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SOME EMBEDDINGS AND EQUIVALENT NORMS
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Abstract: The aim of this paper is to give some properties for the L;‘:; spaces, especially
concerning embeddings and equivalent norms based of maximal functions and local means.
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1. Introduction

G. Bourdaud [1] showed that an function f € L2 _ belongs to BMO (R™) (Bounded
Mean Oscillation) if and only if

[ i)™ @lds < oo

and
! 2
By & 1 TN I LB : 1.1
s 7 LI D) | 22 B < o0 )

where the supremum is taken over all J € Z and all balls B of R” with radius 2=
and {¥,¢;} .\ is the smooth dyadic resolution of unity in R" (see Definition 2.1
below). This gives that the important space BMO (R™) can be described by the
Littlewood-Paley decomposition. The idea of G. Bourdaud used by [7] to get the
Littlewood-Paley characterization for Campanato spaces £22 (which contain as
special case the space BMO (R™)) and their local versions L§, where [7] showed
that if 0 < A < n + 2, the Campanato space £2* coincides algebraically and
topologically with the space Lg‘g (R™), which can be obtained by replacing in (1.1),
|B,| by [Bs|M"

In this work, the focus is to give some properties for the spaces E;‘:; (s e R,
A>=0,0 < p,g < oc0), this class of function spaces is defined as the set of all
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tempered distributions f, such that

1/q

Z 2754 || F~Y (@; F f) | LP (By)||* < 00,
j=J+

||f| IM]H - |BJ\)‘/n

where the supremum is taken over all J € Z and all balls By of R™ with radius
277 and {p; }jeN0 is the smooth dyadic resolution of unity in R".

We want to present here, briefly, the contents of our work. In Section 2 we
recall the definitions of the different spaces and some necessary tools. In Section 3
our results on the embedding problems are presented. It is shown that if 0 < ¢ <
p<oo,sER, r—n/t=s—n/pand 0 < ¢q,q1 < oo, then

A, A,
Ly, »q1 Ep ; )
ifand only if 0 < ¢; < ¢ < 0o, when we did not use (directly) Bernstein’s inequality
to obtain this result. Also we will establish some embeddings between these spaces,
under some restrictions, and the Besov spaces and the Triebel-Lizorkin spaces. In
particular, for A > ng/p, 0 < p,q < 0o and s,0 € R, we have

A,s o
Ep,q + Bl,oo

Section 4 is the core of this paper when we prove an useful characterization of
E;; spaces based on so-called local means and maximal functions. Furthermore
we will give some equivalent norms of the Local approximation spaces L£§ for
—n/2 < a < 1. The proof has as a starting point the technique used by H.-Q. Bui,
M. Paluszynski and M. Taibleson, see [2] and [3], and the simplified version of

their papers given by V. S. Rychkov in [9].

2. Definitions and basic properties

As usual, R™ the n-dimensional real Euclidean space, N the collection of all nat-
ural numbers and Ny = N U {0}. The letter Z stands for the set of all integer
numbers. For a multi-index a = (a1, ..., @) € Nj, we write |a| = a1 + ...+ a;, and

Do — alel

Ozt 0z

For v € Z,z9 € R", we set B, = {y € R" : |y — x¢| < 27"}, Cp = By—2\By_1
and v+ = max {v,0}, where in the proof of each result we will use the notation B,
for all balls with the same centre xg and radius 27¥. The Euclidean scalar product
of . = (21,....,zn) and y = (Y1, ..., yn) IS given by z -y = x1y1 + ... + TnYn.

We denote by |€2| the n-dimensional Lebesgue measure of 2 C R™. For any
measurable subset 2 C R"™ the Lebesgue space LP (2), 0 < p < oo consists of all
measurable functions for which

1/p
IIfIL”(Q)II=(/f(x)I”dx> <o, 0<p<oo
Q
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and
1f [ L% ()] = sup | f (z)] < o0.
zeQ

If Q =R"™ we put L? (R™) = LP and ||f | L? (R")|| = ||f||p
By & (R™) we denote the Schwartz space of all complex-valued, infinitely dif-
ferentiable and rapidly decreasing functions on R™ and by &’ (R™) the dual space

of all tempered distributions on R™. We define the Fourier transform of a function
feS@R") by

FU) () = F(&) = (2m) 2 / e~ () dor.

n

v
Its inverse is denoted by F~'f or f. Both F and F~! are extended to the dual
Schwartz space S’ (R™) in the usual way.
If s eR,0<g<o0and Je€Z, then £; ;. is the set of all sequences {fetps g+
of complex numbers such that
1/q

YoUAT) <o

k>J+

€z 1 65,00

with the obvious modification if ¢ = co. Given two quasi-Banach spaces X and Y,
we write X — Y if X C Y and the natural embedding of X in Y is continuous.
We write X ¢ Y if there is an f such that f € X but f ¢ Y. We shall use ¢ to
denote positive constant which may differ at each appearance.

In this section we recall some definitions and some necessary tools.

Definition 2.1. Let U be a function in S (R™) satisfying 0 < ¥ (z) < 1 and
U(z)=1 for |z|<1  and V(2)=0 for |z|>2
we put @y (x) =V (2), 1 (x) =¥ (z/2) = ¥ () and
p; () =1 (277 2)  for j=2,3,...

then we have supp ¢; C {zeR": 271 o] <3-271}, ¢ (z) =1 for3-2072 <
|x] < 27 and

)

‘I’(ac)—kZ% (x)=1 forall x € R".

jz1
The system of functions {¢;} is called a smooth dyadic resolution of unity. We
define the convolution operators A; by the following:

v /
Aif=g@ixf, jEN and Agf=Txf, feS (R).
Thus we obtain the Littlewood-Paley decomposition
F=Y_A;f
Jj=0

of all f € 8" (R™) (convergence in S (R™)).
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Definition 2.2. Let s € R, J € Z, 0 <p,q < oo and Q CR". Then (; ;, (L? (2))

is the set of all sequences {fk}k>J+ of comple:c-valued Lebesgue measurable func-
tions such that

1/q

|thbizse 1 e @ @) = | X 2™ s i 2 @I" | <o,
k>J+

with the obvious modification if p = co and/or ¢ = o0

Note that when J = 0 and 2 = R" we have £ o (L? (R")) = £ (L?).
We now define the spaces C;;; which will be our main object of study.

Definition 2.3. Let s € R, A > 0 and 0 < p,q < oo. The space ﬁ;‘:; is the
collection of all f € 8" (R™) such that

1
71 MH—( Pt

where the supremum is taken over all J € Z and all balls By of R™ with radius
2=/,

1/q
{Jf}pﬁwqﬁ(m(BJ))Hq) <oo,  (2)

Note that the space L , equipped with the norm (2.1) is a quasi-Banach space.
Now we recall the deﬁmtlon of Local approximation spaces.

Definition 2.4. Let 1 < p < 400, @ > =% and N = max(—1,[a]). [a] is the

integer part of . We say f € Ly if and only if f € LY (R™) and for some
constant M = M(f), for every cube Q of length side §, there exists a polynomial
Py of degree < N (Pg =0 if N = —1) such that

1/p
P .
and
1 1/p
(WP/LH@W¢Q <M, if 6=1
Q 1QlJg
We denote by ||f | E?H the infimum of the constants M as above.

The following theorem gives a some important properties of the spaces Eé\g which
are proved in [7].

Theorem 2.5. Let s € R and —n/2 < a < 1. Then
L350 =8 and L3S =T°(L3).

Here I°(L) denotes the image of L under I° (the Riesz potential operator).
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Remark 2.6. Some import properties of the homogeneous counterpart of the
space L% are given in [7].

Now we recall the definitions of the spaces By , and F} .

Definition 2.7.

(i) Let s € R and 0 < p,q < oo. The Besov space B; , is the collection of all
f eS8 (R") such that

171 B30l = {25550 1 6 29| < 0.
(ii) Let s € R, 0 < p < o0 and 0 < q < co. The Triebel-Lizorkin space F; , is
the collection of all f € 8 (R™) such that

171 Bl = {25} 50 1 27 (£)

Here if s €¢ R, 0 < p < oo and 0 < g < oo, then LP (6;) is the set of all
sequences { fx} k>0 Of complex-valued Lebesgue measurable functions such that

€ hihiso 127 (@)]| = |[[{25 fe s 1 4

with the obvious modification if ¢ = co.
Now we recall some lemmas which are useful for us.

‘<oo.

‘<oo7
P

Lemma 2.8. Let 0 <a <1, J€Z and 0 < ¢ < co. Let {e;} be a sequences of
positive real numbers, such that

=1 < 0.

H{5k}k>J+ | ﬁg,ﬁ

k _ . .
The sequences {(5k 10k =50 ak Jej} and {ﬁk S = E;‘;k a’ kej}, are in Kg’ﬁ
with
<cl.

[0h s 1605

¢ depends only on a and q.

+ H{Uk}k>J+ | ES,J‘*’

This Lemma follows from Young’s inequality in £2 s+- The following result is
from [12, Chapter V, Theorem 5.

Lemma 2.9. Let 0 < p < oco. Then for all N,j € Ny and © € R™ we have
AT @F <2 [ a7 @I (142 - y) " dy,
RTL

where ¢ > 0 is independent of j.
The following lemma is from [9, Lemma 1].

Lemma 2.10. Let w, p € S(R™) and M > -1, an integer such that
Jon 2%p(z)de = 0 for all |a| < M. Then for any N > 0, there is a constant
ey > 0 so that

sup [t (t71) *w (2)] (14 12N < ey tMHL
z€ER™
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3. Embeddings

The aim of this section is to generalize some embeddings given in [6].

Theorem 3.1. Let0<t<p<oo,s€ER,r—nf/t=s—n/p and 0 < q,q1 < 0.

Then
A, A,
£t,q1 - ‘Cp,q

if and only if 0 < ¢1 < q < 0.

Theorem 3.2. Let s,0 e R, A >0, 0<p,q,q1 <00 and 0 <t < oo.
(i) Let 0 <t < p < oo. Then

+ A,
Biy® = Lyl
if and only if e 2 A\/q+n/t —n/p.
(ii) We have

s 0,s
N )
BP,Ql prq

if and only if 0 < g1 < ¢ < 0.
(iii) Let A > 0. Then

s+e A8
(SN I
Bpaoo Lpaq

if and only if € > \/q.
(iv) If \ 2 nq/p and e > A/q+n/t —n/p, we have

Ly3es By, 1<t< oo

(v) If X 2 nq/p and o0 € R, we have
A, o
Lye % BY .

Remark 3.3. For 1 < p,q < oo, sufficiency part of Theorem 3.2(i), when A >
nq/p, was proved in [6] (by the embedding sz)‘/ﬁn/t*"/p < Biy/an/p

3 5+ X’ 5 s+ x(p, .
ﬁz‘:(‘;). Furthermore, by the embedding Fj ¢ /max(pa) B;,ma/xr(r;%q)(p q), sufficiency

—

part of Theorem 3.2(ii)—(iii) yields

s+X/ max(p,q) A8
Iy T ~pmax(p.g)’

when was proved in [6].

Proof of Theorem 3.1. Necessity part. We suppose that ¢; > ¢. Let p € S (R")
such that supp p C {£ e R":3/4 < |¢] < 1}. For x € R™ we put

—k(s—n/p+X/a1) k
fa) =) g r (2'x).
k>0
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Due to the support properties of the function p we have for any j € Ny and any

x € R that A; f (z) = 271(77@““1% (272) and this implies

G+
1] < e 50 g o 2]

T 27
< sup2 Z W < 0.
1 +

On the other hand we observe that (B (0) is the ball centered at 0 and of ra-
dius 277)

1A f | LP (B (0))]| = 2200 |p | LP (B (0)]]

(Gj+1)'/a
—j(s+X/aq1) ‘
>ﬁ”MLP(BMO))II, Jez, j=J"
_ o—i(s+X/a1)
TG
and this leads to
2J>\(1—q/q1) _ f )\
A >0
Hf | 'C H c supQAJZ 9—iXa/a1 ili% J+1 oo i
J+1 = sup > H:oo A= 0
27 J>OJ>J J

Hence 0 < ¢; < ¢ < o0 is necessary.

Sufficiency part. If J € Z is fixed and if v € Z, let By, B, are balls of R™ with
the same centre xy and of radius 27/ and 277 respectively. We decompose R” as
the union of the sets By_1 and Cy_; = By_;—o\By_i—1, R" = By_1U(U;»0Cy_;).
Hence for all x € By, y € R” and N,j € Ny

1A, F W (1427 |z —y) ™" = 18,7 )] (1+27 Je —y]) ™" xen (v)

— 1AW O+ 2 |z —y)) ™ xm, ., ()

318 ) (2 e —y) ™ xes () -
i=0

Here x g is the characteristic function of the set E. Let d = min (1,¢, ¢), Lemma 2.9,
the above equality and Minkowski’s inequality give

A f (@) < e 2| A r () (142 [z — )7

t

< ¢ 9ind/t HAjf () (1+ 2 |z — ,|)—N | Lt (BJ,l)Hd

+e2nty HAjf(') (1427 fx =) | LH(Cy) '

i>0
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Taking the LP/?(B;)-quasi-norm, we obtain that ||A;f | L? (B,)||” can be esti-
mated by

c 2jnd/t (/
By

Ajf () +2 o) | L (le)dex>d/p

, _ N » d/p
ety ( / N () +2 o= )7 | L (Cy) dx>
i>0 \WBJ
= (I},J)d + Z (I?,J—i)d' (3.1)
i>0

We first estimate jl ;- The Minkowski inequality provides

1/t
. , _N t
1L, <c2nlt ( Lo ase - )| dy>
J—1
<o 2 || A1 | LE (B = ¢ 2079 A f | T (Byo)|,
where we used

H(1+2j"_y|)_N | Lp(BJ)H < H(1+21‘|.|)‘N < 27in/p,

p

for any Np > n. Next we are going to estimate the second term in (31) Note
that if x € By and y € Cy_;, we have |z —y| > |y — xo| — |2 — 20| > 277, which
gives (with N = Ny + N»)

(1420 |z —y) " <270V (1427 |z —y|)
<M (142 2 —y)) 2,

where we used 2(7=7)N < 1, (because of j > J*). For any Nap > n we have

<c 9—in/p.

a2 1 ] < o 27,

The Minkowski inequality and the last estimate give

1/t
St : _N t
[y S e/ </c A @I |0+2 =y 27 (8 dy)
J—1

< ¢ 9in(1/t=1/p)=iNy

|Ajf | L (Br-i-2)||
= ¢ U TINUIAF | L (Byoia) ||

Consequently for any J € Z and any j > JT there is a constant ¢ > 0 independent
of J and j such that

1A F | L (By)|* < e 29409 S~ 9= aN A £ | L (By)||”.

i>—1
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Applying the 62‘; 4,7+ -quasi-norm and using the embedding
o (i—i—ayt (LP (Byoi2)) = &gy (L7 (Bj-i—2)), i€NoU{-1},  (3.2)
we get that the £5 ;, (L? (By))-quasi-norm of A; f is bounded by

1/d

d
iF s riay |y (L (Baico))|

c Z 27i+dN1

i>—1

1/d

Z 2i+d(,\/q—1vl)

i>—1

—JX A,
Sc2 /qu|‘Ct,qT1

where we used 631 g+ = E; J+- In view of the equality |BJ|>‘/” =2-J*

that

, it follows
1/d
Z 9itd(A/q—N1)

i>—1

t,q1

I 1eyall<el|r 122

We conclude the desired estimate by taking Ny any integer > \/q. |

Proof of Theorem 3.2. Proof of (i). Necessity part. Let p be the function de-
fined in Theorem 3.1. For x € R™ we put

f(x) _ Z 2—k(s+'y—n/t)p (21%) ]

k>0

It is easy to see that

IF 1 B57[| = e

t,q

‘{2_j(7_5)}, \ EqH <00 = e<vy
720
and .

1A, f | LP (B (0))[| = ¢ 2790Ha=n/tan/e) o j ez, j > JF
and this leads to

||f | E)"SHq > ¢ sup oA Z 9—i(y—n/t+n/p)q > ¢ sup 9—J(y—n/t+n/p=A/a)q
P J ey J>0

We finish the proof of the necessity part by taking e <y <n/t —n/p+ A\/q.

Sufficiency part. By the embeddings

s+e s+A/q+n/t—n/p s+A/q
Bt7q c—>Bt7q {_>Bp,q ’

it is sufficient to prove that
s+A/q A8
Byt = Ly
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For J < 0 we have

2 (A5 Yoy |6 (L7 (Ba))|| < e 2 30270 a1

>0

)

<clf 1B l" <e|r i

by the embedding B;,Jgk/q — B, ,. For J >0 we have

2 {851 5 | Gy (L7 (Ba))||" < e 2 ST 2 M ailer N, o
>0

q
+A q
=C H ’ | B;’; / ‘

)

this proves (i).
Proof of (ii). Necessity part. We suppose that g1 > ¢. Let p be the function
defined in Theorem 3.1. We put

—k(s=n/p) n
g(z) = Wp (2%z), zeR"
k>0

It is not difficult to see that

_ 1
g1 pqu =c {(j+1)1/q }j_>0 | £g, || < o0
and »
1859 | 27 By )| > ¢ 2o, TEZ, j2 T
and this leads to
q
lo 1 £550" > ¢ 5 = o0
7=0

Hence 0 < ¢; < ¢ < o0 is necessary.

Sufficiency part. If J <0, then

|85 s 16 (P B < eSS 2018115 < £ 1 By |°
720

and if J > 0 we get

€85 g 10500 @ B < D2 1A 1 < e[ 1By

ji=J

Proof of (iii). Is analogous to the proof of the sufficiency part of (i).
Proof of (iv). Let f be a function like in proof of (i). Note that for all j € Ny

1A £ | L2 (B < |A;f|l, = ¢ 277 Frmn/tenip),
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Hence the proof of £
n/p+Aqg<~vy<e.
Proof of (v). Define

;‘;; S ijf can be obtained by taking v satisfying n/t —

n

: k—e—4
o) =y rbree [ e 2

X
k>0 v=1 v

where € = log, v/n, 8 € R satisfying log, 13 < 544 < log, 15 and « will be chosen
later. It follows that

JAf(f) = Z 277 H X[—2k—c—a gi—e—a] (Eu — 2k_6+ﬂ) = Z 27" g ().

k>0 v=1 k>0

We set C (29) = {z € R" : |z, — (20),| < 27/,v = 1,2,...,n}. The embedding
By C Cy(xp), yields

n

i gk —c+B sin 2kF—€—4.
e v | e (my)

n p 1/p
< / dz,

n (o) 42 1/p
< ¢ 2Fn H / dx, = ¢ 2mk=J/p)
v=1" (z0),—27"

The last estimate and the fact that the function g is supported in {£ € R” :
(27 —274) - 28 < ¢ < (27 +274) - 27} give

v=1

sin 2F—¢~4z,

Ty

LAY < 9 =na/p) N gils—ytn)a.
[£12550" < e sup 2

jzJt

Notice that A — ng/p > 0, so by taking v satisfy v > max (n,s +n—n/p+ \/q),
we get f € E;}:;. As above we obtain

n . ) —e—
i gi—ets sin2i7ed
[Ter =

£ | BY | = ¢ sup2/t==
’ §>0 v

v=1 1

n
sup 9i(o—y+n)
1520

=cC

Which completes the proof of theorem. |

Since || =2 H1 = oo, then f ¢ BY .

Remark 3.4. Note that, (iv) is valid for all 0 < ¢ < 1, but under this assumption
(v) is a more general result than (iv).
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4. Equivalent quasi-norms

In order to formulate the main result of this paper, let us consider kg, k € S (R™)
and S > —1 an integer such that for an € > 0

A
ko (f)’ >0 for |€] < 2e (4.1)
N €
k(f)’ >0 for 3 < €] < 2¢ (4.2)
and
/ 2%k (r)dz =0 for any |af < S. (4.3)

Here (4.1) and (4.2) are Tauberian conditions, while (4.3) are moment conditions
on k. We recall the notation

ke(z) =tk (t7'2), kj(2) = ko (z), for t>0and j > 1

For any a > 0, f € ' (R") and = € B; we denote (Peetre’s maximal functions)

AL ey |k]*f(y)‘ L OO R, ‘k]*f(y” .
EIRA i A e ) I KA Y (e I
(4.4)
and
A;’af ((E) = sup ‘Ajf(y” . f( ) _ |Ajf(y)| ] € No.

yern (1+27 [z —yl) vebs L+ 27 [z —y)"

Usually k; * f is called local mean.
We are able now to state the main result of this paper.

Theorem 4.1. Let A >0, 0 < p,q < 00, s < S+1 and a > max (n/p,\/q). Then

1712l —( ot

1/q
k* af}j>J+ ‘ g;,ﬁ (Lp (BJ))Hq> (4-5>

and

1 . 1/q
s
||f | E;‘:q | = (S};l? W { f}]> J+ | Eq J+ ( BJ))H > (4'6)

are equivalent quasi-norms in E;"g
,

Theorem 4.2. Let A\ >0,0<p,g<o0,s<S+1—A/q and a>n/p. Then

1 7\ 1/a
Hfl p,qH ( |B |>\/n ) (4.7)

is an equivalent quasi-norm in E;;g

(50} Ve (0 (B)
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Remark 4.3. In view of the inequalities

ki f (@) <k°f (2)
and

kj* f () <KJ5f (),

for any f € S’ (R") and any & € By, it follows from Theorem 4.1 that, in the case
of a > max (n/p, A\/q), (4.7) is a simple consequence of (4.5) and (4.6).

/
Corollary 4.4. Let —n/2 < a <1 and a > 0. Then Hf | [,g?‘;"’OH (in case of

1 1
a>max (n/2,n/2+ ), ||f | EE%JF”’OH and Hf | Eg?j"’OH (in case of a > n/2
and S > —1+n/2+ «a) are equivalent norms in LS.

The proof of Corollary 4.4 is immediate because Lgf“;”” = LY for any —n/2 <

a < 1.
To begin the proof of theorems, let us give some auxiliary results.
Let o, pp € S (R™) be two positive functions on R™ such that

() =1 if <2 and  supppoC{ECR™:[g| <4} (48)

and

p() =1 if 1/2<[¢] <2 and suppp C{EeR™:1/4 < |¢| < 4}.
(4.9)
For any j > 1 and { € R™ we define p; (§) = p (2*]'5).
The results below will play a key role in the proof of Theorems 4.1 and 4.2.

Theorem 4.5. Let s e R, A >0, 0 < p,q < 0o and a > max (n/p,\/q). Then

1/q
s 1 *, S q
1713l = (ngw {877} oy | Gre (17 (B))| ) . (10)

is an equivalent quasi-norm in ,CI/}’;.
;

Theorem 4.6. Let se R, A >0, 0 < p,q < o0 and a > n/p. Then

a\ 1/
) , (4.11)

7122 = (sup

L PN s (L
By |B.J\/\/n {AJ’Jf}J?ﬁ Mq’ﬁ (L7 (B.))

is an equivalent quasi-norm in /jz’};;.

Theorem 4.7. Let s € R, A >0, 0 < p,q < co and under the above assumptions
on the functions ug and u then
q> 1/q

v f}j>J+ | €55+ (L7 (BJ))

1
A, —
133l = (s e

is an equivalent quasi-norm in E;;(j.
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Proof of Theorem 4.5. Step 1. It is easy to see that for any f € S (R™) and
any x € By we have

1A f ()] < APf ().

This shows that the right-hand side in (2.1) is less than the right-hand side
n (4.10).
Step 2. Let f € Ep 7> We want to prove that the quasi-norm in (4.10) can be
estimated by the quasi-norm in (2.1). From Lemma 2.9, we have for any y € R"
and j € Ny

1/p
27 |Af (y)| < e (/Rn A F P (1+27]y — =) dz) : (4.12)

Let d = min (1,p,q). By an argument similar to the proof of Theorem 3.1, we
have

Af() I

m | LP (Bj-1)

2-and/n | AL f ()] < ¢ H

d

f) P(C
HJ—Da | LP (Cy—s)

d
I1 y +Z IJQ,JZy .
120

(4.13)

We set

I} 2,
7% (z) = sup % I (2) = sup #y)a
’ yerr (1427 [z —y|) ’ yern (1427 [z —y))

By using the elementary inequality
(T+2y—2)) "< (1+27jy—=|)* (1+27|z—2])" ", (4.14)

for any x,y, z in R™, we get that 1w v is bounded by

[EE=xr=
cllasseya+2iie— )T B

Take the sup over y € R™, the LP (Bj)-quasi-norm and using that the function
x— (1+]z])" " is in L' (since a > n/p) we get
1/p
dz)
1

|51 or B < e (/ A P || +27 |- = 2) ™
Bj_1

e 2P |Af | LP (B -
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Next we are going to estimate the second term on the right-hand side of (4.13).
. R C)
By (4.14) we can estimate w by

Cc

Ajf() (X427 |w— )" | LP(Cy)

Hence we obtain

P
Cr_i

<o o(J—j—i)a—Jn/p HAjf | LP (By_i—2)||
< o2 Gn ) A £ | 1P (B i)

1/p
AP |2 =) 2 8)| dz>

where have we used |z — 2| > |2 — xo| — |z — 20| = 2077 (for any z € Cy_; and
any x € By) and 20~7)("/P=a) < 1. Consequently, for any J € Z and any j > J+
there is a constant ¢ > 0 independent of J and j such that

a1 L (B <e S 27 A f | L (Byoioo)]|” (4.15)

i>—1

Applying the 527d7!]+—quasi-norm in (4.15) and using the embedding (3.2), we get
that the £2 ;. (L? (B,))-quasi-norm of 2724A% f is bounded by

a\L/d
itd(\/q—a) {(J—i—Q)A/q ‘ } s » ,
<¢>z:12 ‘ ? 831 1 i reiaye | =iy (B (Brmi2))
1/d
A,s itd(\/q—a
chf‘Lp,qH Z 2t d0/a=e)
i>—1

We conclude the desired estimate using {2i+d()‘/q"‘)} € {; and the equation
1

i>—
|By| 7M™ =22, [ |

Proof of Theorem 4.6. Step 1. It is easy to see that for any f € S’ (R™) and
any x € By we have

1A f (@) < AL f (@)
This shows that the right-hand side in (2.1) is less than the right-hand side
in (4.11).
Step 2. We follow the argument in Step 2 of the proof of Theorem 4.5. We set
Y I ; (y) “are 2 ()

2% (2) = sup . =, 7% (x) = sup —2o————.
7 veB; (1+27 ]z —y|) B veB; (1+27 [z —y|)
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Letting a = a + N in (4.12) we obtain

I3 | LP (By)

<|ye e )| <commiar @)

Since |y — z| > 2!~/ (for any z € C;_; and any y € By) and 2=V < 1, we get

SN QY (1 gy )

NA+2y—a2)) (1+2 |z —z)) "

(1427 |y —2|) <2
<2”

This implies

Hence it follows that

b5 | 17 (By) A 1 L7 (Beica)

<c2 (142 )T

<2 N=In/e A f | P (BJ—i72)|| -

1/d

{8530}, Voo @ @) <clr el | 30 2o

i>—1

9JA/q

where d = min (1, p, q). Then we conclude the desired estimate by taking N any
integer > \/q and the fact that |B,|~*/" = 2*J. [ ]

Proof of Theorem 4.7. Let {¢;} be a smooth partition of unity from Defini-
tion 2.1 and let Hf | E;};g“v be the norm from Definition 2.3. Since for any j € Ny
clearly p; (§) =1 on supp ¢; we get

Aif @) =i f@) = [ &S -y weB.

Let d = min (1, p,q). By the same arguments as in the proof of Theorem 3.1, we
obtain

1A f [ LP (BoI* <e > 27

iz—1

d
P(By_i- 2)H ;

where N € N and ¢ > 0 is independent of J and j. Taking the EZC/I 4.J+-quasi-norm
d
we get that H{Ajf}j>‘]+ | €5 7+ (LP (BJ))H can be estimated by

d

—1 v s
e S (e} (0 (Brica)
i>—1 -

<e2 M| r Lyl
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where have we used the embedding (3.2) and N sufficiently large. Then we con-

clude the desired estimate by the fact that |B J|_)\/ " = 2M . To prove the reverse
inequality we note that due the support properties of the functions u; we have

k=j+3

Z 1221 * Apf.

_]2

As above and by Lemma 2.8, we obtain the desired estimate. Consequently,
|/ | £p,qH and || f | £ Hv are equivalent. |

Proof of Theorem 4.1. The idea of the proof is from V. S. Rychkov [9].
Step 1. Take any pair of functions ¢ and ¢ € S (R™), so that for an £ > 0,

do (5)‘ S0 for || <22 (4.16)
A £
‘(b(ﬁ)‘ >0 for 3 < €] < 2¢, (4.17)

and define for any a > 0 the functions ¢ f as in (4.4). Then there is a constant
¢ > 0 such that for any f € S’ (R™)

s li
13l < (s

To prove (4.18) we estimate {k‘;’af}Pﬁ in £ ;, (LP (By))-quasi-norm, when

1/q
{67°F} o pe [ Lg.0+ (LF B.]))Hq> . (4.18)

we consider the cases J > 1 (or J < 0and j > 1) and (J < 0 and j = 0) separately.
This estimate can be obtained by the same arguments as in [9].

Step 2. We will prove in this step that there is a constant ¢ > 0 such that for
any f € &' (R")

117 "
71 2pall < ellsi2pal™ (4.19)
Analogously to (4.1), (4.2) find two functions A, ¢ € S (R™), so that for an € > 0

suppjli Cc{EeR": €] < 2}, suppiAb C{€eR":g/2 < || <2}

and for all f € &' (R") and j € Ny

F=Ajx(ko);« f+ > thm sk * f.

m2j+1

Hence

kjox f=Njx (ko) # ks fot D ko oy ok ki % f

m>j+1
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By an argument similar to the [9] we deduce that for all f € S’ (R"), € By and
JjEN

*,Q T q— . km "
(kj) f(SU)) <ec Z 2(] m)N7+mn/ | T: f(Z)l aTdZ7
2z e (L 27— 2]
where 0 < r < oo, N € N can be still be taken arbitrarily large and ¢ > 0 is
independent of j. Together with the corresponding estimate for k;“ f. Writing for

any m = j

ko x f s
/Rn (1+2m|xz|)“’“dz_/3,,l( LY

i>0

/ (-)d=. (4.20)
Cyr_i

;m) < r < p, we make such

a choice and fix r for the rest of the proof. Now the function z —

It possible to choose r so that nmax (1 1

1 .

aH=n

in L' and we may use the majorant property for the Hardy-Littlewood maximal
operator M, see E. M. Stein and G. Weiss [11],
1

. 1
<|g| *(H_)M) @< |

It follows that the right-hand side of (4.20) is bounded by

M (gl @)

27 M (ko f7 Xy ) () + Y 270t | s f | LT (B i)

i>0
where we have used |z — z| > |z — 29| — |# — xo| = 2077 and 20m=/)(n=ar) <1,

Since the Hardy-Littlewood maximal operator M maps L? (R™) into L” (R™) for
1 < p < o0 and since

o £ 1 L7 (By—ica)l| < € 20700700 o s £ LP (Byic)
we get by Lemma 2.8 and the embedding (3.2) (where d = min (1,¢q/7))
d
H{kj’af}j;pr | é;,J* (Lp (Bl))H

o r ) a/r
- H{(kj’ D) Yz Vi (Lp/ (B"))H

< C( Z 27i+d(ar7n(17r/p))

i>—1

s s gimaye | e (27 (Bymime)

dr ) Lr

<ec 2—>\Jd/q {2—i+d(a—n(1/r—1/p)—)\/q)} | Vi <Hf | EA,SHI/)d.
= -1 P4
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Whence, multiplying through by 2*/4/4, using |BJ|_A/" = 2™ and taking the

sup over all J € Z and all balls By of R” with radius 277, we get the estimate
(4.19) by the fact that {Q*i*d@*n(l/“l/md/q)} e,

i>—1
Step 3. We will prove in this step that for all f € &’ (R™) the following estimates
are true:

I 1l <ellr eyl (4.21)
I 1epsll<ells 1yl (4.22)
Let po and p € S (R™) be two positive functions on R” satisfying (4.8) and (4.9).

A A
Let ¢g = po and ¢ = p. The inequality in (4.21) is proved by the chain of the
estimates

11631 < ( p Wn

<c s

< ch | 5233

1/q
{051} o Voge (7 BJ>>]\q>

1/q
e €0 * s 1 e Bqu)

where the first inequality is (4.18), see Step 1, the second inequality is (4.19) (with
¢ and ¢g instead of k and ko), see Step 2, and finally the last inequality follows
by Theorem 4.7. The proof of (4.22) is by the following chain

E/\,S <
13l < (s
<ellf el <els 1)

where the first inequality is an obvious consequence of (4.10), the second inequality
is (4.18), see Step 1, with the roles of kg and k respectively ¢o and ¢ interchanged,
and finally the last inequality is (4.19), see Step 2. Hence the theorem is proved.

|

1/q
{¢* af}]>J+ | fq J+ ( BJ))Hq>

||//

Proof of Theorem 4.2. By Theorem 4.6 and the inequalities

lriepsll<ellr iyl <elricy;

we need only to prove that there is a constant ¢ > 0 such that

H//I

11l < e (swp— N (4.23)
pall SO B -

for any f € &’ (R") and any pair of functions ¢y and ¢ € S (R™), satisfy (4.16)
and (4.17).

{¢;,’§f}j>ﬁ | €55+ (L (BJ))
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Define for any a > 0 the functions ¢7 f as in (4.4). It follows from (4.16) and
(4.17) that there exist two functions ®,¢ € S (R™) so that

A
supp® C {{ e R™ : |§| < 2¢}

N .
supp ) C {EER”:;< €] <26’}

O+ o (27™¢) p (27m¢) =1, ¢€EeR”

m>1

and so for any f € &' (R")
F=0xdoxf+ D thm*bmf.

m>=1

Consequently, we have for any j € Ny

kjx f =i x @k ok f+ > k%t * G * .

m>1
Let &
55 f (2) = sup P Umcom 2Ll sy
" yes, (1+27]z—y|)
and

ki x®
k;,;of(x): sup | j* *QZ)O*f(?i)'
" veB, (L+27[z—y|)

We are going now to estimate {k;’f’“f} - in ¢; ;4 (L? (By))-quasi-norm.
JjzJ ’

The case J > 1 (or J <0 and j > 1).
First, let m > j. Writing for any v € R™ and any m > j

kj # Y (1) = 277 (k % hgi—m ) (270) ,
we get by Lemma 2.10, that for any integer K > —1 and any M > 0 there is a
constant ¢ > 0 independent of j and m

|k w ( )‘ 2(j7m)(K+1)+jn R
ik, ()| K¢ ———,  z e R™
! (1+ 27 |2))™

This implies

[k % Wy % b * f ()] < € 207 EHD +J”/ | £ ()] (1427 [y —2)) "

Z/C“ (--)dz

_ ¢ 9l-m)(K+1)+in / (-)dz+
By-1 i>0

= ¢ U—m)(E+1)+jn J 7m ) + Z DQ’J im
120

(4.24)
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First, we note that

|G £ (R)] < (1427 v — R o5 f (v), (4.25)
for all v,h € By and all d > 0. Using the elementary estimate
Q+2" |z —2)* <@ +2" |z —y))* 1 +2" ]y —2])° (4.26)
< 22m=Da (1 4+ 27 |z — y[)* (1427 |y — 2|)° '

we get by (4.25) for z,x,a,J — 1 (in place of h,v,d, J, respectively) and (4.26)

4 -M
Djl',J,m (y) 22(m Da (1 + 2J |JJ - yl) m J 1 ( )/ (1 + 27 |h|)a dh
]Rn
< e 220 Demin (14 99 | —y|) o1, f (), (4.27)
where we have used M > a + n. By using (4.25) for z,x,a,J —i—2 (in place
of h,v,d, J, respectively), |y —z| > |z — xo| — |y — x| = 207 for any y € By,

z € Cyoiy fgn (1427 \z|)_M+a+N dz < ¢ 279" for any N € N and any M >
a+ N +n and since 2(/=)N 1, we obtain

D2J 1m() C22(m j)a<1+2j‘x7y|) sz2f()
x/ (1+2y—2))"""dz (4.28)
Cy—i
<C22(m JJa—iN=jn (1+2J ‘xin mJ i—2 (SU)

In (4.27) and (4.28) multiplying through by (1 + 2 |o — y|) ~“, and taking the sup
over y € By we get for any integer K > 2a+s, m>j > J*t and any x € By

*,a m)(s ’L+
k_j:,me( r)<ec 20—m)(s+1) Z 2" N¢mJ i Qf( ),

iz—1

Let now m < j. Writing for any v € R™ and any m < j

iy % o (1) = 277 (kg %) (270)

we get by Lemma 2.10, that for any M > 0 there is a constant ¢ > 0 independent
of j and m
9(m—j)(S+1)+mn
lkj *xm (2)| K¢ —————, z € R™
S (e

In part for technical reasons, we prove this case in two separate cases:

Case 1: m < Jt < j. We have only case J > 1 needs to be verified. As
n (4.24), we can get for all y € B

[Bj o Y * o # f ()] < ¢ 20D ETDEmn (DL W)+ D2 i (1)
120
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Letting j = m,JJ = m in the estimate of D1 Jm and Dj J—im in the case m > j,

we can get for any N € N
f ) e 2UmmET 7 9N i of (@),

*,a
kj,Jym
iz—1

Case 2: J* < m < j. Asin Case 1, but we use the decomposition as in (4.24),

we can get for any N € N

*,a —it
K gmf (@) <c 2(m=9)(5+1) Z 27 Nt o f ().
iz—1

Hence for all f € S’ (R"), all j>.J>1(or J<Oandj>1)andall N € N

d

> kG f | LP(By)

m2=1

it m— ¢
<c Z 9N Z 2(m=)(S+1)d HQsmm i—of | LP (Bi—i—2)||
i>—1 m<JTg
d 9(—m)(s+1)d  jf m > j
+ > e (Bmfz)H X{ 2m=D(SHDd if gt <m0
m>J+

where d = min (1,p, q) and ¢ > 0 is independent of J and j. By Lemma 2.8, the

above expression in 62’/1 4.7+-quasi-norm is dominated by

. d
o 5 (165 1 2 B

i>—1
d
+ ’{aﬁ” ol f s (L (Broioa)) )

| €55+ (L7 (By-i-2))

q> d/q

{¢*7a }j>J+ | ézw” (Lp (BJ))

d

—itanN
<c§ 27"
= szQf Jsat

i>—1

< ¢ 2 Mdla {QHd(A/q—N)} 0

i>—1

{9350} 0 100 (7 (B2)

1
x [ sup ————
(BJ 1B, |M"

e 27MY | sup
B ‘le

JiJ

q> d/q

A/n
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where we used

ot} 0 Voo @ Bri)

= [lossicas | £7 (Byia)} o | G

the embedding (3.2) and N any integer > \/q.
We are going now to estimate {k;’jof}pﬁ in €2 ;. (L? (By))-quasi-norm.

We get by Lemma 2.10, that for any M > 0 there is a constant ¢ > 0 independent
of j

9—3(S+1)+jn

(1+27z])

As in case m > j, we can write

|kj o« @ % ¢o * f (y)] < ¢ 277 (5H)Hn D]1-$O +ZDJ —io W) | y € By.

120

So by a simple modification of arguments used in case m > j, we can get for all
jzJzl(orJ<0Oandj>1)andall NeN

d ' ‘
’ jJOf | L? (B )H < ¢ 277d(S+D) Z 2—z+d1v‘

i>—1
where d = min (1, p). In view of the inequalities
i o 2780 <
forJ>1orJ<0andi>—(J+2), and
|65 a1 27 B)| < |50 127 (B,

for J <0andi < —(J+2), it follows that forall j > J > 1 (or J <0 and j > 1),
‘ ki50f | LP (By) H is bounded by

c 27jd(S+1) Z 272’

i>—1

d
b5 o | 17 (B)||

P (B-(it2) ||+

d
P (Bmin(J,—(i+2))) H

Since for all » < 0,0 < ¢ < 0o and A, [ >

el [ qup ——
S B, |BJ|)\/n

;| L7 (By)

q> /a  (4.29)

{0550) . 1o (2 (B))
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we get

H Kal} 1 <LP<BJ>>H

I

<c 2J+(s—s—1) Z z—ﬁdN—dmin(J,—(iJrz))A/q

i>—1

w [ sup ——— {¢’fvaf} |65 . (L7 (By)) N
By By M VT e e

<ec 2J+(S—S—1)—min(J,0)A/q
X

1/d

JJOf|L (Bs) H } Ms/dﬁ
>Jt

1 7\ 1/4
—m || 195 ¢, (LP (B
X <SEP ‘B |>\/n {qﬁ]“]f}j>J+ | Jt ( ( J)) ) ,

where we used N any integer > A/q. Hence, we get for all f € &' (R™) and all
balls By (J > 1or (J<0andj>1))

1
|BJ\)‘/"’1

{kj,’j }.>J+ |65 50 (LP (BJ))H < C(2J+(3—5_1)+<J—min<J,0))A/q I 1)
Jz

. ( 1 q>1/q
sup ————— .
1B,

Since s < S+1—2\/q, then the proof of case J > 1 (or J < 0 and j > 1) is complete.

{0550} . 100 (2 (B))

The case J < 0 and j=0.
In this case we did not use (4.3) to obtain the desired estimate, so by the fact

A
that D%y (0) = 0 for any o € N", we can get for any m > 1, all € B; and any
N,KeN

* —m —it
kO:f},mf( ) <c2 (K+1) Z 2 N(bmJ i—2 ( )7
i>—1

where ¢ > 0 is independent of J and m. By the estimate

c n
|k0*¢(2')|<ma zeR" M eN

and by a simple modification of arguments used above we can get for all x € By

and all N ¢ N .
koG] ( 0221N¢0J22()

iz—1
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where ¢ > 0 is independent of J. By the embedding LP (Bj_;_2) — LP? (By),
(4.29) and by taking K any integer > max (—s — 1,0) and N any integer > \/g,
we obtain

d .
’ kéjf | LP (BJ)H <c Z g—md(K+1) Z g—itdN ‘
m2=0

i>—1

d
Gty iof | L7 (BJ—z'—2)H

<2 M/ {2i+d()\/q—N)} A

i—1

% {2—md(K+1+s)} | 6

m=0

{058} 1w (17 (B))

Jjz
q\ ¥4
b

where d = min (1,p). Multiplying through by 27*¢/¢ and using |BJ|7)\/n = 27X
we get the desired estimate.

The estimate (4.23) is now as a simple consequence of cases (J > 1 (or J <0
and j > 1)) and (J < 0 and j = 0).

The proof of Theorem 4.2 is thus complete. |

q> d/q

1
X | sup ————
<BJ 1B M

< e 27| sup L
By |BJ|

A/n

X

{0550} 1 hse (17 (B2))

iz
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