

Dividing the two sides of (20) by $R-1$, letting $R \rightarrow 1$ and noting that $\psi_{0}(R) \rightarrow S_{0}$ as $R \rightarrow 1$, we get Theorem A.

From inequality (20), it follows that

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leqslant\left(\frac{R^{n}+\psi_{0}(R)}{1+\psi_{0}(R)}\right) \max _{|z|=1}|p(z)|-\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m \tag{21}
\end{equation*}
$$

It can be easily verified that for every n and $R \geqslant 1$, the function $\left(\frac{R^{n}+x}{1+x}\right) \max _{|z|=1}|p(z)|-\left(\frac{R^{n}-1}{1+x}\right) m$, is a non-increasing function of x. If we combine this fact with Lemma 6 (stated in Section 2), according to which $\psi_{0}(R) \geqslant$ k^{t} for $t \geqslant 1$, we get

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leqslant\left(\frac{R^{n}+k^{t}}{1+k^{t}}\right) \max _{|z|=1}|p(z)|-\left(\frac{R^{n}-1}{1+k^{t}}\right) m \tag{22}
\end{equation*}
$$

which is a generalization of a result due to Aziz [2, Theorem 4].
If we divide the two sides of (18) by $R-1$, make $R \rightarrow 1$ and note that $\psi_{0}(R) \rightarrow S_{0}$ as $R \rightarrow 1$, we get inequality (14) of Theorem 1.

2. Lemmas

For the proofs of these theorems we need the following lemmas.
Lemma 1. If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree n having no zeros in $|z|<k, k \geqslant 1$, then for $|z|=1$ and $R>1$,

$$
\begin{equation*}
|q(R z)-q(z)| \geqslant k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left|\frac{a_{t}}{a_{0}}\right| k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left|\frac{a_{t}}{a_{0}}\right| k^{t+1}+1}\right\}|p(R z)-p(z)| \tag{23}
\end{equation*}
$$

where $q(z)=z^{n} \overline{\left(\frac{1}{\bar{z}}\right)}$.
The above lemma is due to Aziz and Shah [4].
The following lemma is due to Aziz and Rather [3].
Lemma 2. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leqslant t$, where $t \leqslant 1$, then

$$
|p(R z)-p(z)| \geqslant\left(\frac{R^{n}-1}{t^{n}}\right) \min _{|z|=t}|p(z)|, \quad \text { for } \quad|z|=1 \quad \text { and } \quad R \geqslant 1 .
$$

Lemma 3. The function

$$
S(x)=k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left(\frac{\left|a_{t}\right|}{x}\right) k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left(\frac{\left|a_{t}\right|}{x}\right) k^{t+1}+1}\right\}, \quad R>1
$$

is a non-decreasing function of x.
Proof of Lemma 3. The proof follows by considering the first derivative test for $S(x)$.

Lemma 4. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree $n, p(z) \neq 0$ in $|z|<k$ then $|p(z)|>m$ for $|z|<k$, and in particular

$$
\left|a_{0}\right|>m,
$$

where $m=\min _{|z|=k}|p(z)|$.
The above lemma is due to Gardner, Govil and Musukula [7, Lemma 2.6], however for the sake of completeness we present the brief outline of the proof. For this, we can assume without loss of generality that $p(z)$ has no zeros on $|z|=k$,
for otherwise the result holds trivially. Since $p(z)$, being a polynomial, is analytic in $|z| \leqslant k$ and has no zeros in $|z|<k$, by the minimum modulus principle,

$$
|p(z)| \geqslant m \quad \text { for } \quad|z| \leqslant k,
$$

which in particular implies $\left|a_{0}\right|=|p(0)|>m$.
Lemma 5. If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree n having no zeros in $|z|<k, k \geqslant 1$ and $q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right)$, then for $|z|=1$ and $R>1$

$$
\begin{align*}
& k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\}|p(R z)-p(z)| \\
& \leqslant|q(R z)-q(z)|-\left(R^{n}-1\right) m, \tag{24}
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|$.
Proof of Lemma 5. Since $m \leqslant|p(z)|$ for $|z|=k$.
Hence, it follows by Rouche's Theorem that for $m>0$ and for every complex number α with $|\alpha| \leqslant 1$, the polynomial $h(z)=p(z)-\alpha m$ does not vanish in $|z|<k$.

Applying Lemma 1 to the polynomial $h(z)=p(z)-\alpha m$, we get for every complex number α with $|\alpha| \leqslant 1$,

$$
\begin{align*}
k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}-\alpha m\right|} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}-\alpha m\right|} k^{t+1}+1}\right\} & |p(R z)-p(z)| \tag{25}\\
& \leqslant\left|q(R z)-q(z)-m \bar{\alpha}\left(R^{n}-1\right) z^{n}\right|
\end{align*}
$$

for $|z|=1$ and $R>1$. Since for every $\alpha,|\alpha| \leqslant 1$ we have

$$
\begin{equation*}
\left|a_{0}-\alpha m\right| \geqslant\left|a_{0}\right|-|\alpha| m \geqslant\left|a_{0}\right|-m \tag{26}
\end{equation*}
$$

and $\left|a_{0}\right|>m$ by Lemma 4 , we get on combining (25), (26) and Lemma 3 that for every α where $|\alpha| \leqslant 1$,

$$
\begin{align*}
& k^{t+1}\left\{\begin{array}{r}
\left.\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\}
\end{array}\right\}|p(R z)-p(z)| \\
& \leqslant\left|q(R z)-q(z)-m \bar{\alpha}\left(R^{n}-1\right) z^{n}\right| \tag{27}
\end{align*}
$$

for $|z|=1$ and $R>1$.

Also all the zeros of $q(z)$ lie in $|z| \leqslant \frac{1}{k} \leqslant 1$, it follows by Lemma 2 (with $p(z)$ replaced by $q(z)$ and t by $1 / k)$ that

$$
|q(R z)-q(z)| \geqslant\left(R^{n}-1\right) k^{n} \min _{|z|=\frac{1}{k}}|q(z)| .
$$

But

$$
\min _{|z|=\frac{1}{k}}|q(z)|=\frac{1}{k^{n}} \min _{|z|=k}|p(z)|
$$

therefore, we have

$$
\begin{equation*}
|q(R z)-q(z)| \geqslant\left(R^{n}-1\right) m \quad \text { for } \quad|z|=1 \quad \text { and } R>1 \tag{28}
\end{equation*}
$$

Now choosing argument of α with $|\alpha|=1$ on the right hand side of (27) such that for $|z|=1$ and $R>1$,

$$
\left|q(R z)-q(z)-m \bar{\alpha}\left(R^{n}-1\right) z^{n}\right|=|q(R z)-q(z)|-\left(R^{n}-1\right) m
$$

which is possible by (28), we conclude that

$$
\begin{aligned}
\left.k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\} \right\rvert\, p(R z) & -p(z) \mid \\
& \leqslant|q(R z)-q(z)|-\left(R^{n}-1\right) m
\end{aligned}
$$

for $|z|=1$ and $R>1$, which is inequality (24) and that proves Lemma 5 completely.

Lemma 6. If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geqslant 1$, is a polynomial of degree n having no zeros in $|z|<k, k \geqslant 1$ and $m=\min _{|z|=k}|p(z)|$, then

$$
\psi_{0}(R)=k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\} \geqslant k^{t}, \quad R>1
$$

Proof of Lemma 6. Since, we have

$$
\begin{equation*}
\frac{R^{t}-1}{R^{n}-1} \leqslant \frac{t}{n} \tag{29}
\end{equation*}
$$

holds for all $R>1$ and $1 \leqslant t \leqslant n$ by considering the first derivative test for the function $\varphi(R)=n R^{t}-t R^{n}$.

Also, we have by an inequality (see [8, Proof of Lemma 3]),

$$
\begin{equation*}
\frac{\left|a_{t}\right| k^{t}}{\left|a_{0}\right|-m} \leqslant \frac{n}{t}, \quad t \geqslant 1 \tag{30}
\end{equation*}
$$

Considering (29) and (30), we get

$$
\frac{\left|a_{t}\right| k^{t}}{\left|a_{0}\right|-m} \leqslant \frac{R^{n}-1}{R^{t}-1} .
$$

The above inequality is clearly equivalent to

$$
\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right| k^{t}}{\left|a_{0}\right|-m}(k-1) \leqslant(k-1),
$$

which implies

$$
\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right| k^{t+1}}{\left|a_{0}\right|-m}+1 \leqslant\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right| k^{t}}{\left|a_{0}\right|-m}+k
$$

from which Lemma 6 follows.
Lemma 7. If A, B and C are non-negative real numbers such that $B+C \leqslant A$, then for every real number α,

$$
\left|(A-C) e^{i \alpha}+(B+C)\right| \leqslant\left|A e^{i \alpha}+B\right|
$$

Lemma 8. If $p(z)$ is a polynomial of degree n which does not vanish in $|z|<1$, then for each $r>0, R \geqslant 1$ and α real,

$$
\begin{aligned}
\left\{\int_{0}^{2 \pi} \left\lvert\,\left(p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right)+e^{i \alpha}\left(R^{n} p\left(\frac{e^{i \theta}}{R}\right)\right.\right.\right. & \left.\left.-p\left(e^{i \theta}\right)\right)\left.\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leqslant\left(R^{n}-1\right)\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}
\end{aligned}
$$

The result is best possible and equality holds for $p(z)=\lambda z^{n}+\mu,|\lambda|=|\mu|$.
The above two lemmas are due to Aziz and Rather [3].

3. Proofs of the Theorems

Proof of Theorem 2. Since $p(z) \neq 0$ in $|z|<k, k \geqslant 1$, therefore, by Lemma 5, for each $\theta, 0 \leqslant \theta<2 \pi$ and $R>1$, we have

$$
\psi_{0}(R)\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right| \leqslant\left|R^{n} p\left(\frac{e^{i \theta}}{R}\right)-p\left(e^{i \theta}\right)\right|-m\left(R^{n}-1\right)
$$

where $\psi_{0}(R)$ is as defined in inequality (19).

This implies

$$
\begin{align*}
\psi_{0}(R)\left\{\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right|+\right. & \left.\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m\right\} \\
& \leqslant\left|R^{n} p\left(\frac{e^{i \theta}}{R}\right)-p\left(e^{i \theta}\right)\right|-\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m \tag{31}
\end{align*}
$$

Taking $A=\left|R^{n} p\left(\frac{e^{i \theta}}{R}\right)-p\left(e^{i \theta}\right)\right|, B=\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right|$ and $C=\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m$ in Lemma 7 and noting by Lemma 6 that $\psi_{0}(R) \geqslant k^{t} \geqslant 1$,

$$
B+C \leqslant \psi_{0}(R)(B+C) \leqslant A-C \leqslant A
$$

we get for every real α,

This implies for each $r>0$,

$$
\begin{align*}
\int_{0}^{2 \pi} \mid F(\theta) & +\left.e^{i \alpha} G(\theta)\right|^{r} d \theta \\
\leqslant & \int_{0}^{2 \pi}| | R^{n} p\left(\frac{e^{i \theta}}{R}\right)-p\left(e^{i \theta}\right)\left|e^{i \alpha}+\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right|\right|^{r} d \theta \tag{32}
\end{align*}
$$

where

$$
F(\theta)=\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right|+\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m
$$

and

$$
G(\theta)=\left|R^{n} p\left(\frac{e^{i \theta}}{R}\right)-p\left(e^{i \theta}\right)\right|-\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m
$$

Integrating both sides of (32) with respect to α from 0 to 2π, we get with the help of Lemma 8, for each $r>0, R>1$,

$$
\begin{align*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} & \left|F(\theta)+e^{i \alpha} G(\theta)\right|^{r} d \theta d \alpha \\
& \leqslant \int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi}| | R^{n} p\left(\frac{e^{i \theta}}{R}\right)-p\left(e^{i \theta}\right)\left|e^{i \alpha}+\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right|\right|^{r} d \alpha\right\} d \theta \\
& =\int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi}\left|\left(R^{n} p\left(\frac{e^{i \theta}}{R}\right)-p\left(e^{i \theta}\right)\right) e^{i \alpha}+\left(p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right)\right|^{r} d \alpha\right\} d \theta \\
& =\int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi}\left|\left(R^{n} p\left(\frac{e^{i \theta}}{R}\right)-p\left(e^{i \theta}\right)\right) e^{i \alpha}+\left(p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right)\right|^{r} d \theta\right\} d \alpha \\
& \leqslant\left(R^{n}-1\right)^{r} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta d \alpha \\
& =2 \pi\left(R^{n}-1\right)^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta \tag{33}
\end{align*}
$$

Now for every real α and $t_{1} \geqslant t_{2} \geqslant 1$, we have

$$
\left|t_{1}+e^{i \alpha}\right| \geqslant\left|t_{2}+e^{i \alpha}\right|
$$

which implies for every $r>0$

$$
\int_{0}^{2 \pi}\left|t_{1}+e^{i \alpha}\right|^{r} d \alpha \geqslant \int_{0}^{2 \pi}\left|t_{2}+e^{i \alpha}\right|^{r} d \alpha
$$

If $F(\theta) \neq 0$, we take $t_{1}=\left|\frac{G(\theta)}{F(\theta)}\right|$ and $t_{2}=\psi_{0}(R)$, then from (31) and noting by Lemma 6 that $\psi_{0}(R) \geqslant 1$, we have $t_{1} \geqslant t_{2} \geqslant 1$, hence

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|F(\theta)+e^{i \alpha} G(\theta)\right|^{r} d \alpha= & |F(\theta)|^{r} \int_{0}^{2 \pi}\left|1+\frac{G(\theta)}{F(\theta)} e^{i \alpha}\right|^{r} d \alpha \\
= & |F(\theta)|^{r} \int_{0}^{2 \pi}\left|\frac{G(\theta)}{F(\theta)}+e^{i \alpha}\right|^{r} d \alpha \\
= & |F(\theta)|^{r} \int_{0}^{2 \pi}| | \frac{G(\theta)}{F(\theta)}\left|+e^{i \alpha}\right|^{r} d \alpha \\
\geqslant & |F(\theta)|^{r} \int_{0}^{2 \pi}\left|\psi_{0}(R)+e^{i \alpha}\right|^{r} d \alpha \\
= & \left\{\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right|+\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m\right\}^{r} \\
& \times \int_{0}^{2 \pi}\left|\psi_{0}(R)+e^{i \alpha}\right|^{r} d \alpha .
\end{aligned}
$$

For $F(\theta)=0$, this inequality is trivially true. Using this in (33), we conclude that for each $r>0, R>1$,

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\psi_{0}(R)+e^{i \alpha}\right|^{r} d \alpha \int_{0}^{2 \pi}\left\{\mid p\left(R e^{i \theta}\right)\right. & \left.-p\left(e^{i \theta}\right) \left\lvert\,+\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right) m\right.\right\}^{r} d \theta \\
& \leqslant 2 \pi\left(R^{n}-1\right)^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta \tag{34}
\end{align*}
$$

Now using the fact that for every complex number β with $|\beta| \leqslant 1$,

$$
\begin{aligned}
&\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)+\beta m\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right)\right| \\
& \leqslant\left|p\left(R e^{i \theta}\right)-p\left(e^{i \theta}\right)\right|+m\left(\frac{R^{n}-1}{1+\psi_{0}(R)}\right)
\end{aligned}
$$

the desired result follows from (34).
Remark 1. If we divide both sides of (24) by $R-1$ and let $R \rightarrow 1$, we get

$$
\begin{equation*}
k^{t+1}\left\{\frac{\left(\frac{t}{n}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{t}{n}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\}\left|p^{\prime}(z)\right| \leqslant\left|q^{\prime}(z)\right|-m n \tag{35}
\end{equation*}
$$

This inequality was also recently proved by Gardner, Govil and Weems [8, Lemma 8].
Remark 2. The proof of Theorem 1 follows along the lines of the proof of Theorem 2 , by applying inequality (35) instead of Lemma 5.

References

[1] V.V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk. SSSR., Ser. Mat. 45 (1981), 3-22.
[2] A. Aziz, Growth of polynomials whose zeros are with in or outside a circle, Bull. Aust. Math. Soc. 35 (1987), 247-256.
[3] A. Aziz and N.A. Rather, New L^{q} inequalities for polynomials, Math. Ineq. and Appl. 1 (1998), 177-191.
[4] A. Aziz and W.M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq. and Appl. 7 (2004), 379-391.
[5] T.N. Chan and M.A. Malik, On Erdös-Lax Theorem, Proc. Indian Acad. Sci. 92 (1983), 191-193.
[6] N.G. De-Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad., Wetnesch. Proc. 50 (1947), 1265-1272; Indag. Math. 9 (1947), 591-598.
[7] R.B. Gardner, N.K. Govil and S.R. Musukula, Rate of growth of polynomials not vanishing inside a circle, J. of Ineq. in Pure and Appl. Math. 6 (Issue 2, Art. 53) (2005), 1-9.
[8] R.B. Gardner, N.K. Govil and A. Weems, Some results concerning rate of growth of polynomials, East J. on Approx. 10 (2004), 301-312.
[9] R.B. Gardner and A. Weems, A Bernstein type L^{p} inequality for a certain class of polynomials, J. Math. Anal. Appl. 219 (1998), 472-478.
[10] N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.
[11] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
[12] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc. 1 (1969), 57-60.
[13] G.V. Milovanović, D.S. Mitrinović and Th.M. Rassias, Topics in polynomials, Extermal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[14] M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), 337-343.
[15] Q. I. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory 53 (1988), 26-32.
[16] A.C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941), 565-579.
[17] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34 (1932), 392-400.

Addresses: Abdullah Mir: Post Graduate Department of Mathematics, University of Kashmir, Hazratbal, Srinagar - 190006 (India);
Kum K. Dewan and Naresh Singh: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), New Delhi - 110025 (India).
E-mail: mabdullah_mir@yahoo.co.in, kkdewan123@yahoo.co.in, kuntal_ns@rediffmail.com
Received: 23 March 2009; revised: 15 February 2010

[^0]: The work is supported by Council of Scientific and Industrial Research, New Delhi, under grant F.No.9/466(78)/2004-EMR-I.

 2000 Mathematics Subject Classification: 30A10, 30C10, 30D15, 26D05

