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THREE TRIANGULAR NUMBERS CONTAINED
IN GEOMETRIC PROGRESSION

Pingzhi Yuan, Jiagui Luo

Abstract: In the present paper we prove that all three distinct triangular numbers in geometric
progression and the positive integer solutions (x, y, z) of the equation (x2−1)(y2−1) = (z2−1)2,
1 < x < z < y, 2 6 |xyz are one-to-one under the assumption that a conjecture on a system of
diophantine equations holds.
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1. Introduction

The integers of the form Tn = n(n + 1)/2, n ∈ N, are called triangular numbers.
In [7, D23], it is stated that Sierpinski asked the question of whether or not there
exist four (distinct) triangular numbers in geometric progression. Szymiczek [12]
conjectured that the answer is negative.

Recently M.Bennett [3] proved that there do not exist four distinct triangular
numbers in geometric progression with the ratio being a positive integer. Chen and
Fang [8] extended Bennett’s result to the rational ratio and proved that there do
not exist four distinct triangular numbers in geometric progression. By employing
the theory of Pell’s equations and a result of Y. Bilu, G. Hanrot and P.M. Voutier
on primitive divisors of Lucas and Lehmer numbers, Yang and He [7] claimed that
there is no geometric progression which contains four distinct triangular numbers.
In their paper, they misunderstood the phrase "in geometric progression", and
claimed that Bennett’s proof is not complete and that they solved Sierpinski’s
problem completely. In fact, their proof is also under the assumption that the
geometric progression has an integral common ratio. Fang [9], using only the
Störmer theorem on Pell’s equation, showed that no geometric progression contains
four distinct triangular numbers.

An old result of Gérardin [5] (see also [11]) implies that there are infinitely many
such triples, the smallest of which is (T1, T3, T8). In fact a simple calculation shows

Supported by the Guangdong Provincial Natural Science Foundation (No.
8151027501000114) and NSF of China (No. 10971072).

2000 Mathematics Subject Classification: 11D25, 11D41



60 Pingzhi Yuan, Jiagui Luo

that if Tn = m2 then Tn, Tn+2m = m(2n + 3m + 1), T3n+4m+1 = (2n + 3m + 1)2

form a geometric progression.
The main purpose of the present paper is an attempt to determining all three

such triangular numbers. To state the main theorem of the present paper, we first
introduce a conjecture on a system of diophantine equations.

Conjecture 1.1. Let m > 1 be a positive integer. Then the following system of
equations {

x2 − (m2 − 1)y2 = 1,

z2 − (m2 − 1)yr = 1
(1)

has no positive integer solution (x, y, r) with y > 1 and r > 2.

Theorem 1.1. If Conjecture 1.1 holds, then Tn1 , Tn2 , Tn3 is three distinct terms
in a geometric progression if and only if (x, y, z) = (2n1 + 1, 2n3 + 1, 2n2 + 1) is
a solution of the diophantine equation

(x2 − 1)(y2 − 1) = (z2 − 1)2, 1 < x < z < y.

2. Some Lemmas

Suppose that D is a positive nonsquare integer, and let u1 and v1 be the smallest
positive integers such that

u2
1 −Dv2

1 = 1.

We call u1 + v1

√
D the fundamental solution to the Pell equation x2 −Dy2 = 1.

Further we define sequences of integers {uk} and {vk} by

uk + vk

√
D = (u1 + v1

√
D)k, k ∈ Z.

Lemma 2.1 (Störmer theorem [4]). Let D be a positive nonsquare integer.
If the Pell equation x2 − Dy2 = 1 has a positive integral solution (x1, y1), and
every prime divisor of y1 divides D, then x1 + y1

√
D is the fundamental solution.

Lemma 2.2 ([14]). If d = gcd(m,n), then gcd(vm, vn) = vd.

Theorem 2.1 ([1]). If a, b and n are integers with ab 6= 0 and n > 3, then the
equation

|axn − byn| = 1

has at most one solution in positive integers (x, y).

Lemma 2.3 ([10]). If 2 6 |v1, then vk is even if and only if k = 2h.

Lemma 2.4. Let D be a positive non-square integer. Suppose that the diophantine
equation x2 − Dy2 = 1 has two solutions (x, y) = (m1, a) and (m2, b) satisfying
gcd(a, b) = 1, then D = m2 − 1 for some positive integer m.
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Proof. Let u1 + v1

√
D be the fundamental solution of the Pell equation

x2 − Dy2 = 1, then v1|a and v1|b. Hence our assumption gcd(a, b) = 1 implies
that v1 = 1, and so D = u2

1 − 1. The proof is complete. ¥

Lemma 2.5 ([2]). If D is a positive nonsquare integer and n > 3, then the
equation xn = u2k, where x and k are positive integers, implies that

D = 6083, n = 3, k = 1, x = 23.

Theorem 2.2 ([1]). Let D be a positive nonsquare integer. Then there are at
most two pairs of positive integers (x, y) such that

x2 −Dy4 = 1.

If there are two such solutions, say (x1, y1) and (x2, y2) with y1 < y2, then y2
1 = v1

and y2
2 = v2, except if D = 1785 or D = 16 · 1785, in which case y2

1 = v1 and
y2
2 = v4.

The following result is a weak form of a result of Bennett [2]. However, Ben-
nett [2] used a result which have not published now, so we provide the proof here,
the idea of the proof is derived from [2].

Lemma 2.6. Let n and D be fixed positive integers with n > 3 and D nonsquare.
If 2|D, then the equation

x2 −Dy2n = 1 (2)

has at most one solution in positive integer x and y.

Proof. If we have a solution in positive integers (x, y) to (2), we may write

x + yn
√

D = uk + vk

√
D = (u1 + v1

√
D)k, k ∈ N, (3)

where u1 + v1

√
D is the fundamental solution of the Pell equation x2 −Dy2 = 1.

We begin with the following observation. If the equation x2 − Dy2n = 1
has two positive solutions (x1, y1) and (x2, y2), then there exist positive integers
x1, x2, y1, y2, k1 and k2 with

xi + yn
i

√
D = (u1 + v1

√
D)ki , ki = 1, 2, (4)

and k1 < k2. We may further assume that k1 is the smallest positive integer
such that a relation of (3) holds with k = k1. By Lemma 2.2, vgcd(k1, k2) =
gcd(vk1 , vk2) = gcd(yn

1 , yn
2 ) = (gcd(y1, y2))n, so we have that k1|k2. Therefore,

by letting D1 = Dy2n
1 , we have that the equation x2−D1y

2n = 1 has two positive
solution (x, y) = (x1, 1) and (x2, y2/y1). Hence without loss of generality, if the
equation x2 − Dy2n = 1 has two positive solutions (x1, y1) and (x2, y2), we may
assume that D = m2 − 1 for a positive integer m. We will keep this assumption
in the remaining arguments.
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Let u1 + v1

√
D = m +

√
m2 − 1 with odd m, uk + vk

√
D = (u1 + v1

√
D)k.

If yn = vp with p odd. It is readily verified that
(
v p+1

2
− v p−1

2

)(
v p+1

2
+ v p−1

2

)
= vp, (5)

and
m + 1

2

(
v p+1

2
− v p−1

2

)2

− m− 1
2

(
v p+1

2
+ v p−1

2

)2

= 1. (6)

It follows from the above two equalities that

x1 + 1
2

an − x1 − 1
2

bn = 1.

Applying Theorem 2.1, we conclude that a = b = 1 and so p = 1.
If yn = v4k = 2u2kv2k, then it is easy to see that u2k = an for a positive integer

a, by Lemma 2.5 we have that

D = 6083, n = 3, k = 1, x = 23,

contradicting with 2|D.
If yn = v2k with k odd, then by Lemma 2.3 and our assumption we have

yn = 2ukvk, 2 6 |vk, 2 6 |uk, which is impossible and we are done. ¥

3. Proof of Theorem 1.1

Proof of theorem 1.1. Suppose that there is a geometric progression which con-
tains three distinct triangular integers Tn1 , Tn2 , Tn3 . Let q be the common ratio.
It is obvious that q > 0 and q 6= 1. Without loss of generality, we may assume
that 0 < q = b/a < 1 and gcd(a, b) = 1. Let A = 8Tn1 . Then

8Tn2 = Aqr1 , 8Tn3 = Aqr2 , r1, r2 ∈ N
Let mi = 2ni + 1(i = 1, 2, 3). Then

m2
1 − 1 = A, m2

2 − 1 = Aqr1 , m2
3 − 1 = Aqr2 . (7)

Since Aqr2 is an integer and gcd(a, b) = 1, we have ar2 |A. Let A = a0a
r2 . From

(7) we have
m2

1 − a0a
r2 = 1, (8)

m2
2 − a0a

r2−r1br1 = 1, (9)

and
m2

3 − a0b
r2 = 1. (10)

We divide the remaining proof into three cases.
Case 1. 2|r2 and r2 > 2. Write r2 = 2n, n > 2. Then by (8), (10), Lemma 2.4

and our assumptions, we have

a0 = m2 − 1



Three triangular numbers contained in geometric progression 63

for some odd positive integer m. If n > 2, then by (8), (10) we obtain that
(m1, a

n), (m3, b
n) are both positive integer solutions of the equation

x2 − a0y
2n = 1,

which is impossible by Lemma 2.6. If n = 2, a0 6= 16 · 1785, then by (8), (10)
Theorem 2.2 we get that

b = 1, 2m = a2,

which is not true since 2 6 |m. If n = 2 and a0 = 16 · 1785, then a = 26 · 239. It is
easy to see that the equation

x2 − 16 · 1785(26 · 239)r = 1, 2 6 |r
has no solution in positive integers (x, r). Therefore Case 1 is impossible.

Case 2. 2 6 |r2. Then we have




m2
1 − a0a(a(r2−1)/2)2 = 1,

m2
3 − a0b(b(r2−1)/2)2 = 1,

m2
2 − a0a

r2−r1br1 = 1.

By Lemma 2.1, we see that m1 + a(r2−1)/2√a0a and m3 + b(r2−1)/2
√

a0b are the
fundamental solutions of the equations x2 − a0ay2 = 1 and x2 − a0by

2 = 1,
respectively. If 2|r1, then m2 +a(r2−r1−1)/2br1/2√a0a is a solution of x2−a0ay2 =
1, and so a(r2−1)/2|a(r2−r1−1)/2br1/2, which is a contradiction since gcd(a, b) = 1
and a > b > 1. Hence 2 6 |r1 and m2 + a(r2−r1)/2b(r1−1)/2

√
a0b is a solution of

x2 − a0by
2 = 1. It follows that b(r2−1)/2|a(r2−r1)/2b(r1−1)/2, and so b = 1, a0 =

m2
3 − 1.
Let r2 − r1 = 2n, n > 1. If n > 2, then by (9), (10) we see that (m3, 1) and

(m2, an) are both positive integer solutions of the equation

x2 − a0y
2n = 1,

contradicting Lemma 2.6. If n = 2, D = a0 = m2
3 − 1 6= 16 · 1785, then by

m2
2 − (m2

3 − 1)a2n = 1 and Theorem 2.2 , we have that

2m3 = an,

which is impossible since 2 6 |m3. If n = 2 and D = a0 = 16 ·1785, then a = 26 ·239.
It is easy to see that the equation

x2 − 16 · 1785(26 · 239)r = 1, 2 6 |r
has no solution in positive integers (x, r). If n = 1, then we have to solve the
following system of equations

{
x2 − (m2 − 1)y2 = 1,

z2 − (m2 − 1)yr = 1.
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By Conjecture 1.1, the above equation has no positive integer solutions (x, y, r)
with r 6= 2n and r > 2. Therefore Case 2 is also impossible.

Case 3. r2 = 2. Then r1 = 1 and we have

m2
1 − 1 = (m2 − 1)a2, m2

3 − 1 = (m2 − 1)b2, m2
2 − 1 = (m2 − 1)ab.

Obviously, (m2
1−1)(m2

3−1) = (m2
2−1)2, i.e. (x, y, z) = (m1, m2, m3) is a positive

integer solution of the diophantine equation

(x2 − 1)(z2 − 1) = (y2 − 1)2, 2 6 |xyz. (11)

Conversely, we suppose that (x, y, z) is a solution of the equation (11). Then there
is a positive integer D such that

x2 − 1 = Da2, z2 − 1 = Db2, y2 − 1 = Dab, gcd(a, b) = 1.

It follows from Lemma 2.4 that D = m2 − 1 for some positive integer, and so

x2−1 = (m2−1)a2, z2−1 = (m2−1)b2, y2−1 = (m2−1)ab, gcd(a, b) = 1.

Therefore T(x−1)/2, T(y−1)/2, T(z−1)/2 are three triangular numbers in geometric
progression with common ratio b/a. This completes the proof of Theorem 1.1. ¥

4. An Open Problem

Let D and r > 3 be positive integers. Observe that the more general equation of
the equation in Conjecture 1.1 is the following equation

x2 −Dyr = 1. (12)

If D = a2n/4 − 1, r = 2n, n > 2, where a is a positive even integer, then
(x, y) = (an/2, 1), (a2n/2 − 1, a) are two solutions to equation (12). Now the
open problem is to solve the equation (12) completely. We conjecture that there
are at most two positive integer solutions (x, y) to equation (12).

References

[1] M.A. Bennett, Rational approximation to algebraic numbers of small height:
the Diophantine equation |axn−byn| = 1, J. Reine Angew. Math. 535 (2001),
1–49.

[2] M.A. Bennett, Powers in recurrence sequences : Pell equations, Trans. Amer.
Math. Soc. 357 (2005), 1675–1691.

[3] M.A. Bennett, A Question of Sierpinski on Triangular Numbers, Integers:
Electronic Journal of Combinatorial Number Theory 5(1) (2005), A25.

[4] L.E. Dickson, History of the Theory of Numbers, Vol.II, p. 36, Carnegie Inst.,
Washington, D. C. 1920.

[5] A. Gerardin, Sphinx-Oedipe 9 (1914),75, 145–146.



Three triangular numbers contained in geometric progression 65

[6] R.K. Guy, Unsolved Problems in Number Theory, 3rd ed. Springer Verlag,
New York, 2004.

[7] S.C. Yang, B. He, A Conjecture of Sierpinski on Triangular Numbers, J. Nan-
jing. Normal. Univ. 30 (2007), 33–36.

[8] Y.G. Chen, J.H. Fang, Triangular Numbers in Geometric Progression, Inte-
gers: Electronic Journal of Combinatorial Number Theory 7 (2007), A19.

[9] J.H. Fang, Nonexistence of a Geometric Progression that contains four trian-
gular Numbers, Integers: Electronic Journal of Combinatorial Number Theory
7 (2007), A59.

[10] D.H. Lehmer, An extended theory of Lucas’ functions, Ann. Math., 31 (1930),
419–448.

[11] K. Szymiczek, L’Équation uv = w2 en Nombres Triangulaires (French), Publ.
Inst. Math. (Beograd) (N.S.) 3(17) (1963), 139–141.

[12] K. Szymiczek, The Equation (x2 − 1)(y2 − 1) = (z2 − 1)2, Eureka 35 (1972),
21–25.

[13] P.G. Walsh, An improved method for solving the family of Thue equations
X4 − 2rX2Y 2 − sY 4 = 1, Number theory for the millenium (Urbana, IL,
2000), 375–383, A.K. Peters, Natick, MA, 2002.

[14] P. Yuan, A note on the divisibility of the generalized Lucas sequences, Fi-
bonacci Quart. 40 (2002), no. 2, 153–156.

Addresses: Pingzhi Yuan: School of Mathematics, South China Normal University, Guangzhou
510631, P.R.China;
Jiagui Luo: College of Mathematics and Information Science, Zhaoqing University, Zhao-
qing 526061, P.R.China.

E-mail: mcsypz@zsu.edu.cn, Luojg62@yahoo.com.cn
Received: 9 April 2009




