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HOMOTOPY MINIMAL PERIODS OF HOLOMORPHIC MAPS
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Abstract: In this paper we study the minimal periods on a holomorphic map which are pre-
served by any of its deformation considering separately the case of continuous and holomorphic
homotopy. A complete description of the set of such minimal periods for holomorphic self-map of
a compact Riemann surface is given. It shows that a nature of answer depends on the geometry
of the surface distinguishing the parabolic case of the Riemann sphere, elliptic case of tori and
the hyperbolic case of a surface of genus > 2.
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1. Introduction and statement of the results

The set of minimal periods Per(f) is one of the classical invariant in the study
the of dynamical properties of a map f . But it is not stable in general, i.e.
this set usually changes if, for example, we perturb the map, in particular is not
preserved by a homotopy of the map. It is difficult to analyze this set by tools of
algebraic topology. To avoid this difficulty the set of homotopy minimal periods,
i.e. minimal periods which are preserved by any homotopy, has been studied by
many authors (cf. [1], [15], [12], and [13, Chapt. VI] for an exposition of known
results). On the other hand it is known that holomorphic maps of compact complex
manifolds have many periodic points and large sets of minimal periods (see [2],[8]).
Consequently, it is a natural to ask which minimal periods of a holomorphic map
f are preserved by a holomorphic homotopy of f , and which of them are preserved
by any continuous deformation of f .

In this note we answer this question for the holomorphic self–maps of a compact
Riemann surface, i.e. compact two dimensional oriented manifold with a complex
structure. The answer is complete for the case of the Riemann sphere and complex
tori. For holomorphic maps of a hyperbolic surface our description only does not
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round off with a final conclusion for the maximal period of a holomorphic map,
i.e. a conformal automorphism when this automorphism is not free. Proofs are
elementary and essentially based on already known facts. On the other hand
as a consequence of our approach we get also elementary proofs of statements
on dynamics of surface homeomorphisms which originally were studied by more
complicated tools ([3], [10]).

First we introduce the notation. Let X be a complex, closed manifold. We
define the following sets. Let Map(X; X), or simply Map(X), denote the set of
all continuous self maps of X, Hol(X; X) or shortly Hol(X) denote the set of all
holomorphic self–maps of X, and [X, X] denote the set of all homotopy classes of
self maps of X, i.e. [X, X] = Map(X)/ ∼, where ∼ is the homotopy equivalence
relation. In fact there is a bijection of [X,X] with π0(Map(X)). Let next [X, X]H
denote the set of all homotopy holomorphic classes of holomorphic self maps of X.

Let f, g ∈ Hol(X) then f ≈ g if there exists a continuous one–parameter family
ht ∈ Hol(X) for all t ∈ [0, 1] such that h0 = f and h1 = g. [X, X]H = Hol(X)/ ≈
denotes the set of all homotopy holomorphic classes of holomorphic self maps of
X. In fact there is a bijection of [X,X]H with π0(Hol(X)).

Let Per(f) be the set of minimal periods of a map f . For f ∈ Hol(X) we define

HPer(f) =
⋂

g∼f

Per(g), (1)

the set of the homotopy minimal periods (shortly homotopy periods) of f .
We define

HPerH(f) =
⋂

g∼f
g∈Hol(X)

Per(g), (2)

the set of homotopy holomorphic minimal periods (shortly homotopy holomorphic
periods) of f . We note that here the homotopy is through continuous maps. Of
course from the definitions it follows that

HPer(f) ⊂ HPerH(f),

because the intersection is taken over a smaller family in the definition of HPerH(f).
We remark that in general we have

HPer(f)  HPerH(f). (3)

Take X = CP (1) = S2 = C∞. It is known that every holomorphic self map of S2

is a rational function. Then (3) is satisfied for any holomorphic self map f of S2 of
degree > 2. Indeed we will show in Theorem 1 that HPer(f) = {1}. On the other
hand from the Baker’s Theorem (see [2] or [8]) it follows that Per(f) ⊃ N \ {2, 3}
for any such map. Consequently

{1} = Per(f)  N \ {2, 3} ⊂ HPerH(f).
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We define
HPerH(f) =

⋂

g≈f
g∈Hol(X)

Per(g), (4)

the set of holomorphic homotopic minimal periods (shortly holomorphic homotopy
periods) of f . We note that here the homotopy is through holomorphic maps.
Again from the definitions it follows that

HPerH(f) ⊂ HPerH(f).

Indeed f ≈ g implies that f ∼ g. Consequently for a given f ∈ Hol(X) the
intersection in this last definition is over a smaller family than in the previous
definition, where the second equality only has meaning if g ∈ Hol(X).

Our main results can be summarized in the next six theorems (Theorems 1, 2,
4, 7, 8 and 10).

Theorem 1. Let S2 be the Riemann sphere and let f : S2 → S2 be a holomorphic
map. Then HPer(f) = {1}.
Theorem 1 is proved in Section 2.

Now we turn to the description of HPerH(f) and HPerH(f) for f ∈ Hol(S2).
It is known that every f ∈ Hol(S2) is a rational function, i.e.

f(x) = R(z) = P (z)/Q(z),

with P, Q ∈ C[z] polynomials of degrees dP and dQ respectively (see Section 2.2
of [2]). The degree of the rational function R(z) is defined as d(R) = max{dP , dQ}.
Of course if R(z) is constant, then its degree is zero. Always we will assume that
P and Q are relatively prime, i.e. that P and Q do not have common zeros.

A rational function R : C∞ → C∞ is a d(R)–fold covering map. Consequently
its topological degree satisfies deg(R) = d(R), for more details see again Section 2.2
of [2]. This means that for all w ∈ C∞ the equation R(z) = w has exactly d(R)
solutions.

Theorem 2. Let let f : S2 → S2 be a holomorphic map. Then

HPerH(f) = HPerH(f) =





{1} if deg(f) = 0, 1,
N \ {2, 3} if deg(f) = 2,
N \ {2} if deg(f) = 3, 4,
N if deg(f) > 5.

Theorem 2 is proved in Section 3.
Now we turn to study the periods of the holomorphic self maps of the 2–

dimensional torus T2 with an arbitrary complex structure. First we recall the
notion of linearization of a self map of the torus (cf [13]).

Suppose that the torus T2 is defined as R2/Γ, where Γ is a discrete subgroup of
R2 isomorphic to Z⊕Z. For a continuous map f : T2 → T2 let f] : π1(T2) → π1(T2)
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with π1(T2) = Z2 be the induced homomorphism. A choice of a basis in Γ ≡ Z2

defines an integral 2× 2 matrix of f], denoted by Af , and called the linearization
matrix of f . The matrix Af is unique up to conjugation by an unimodular matrix
(a choice of a basis).

The linear map induced by matrix Af preserves the lattice Γ ≡ Z2 ⊂ R2. Thus
induces a homomorphism [Af ] : T2 → T2 defined as the factor of the homomor-
phism (linear map) Af : R2 → R2. By definition Af depends only on the class [f ]
in Map(T2) (see [13] for more details).

It is known that the topological torus T2 posses infinitely many non-equivalent
holomorphic structures. In more detail, let γ1, γ2 be linearly independent (over
R) vectors of C and Γ ⊂ C be the lattice Γ = Zγ1 ⊕ Zγ2. Then Γ is a discrete
subgroup of C and the quotient space C/Γ is a one dimensional (over C complex
manifold which is obviously homeomorphic to T2. p : C→ C/Γ is a covering map
which is holomorphic by the definition of the complex structure in C/Γ.

Furthermore the tori C/Γ1 and C/Γ1 are equivalent as complex manifolds iff Γ1

and Γ2 are conjugated over C, i.e. there exists a C-linear automorphism F : C→ C
such that Γ2 = FΓ1F

−1. Note also that F ∈ Aut(C) = C \ {0} is a R-linear map
of R2 which commutes with ı thus can be identified with a 2× 2 real matrix of the

form
[

a b
−b a

]
, a, b ∈ R (see [9] III for a complete exposition).

Lemma 3. Let Γ = Zγ1 ⊕ Zγ2 ⊂ C be a lattice in C and f : C/Γ = T2 → T2 =
C/Γ be a holomorphic map. Then its linearization is a C-linear map of C = R2

which preserves Γ, i.e. in the basis γ1, γ2 (over R) of C it is an integral 2 × 2
matrix Af ∈M2×2(Z) ∩M1×1(C).

Lemma 3 is proved in Section 4.

Theorem 4. Let T2 be a Riemann surface of genus 1, and let f : T2 → T2 be a
holomorphic map and Af ∈M2×2(Z) ∩M1×1(C) its linearization matrix. Then

HPerH(f) = HPerH(f) = HPer(f) = HPer([Af ]).

Moreover we have the following mutually disjoint cases:

(E ) HPer(f) = ∅ if and only if Af = Id.
(F ) HPer(f) 6= ∅ is finite if and only if

(a) Af =
[
0 0
0 0

]
and HPer(f) = {1},

(b) Af =
[−1 0

0 −1

]
and HPer(f) = {1},

(c) Af =
[
0 −1
1 0

]
or Af =

[
0 1
−1 0

]
and HPer(f) = {1, 2}.

(G) For the remaining Af the set HPer(f) is infinite and is equal to N with two
exceptions, called special cases (see [15, 12]) :
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(a) Af =
[−2 0

0 −2

]
and HPer(f) = N \ {2},

(b) Af =
[−1 1
−1 −1

]
or Af =

[−1 −1
1 −1

]
and HPer(f) = N \ {2, 3}.

Theorem 4 is proved in Section 4.

Remark 1. Since the statement of Theorem 4 does not depend on a complex
structure on the torus, we will not point out it in next.

Observe that opposite to the case of sphere S2 the torus T2 has infinitely many
different complex structures. On the other side opposite to the case X = S2, where
there are many holomorphic maps (all rational), in the case X = T2 we have very
few holomorphic maps (affine maps). But in the latter case HPerH(f) = HPer(f),
consequently a holomorphic representant in [f ] determines the complex form of
Af and so of HPer(f).

Moreover in the next proposition we show that P(f) = HPer(f) for a holomor-
phic map of T2.

Proposition 5. Let f : T2 → T2 be a holomorphic map. Then

HPer(f) = Per(f) .

As a direct consequence of Proposition 5 we get the following Šarkovsky type
result.

Corollary 6. Let T2 be the torus with any complex structure and f : T2 → T2

be a holomorphic map. If f has a periodic point of period n > 3 then for every
continuous deformation g of f

N \ {1, 2} ⊂ Per(g) = HPer(g) .

If f has a periodic point of period n > 4 then for every continuous deformation g
of f

Per(g) = HPer(g) = N .

We also postpone the proof of Proposition 5 and Corollary 6 to Section 4.
Let f : X → X be a self-map of a compact manifold and L(f) ∈ Z be its

Lefschetz number (see [13] for the definition). The celebrated Lefschetz Fixed
Point Theorem says that if L(f) 6= 0, then f has a fixed point. Therefore if
L(fm) 6= 0 then f has a periodic orbit of period a divisor of m, i.e. not necessarily
of minimal period m. The converse of the theorem is not true (see for instance [4]).

Although the Lefschetz numbers L(fm) contain information about the fixed
points of fm, they cannot be used to study the existence of periodic points of
a given period. To deal with this problem the periodic Lefschetz numbers were
introduced in [6] and in the context of a holomorphic map in [16]. Some authors call
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the periodic Lefschetz numbers as the Dold multplicities, see [13] for an exposition
of known results and a literature. The Lefschetz m-periodic number is defined as

lm(f) =
∑

r|m
µ(r)L(fm/r),

where µ is the Möbius function (cf. [18]). By the Möbius inversion formula (see
for example [18]),

L(fm) =
∑

r|m
lr(f).

Suppose now that X is a surface of genus g(X) > 2.

Theorem 7. Let X be a Riemann surface of genus g(X) > 2. Then every holo-
morphic map f : X → X is invertible in the class of holomorphic maps, f has a
finite order m > 1, and f belongs to the finite group Aut(X) of conformal auto-
morphisms of X. Moreover we have

HPerH(f) = HPerH(f) = Per(f),

and

(i) m ∈ Per(f),
(ii) k|m, k < m belongs to Per(f) if and only if there exists a prime p dividing

k such that L(fk) > L(fk/p) or equivalently lk(f) 6= 0.

Theorem 7 is proved in Section 5.

Theorem 8. Let X be a Riemann surface of genus g(X) > 2. Let h ∈ Aut(X)
and m be the order of h. Then the following statements hold.

(i) If h acts free then HPer(f) = HPerH(f) = Per(f) = {m}.
(ii) If h does not act freely then for every k|m, k < m, we have that k ∈ HPer(h)

if and only if k ∈ Per(h).

Theorem 8 is also proved in Section 5.
Boyland [3] and also Hart and Keppelmann [10] worked with the general case

of a homeomorphism f of order m > 1 of a compact Riemann surface of genus
g > 2. They studied the more general problem of the dynamics of f [3], or of
the reducibility of the Nielsen classes for the powers of fk when k divides m [10].
However they do not provide any more information for the case discussed here
which we got by elementary considerations. But due to a classical fact on homeo-
morphisms of hyperbolic compact surfaces a part of their results is a consequence
of what we present here. We have (see [11])

Theorem 9 (Hurwitz). Given a finite group of homeomorphisms G of a compact
topological surface X of genus g > 2, there is a structure of a Riemann surface on
X, i.e. a complex analytical structure on X, in which G is a group of conformal
automorphisms.
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Consequently due to Theorem 9 we have a lot of information about homeo-
morphisms of finite order which are known in the classical theory of conformal
automorphisms (see [9, 19] for more information). We would like to point out the
Sierakowski paper [19]. For a given conformal map, he has shown how find out all
appearing minimal periods in an effective algebraic way.

Remark 2. If f and h are two finite order preserving orientation homeomorphisms
of a compact surface X of genus > 2, then f is an automorphism in a complex
structure and so is g due to the Hurwitz theorem. But from this theorem does
not follow that they are conformal, i.e. holomorphic maps, in the same complex
analytic structure of X, thus belong to the same group of Aut(X).

Let f : X → X be a homeomorphism of a compact manifold. We define

HPerHomeo(f) =
⋂

g∼f

Per(g), (5)

where g : X → X is a homeomorphism of X. Note that by the definition we have
HPer(f) ⊂ HPerHomeo(f).

Theorem 10. Suppose that X is a Riemann surface of genus > 2. Let f : X → X
be a holomorphic map, i.e. o conformal map of finite order m > 1. Then

(a) For every k|m, k < m we have that k ∈ HPerHomeo(f) if and only if k ∈
HPer(f) = Per(f).

(b) Always m ∈ HPerHomeo(f).

Theorem 10 is also proved in Section 5.

2. Proof of Theorem 1

Theorem 1 is a consequence of the following proposition.

Proposition 11. Let d > 2 and let f : Sd → Sd be a continuous map. Then

HPer(f) =

{
{1} if deg(f) 6= −1,

∅ if deg(f) = −1,

for d even; and

HPer(f) =

{
{1} if deg(f) 6= 1,

∅ if deg(f) = 1,

for d odd.

Proof. Since d > 2 the sphere Sd can be represented as Sd =
∑
Sd−1, d− 1 > 1,

where ∑
Sd−1 = Sd−1 × I/(Sd−1 × {0} ∪ Sd−1 × {1})

and I = [0, 1]. Denote by (z, t) the coordinates in Sd =
∑
Sd−1.
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Let r be the degree of f . Then let ϕr : Sd−1 → Sd−1 be any map of deg(ϕr) = r
(for d− 1 = 1 we can take ϕr(z) = zr).

Let next η : I → I be a continuous map such that η(0) = 0, η(1) = 1 and
η(t) > t. We consider the Shub map h : Sd → Sd defined by

h = hr,η([z, t]) := [ϕr(z), η(t)].

Note that h is continuous, deg(h) = r, k ∼ f and that all the periodic points of h
are the two fixed points {[Sd−1 × {0}], [Sd−1 × {1}]}. Consequently

HPer(h) ⊂ Per(h) = {1}. (6)

If d is even and deg(f) = −1 then f ∼ −Id. But Per(−Id) = {2}, therefore

HPer(h) ⊂ {1} ∩ {2} = ∅.

Analogously if d is odd and deg(f) = 1 then f ∼ Id. But then Id ∼ ϕ with
Fix(ϕ) = ∅. Note that ϕ can be taken as the one–time map of a flow ϕt defined by
nonzero vector field on Sd. Such a vector field exists by the Poincaré–Hopf Theorem
see for more details [17]. Consequently 1 /∈ HPer(f) which gives HPer(f) = ∅
taking into account (6). This completes the proof of the proposition. ¥

Proof of Theorem 1. Since d = 2 and deg(f) > 0 for any holomorphic map,
the statement of the theorem follows from Proposition 11. ¥

Remark 3. We remark that Proposition 11 is a very special case of a general
fact which can be concluded from Jezierski–Wecken Theorem for periodic points,
however only in dimension d > 3 (see [13] for more details on the Jezierski–Wecken
theorem for periodic points). This fact states that if f : X → X is a self map of a
simply connected compact piecewise–linear manifold of dimension d > 3, then

HPer(f) =

{
{1} if L(f) 6= 1,
∅ if L(f) = 1,

where L(f) is the Lefschetz number of f .

3. Proof of Theorem 2

To prove Theorem 2 we begin with a well-know fact, which proof we include for a
convenience of the reader.

Proposition 12. Any two rational self maps of S2 = C∞ are holomorphically ho-
motopic if and only if they are homotopic. Consequently, HPerH(f) = HPerH(f) .

Proof. We have to show that two homotopic rational maps are holomorphically
homotopic. Since deg(f) determines the homotopy class of a self-map of a sphere,
it is enough to show that every map rational map f of deg(f) = d(f) = d is
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holomorphically homotopic to z 7→ zd. Let f(z) = P (z)/Q(z), where P, Q are
polynomial of d(P ) 6 d, d(Q) 6 d relatively prime.

The case d(f) = 0 is obvious, since then P, Q are constant thus holomorphically
homotopic.

Suppose that d(f) > 1. We assume first that d(P ) = d and d(Q) 6 d.
If d(Q) = 0 then Q = c is a constant, and f(z) = P (z)/c = P ′(z), where

P ′(z) = a′dz
+ · · · +a′1z+a′0 is a polynomial of degree d. A holomorphic homotopy

P ′t (z) = a′dz
d + (1− t)(a′d−1z

d−1 + . . . + a′0) shows that f(z) ≈ azd, a 6= 0. But
obviously azd ≈ zd which shows the statement in this case.

So we can assume that 1 6 d(Q) 6 d. To short notation put d̃ = d(Q).
Next observe that we can assume that Q(0) 6= 0 deforming holomorphically Q

(thus f) if necessary. Of course, if P (0) = 0 then Q(0) 6= 0, as they are relatively

prime. Let P (z) = a
d∏

i=1

(z − zi), a 6= 0, and Q(z) = ãzk
d′∏

j=1

(z − z̃j), ã 6= 0, zj 6= 0

for 1 6 j 6 d′, k + d′ = d̃, k > 0.
Next, let c ∈ C be a constant such that we have [0, c] ∩ {z1, . . . , zd} = ∅.
It is geometrically obvious that there exist pathes σj(t) : [0, 1] → C, 1 6 j 6 d′,

such that:
σj(0) = z̃j , σj(1) = c for every 1 6 j 6 d′,

σi(t) ∩ σj(t) = {c} for i 6= j,

and

{z1, . . . , zd} ∩
( d′⋃

j=1

σj(t)
)

= ∅, [0, c] ∩
( d′⋃

j=1

σj(t)
)

= {c}.

Put Qt(z) = ã((1 − t)z − tc)k
d′∏

j=1

(z − σj(t)). Note that ∀ t ∈ [0, 1] Qt(z)

has not a common zero with P (z) and ht(z) = P (z)/Qt(z) gives a holomorphic
homotopy to a map of the form c̃ P (z) . The case 1 6 d 6 d̃ follows by the same
argument. ¥

Proof of Theorem 2. . Suppose that deg(f) = d(f) = 0. Since f is holomor-
phic, then f is constant. Since Per(constant) = {1}, it follows that

HPerH(f) = HPerH(f) = Per(constant) = {1}.

Next assume that deg(f) = d(f) = 1. Then f = (az + b)/(cz + d) with
ad−bc 6= 0 is a Möbius map. We claim that every Möbius map f is holomorphically
homotopic to a Möebius map h such that Per(h) = {1}.

From Proposition 12 it follows that f ≈ z ≈ az with any a ∈ C 6= 0. Taking
h(z) = az we see that the equation hn(z) = z, i.e. an z = z has only two solutions
z = 0, ∞ if a is not a root of unity. In other words P(h) = {0, ∞} and these two
points are fixed points. This shows that HPerH(f) ⊂ Per(h) = {1}.
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On the other hand every Möbius transformation has at least two fixed points
(cf. [2]) which shows that {1} ∈ HPer fH(f) and completes the argument for
d(f) = 1.

Now we shall consider the case deg(f) > 2. From the Baker Theorem (see [2]
or [8]) it follows that

N \ {2, 3} ⊂ Per(f) if d(f) = 2,
N \ {2} ⊂ Per(f) if d(f) = 3, 4, and
N = HPerH(f) if d(f) > 4,

for every rational map of S2.
Moreover there are known rational maps h of degree 2 such that 2 /∈ Per(h) or

3 /∈ Per(h), or of degree 3 or 4 such that 2 /∈ Per(h), see again [2]. This means
that

HPerH(f) ⊂ N \ {2, 3} if d = 2, and
HPerH(f) = N \ {2} if d = 3, 4.

The above inclusions show the statement for the discussed case which completes
the proof of Theorem 2. ¥

Remark 4. We must say that Proposition 12 is a special case of a more general
result of G. Segal [20]. He proved the following. Let Fd denote the space of
all rational mappings of S2 of degree d and Mapd the space of all continuous
mappings of S2 of degree d. Then the natural inclusion ι : Fd ⊂ Mapd is a
homotopy equivalence up to dimension d, i.e. πj(ι) is an isomorphism for 0 6
j 6 d. In particular π0(ι) : π0(Fd) ≡ π0(Mapd), which is exactly the statement of
Proposition 12. On the other hand, a proof of this general theorem is long and
uses difficult arguments of algebraic topology.

4. Proof of Theorem 4

First we prove Lemma 3.

Proof of Lemma 3. It is known that every holomorphic map f : C/Γ = T2 →
T2 = C/Γ is of the form f = ϕ + c0, where ϕ : T2 → T2 is a homomorphism
of the complex Lie group G = C/Γ = T2 and c0 is a translation by c0 ∈ T2, see
Proposition III. 11.5 of page 136 in [9]. ¥

Remark 5. Roughly speaking this follows from the fact that a lift f̃ : C → C of
a holomorphic map f : T2 → T2 is a holomorphic map which preserves the lattice
Γ. Consequently it is homotopic to a linear (here over C) map of C. Next, one
can show that two homotopic holomorphic maps to a complex torus are equal up
to a translation by a constant.

The fact that ϕ : T2 → T2 is a homomorphism of the complex Lie group
G = T2 means that ϕ has a lift to a homomorphism Φ : TeG = C → C = TeG
which is a C–linear map. Since Φ(0) = 0, and C is contractible, Φ is unique.
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Observe that f ≈ ϕ by the homotopy ft := ϕ + tc0. Consequently Af = Aϕ.
On the other hand Aϕ is equal to the matrix of Φ, because Φ(Γ) ⊂ Γ, Γ ≡ Z2, as
ϕ is the factor of Φ. This shows that Af is C–linear and completes the proof of
the lemma.

Before proving Theorem 4 we need the next result.

Lemma 13. If f, g ∈ Hol(T2) and f ∼ g then f ≈ g.

Proof. Note that f ∼ g if and only if f] = g] for the map induced on π1(T2) = Z2.
Let f = ϕ+c0 and g = ψ+c0 where ϕ = Φ/Γ and ψ = Ψ/Γ are the factors of the

homomorphisms (C–linear maps) of Φ and Ψ respectively. We showed that f] = Φ
and g] = Ψ, consequently f = ϕ + c0 and g = ϕ + c0. Now ft = ϕ + (1− t)c0 + tc0

gives the required holomorphic homotopy. ¥

Proof of Theorem 4. Since Af = A ∈M2×2(Z) ∩M1×1(C) it follows that

A =
[

α β
−β α

]
, (7)

where α, β ∈ Z.
Now we can use the classification of all possible homotopy periods of the con-

tinuous self maps of T2 given in [1]. However we will refer to a reformulation of
this theorem presented in Theorem 1.3 of [12] because it is stated in the terms
that we use here, this way of formulating the results was first introduced in [15].

The cases (E), (F) and (G) are distinguished by the spectrum σ(A) of charac-
teristic polynomial χA(λ) of A.

Let χA(λ) = λ2 − aλ + b be the characteristic polynomial. Note that a =
trace (A) and b = det(A). But here additionally

a = 2α ∈ 2Z a is even, and
b = α2 + β2 > 0 is a sum of natural squares. (8)

Case (E). The set HPer(f) is empty if and only if 1 ∈ σ(A). But every eigenspace
of a C–linear map is a C–linear subspace, so Eλ=1 = C, i.e. A = Id. It also can
be derived from the condition a + b + 1 = 0 of Theorem 1.3 of [12] by a direct
computation and using (8).
Case (F). It occurs if σ(A) ⊂ {0}∪U , where U denotes the set of all roots of unity.

If 0 ∈ σ(A) then A = 0 by the same argument as above, and f = c0 is then
a constant map. This gives HPer(f) = {1}. So we are left with the cases when
σ(A) consists only of roots of unity (two conjugated), i.e. b = det(A) = λλ = 1,
χA(λ) = λ2 − 2αλ + 1 with α ∈ Z and α2 + β2 = b = 1. The last has solutions
α = ±1 and β = 0, or α = 0 and β = ±1. Note that the case α = 1 and β = 0
reduces to the case (E).

The case α = −1 and β = 0, i.e. A =
[−1 0

0 −1

]
provides HPer(f) = {1}, as

it follows from [1] when a = −2 and b = 1.
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The cases α = 0 and β = 1, and α = 0 and β = −1 correspond to the matrices

A =
[
0 −1
1 0

]
and A =

[
0 1
−1 0

]
, respectively. We haveHPer(f) = {1, 2}, because

a = 0 and b = 1. This completes the case (F).
Case (G). For proving this last case when HPer(f) is infinite we will also check
which cases of (G) in Theorem 1.3 of [12] can be represented by a matrix A
satisfying (7). Since a = 2α and b = α2 + β2 we consider the following subcases.
Subcase a = −2 and b = 2. Then α = −1 and β = ±1 which yields to A =[−1 1
−1 −1

]
or A =

[−1 −1
1 −1

]
, and then HPer(f) = N \ {2, 3}.

Subcase a 6= 0 and a + b + 1 = 0. Substituting a = 2α and b = α2 + β2 we get

that (α+1)2 +β2 = 0. Hence α = −1 and β = 0, which gives A =
[−1 0

0 −1

]
and

reduces to case (F). Consequently this subcase does not provide new A′s.
Subcase a + b = 0. Once more substituting a = 2α and b = α2 + β2 we obtain
(α + 1)2 + β2 = 1. Solving this equation in α we get α = 0, α = −1, or α = −2.

If α = 0 then β = 0, consequently A = 0, already discussed in case (F). If
α = −1 then β = ±1 again discussed in case (F). Finally if α = −2 and β = 0 we

have A =
[−2 0

0 −2

]
, and then HPer(f) = N \ {2}.

Subcase a + b + 2 = 0. This is the last case for (G) listed in Theorem 1.3 of [12].
Then (α + 1)2 + β2 + 1 = 0 which has no real solutions. This completes the proof
of Theorem 4. ¥

Proof of Proposition 5. In this proof we use the notion of Nielsen number and
its basic properties presented in the next section. Also we need an information on
the Nielsen numbers of self–maps of tori contained in [13, 4.3.3] but (see also [15]).

Let x be a fixed point of f of minimal period n. The point x is an isolated point
of Fix(fn), because otherwise f is the identity on T2 (see the proof of Lemma 3).
Since ind(fn, x) = sgn det(I −Df(x)) = 1 > 0, the Nielsen class [x] ∈ N (f) of x
is essential.

Any holomorphic map f : T2 → T2 is of the form f = [A] + [c], where A : C→
A, c ∈ C and A is a complex matrix preserving a lattice Γ ' Z⊕Z (see [9]) as we
already used in the proof of Lemma 3. Next observe that fn([x]) = [A]n[x]+ [c̃] =
[Anx] + [c̃n], where c̃n = [An−1c + An−2c + · · · + c]. Now we can modify slightly
the arguments of proof of [13, Th. 4.3.14] to get the following fact.

For every map f : T2 → T2 of the form f = [A] + [c], with A a complex matrix
with integral entries, A 6= 0, Id, and every n > 1 we have

1) fn has exactly det(I −An) fixed points;
2) no two fixed points of fn are Nielsen related (with respect to fn); and
3) N(fn) = L(fn) = det(I −An) = Card(Fix(fn)).

In the proof of [13, Th. 4.3.14] such a statement is shown for a map of the
form [A] : Td → Td of a d–dimensional torus, where A is any integral d×d matrix.
Proofs of properties (2) and (3) are the same. We only comment the proof of (1).
It is enough to consider the case n = 1 replacing A by An for the case of any n.
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We have Fix(f) = {[x] : [A][x]+[c] = [x]} which is equal to {x ∈ C : ((I−A)x =
c mod Γ, i.e. the class [x] is a fixed point if and only if (I − A)x = c + v where
v ∈ Z2 in a basis of Γ, or equivalently x = (I−A)−1c+w where w = (I−A)−1(v) ∈
(I−A)−1(Γ) ⊂ Γ. Note that Γ′ = (I−A)−1(Z2) is a sub–lattice of Γ. Consequently,
we have so many different fixed points as many distinct classes [w] in Γ′/Γ. But
Card(Γ′/Γ) = |det(I −A)|, by a geometric number theory (see [13, Th. 4.3.3] for
the reference). Here det(I −A) > 0, which proves (1).

Remind that for any map f and k|n, k < n, we have Fix(fk) ⊂ Fix(fn). We
can take any maximal such k, i.e. k = n/p, p a prime. If [x] has the minimal
period equal to n then there exists a prime p such that [x] ∈ Fix(fn) ⊂ Fix(fn/p),
thus Fix(fn) > Fix(fn/p). Finally for a holomorphic map f = [A] + [c] we have
N(fn) = Fix(fn) > Fix(fn/p) = N(fn/p). But the latter implies that n ∈
HPer(f) as follows from the main of [15] (see [13, VI] for generalizations). ¥

Proof of Corollary 6. From Proposition 5 it follows that Per(f) = HPer(f),
and consequently we can use the tables listed in the statement of Theorem 4.
But 3 ∈ HPer(f) excludes the case (E) and all the cases of (F) of the statement
of Theorem 4, leaving only the case (G) (a), i.e. HPer(f) = N \ {2}. Next, if
n ∈ HPer(f) with n > 4 then HPer(f) = N by the same theorem, which completes
the proof. ¥

5. Proof of Theorem 7

Let X be a Riemann surface of genus g(X) > 2 and Aut(X) be the group of
conformal automorphisms of X. We have the following well known fact see for
more details [9].

Proposition 14. If f ∈ Hol(X), then f ∈ Aut(X).

Lemma 15. Let f, h ∈ Aut(X). If f ≈ h, then f = h.

Proof. The group Aut(X) is finite, consequently any curve ft : I → Aut(X) is
constant, i.e. π0(Aut(X)) = Aut(X). ¥

Proposition 16. Let f, h ∈ Aut(X). If f ∼ h, then f = h.

Proof. For h ∈ Aut(X) let Ah : H1(X,Z) → H1(X,Z) be the induced homomor-
phism on the first homology group with integer coefficients which is isomorphic to
Z2g. Since h 7→ Ah is functorial, i.e. Ah1·h2 = Ah1 · Ah2 , we get a representation
of Aut(X) in GL(2g,Z). Since the homomorphism h 7→ Ah is a monomorphism,
i.e. the representation is faithful (see page 270 of [9]), Ah = Af implies f = h.
But f ∼ h implies Af = Ah, so the proposition is proved. ¥

From Proposition 16 it follows immediately the next result because there is
only one holomorphic map in each holomorphic class.

Corollary 17. For a holomorphic map f : X → X of surface of genus g(X) > 2
we have that HPerH(f) = HPerH(f) = Per(f).
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The next lemma is also well known and it is a special case of a theorem of
Jiang and Guo [14]. They proved it with essentially weaker assumption that h is
a preserving orientation homeomorphism of X.

In next we use the notion of fixed point index ind(f, x) ∈ Z of f at a fixed point
x(see [13] for a definition ).

Lemma 18. Let h ∈ Aut(X). Then

(a) Fix(h) is either X or finite.
(b) If Fix(h) is finite, then ind(f, x) = 1 for all x ∈ Fix(h).
(c) L(h) is the cardinality of the set Fix(h) if h 6= Id, and 2− 2g if h = Id.

Proof. Suppose that Fix(h) 6= X. Since h is an a holomorphic homeomorphism,
Fix(h) is a complex analytic submanifold, thus either X or a finite set, hence
statement (a) is proved. For an isolated fixed point x Dh(x) is a complex map,
thus if 1 is an eigenvalue of Dh(x) then Dh(x) = id. But this is impossible, because
the each curve at x, and consequently each vector v tangent to it, should is mapped
by h into another curve, so the vector v is mapped into another vector by h(x).
By the fixed point index property, then we have ind(f, x) = sgn det(Id−Dh(x).

Note that if 1 is not an eigenvalue of Dh(x), then ind(h, x) = sgn(det(Id −
Dh(x))), but Id−Dh(x) is a complex linear map which gives det(Id−Dh(x)) > 0.
So statement (b) follows.

Statement (c) follows from (a) and (b). ¥

While L(h) denotes the Lefschetz number of h ∈ Aut(X), we denote by N(h)
the Nielsen number of h, see for instance [13] for a definition.

Lemma 19. Let h ∈ Aut(X), h 6= Id. Then L(h) = N(h) = Card(Fix(h)).

Proof. This lemma is also a special case of a theorem of Jiang and Guo [14]
who proved that L(h) = N(h) for any preserving orientation homeomorphism
h : X → X. They showed every x ∈ Fix(h) is singleton and [x] is an essential
Nielsen class. This here follows from Lemma 18. Consequently since the Nielsen
number is the cardinality of the essential Nielsen classes we have

N(h) = Card(Fix(h)) = L(h). ¥

Now we describe Per(h) for h ∈ Aut(X). Let m be the order of h.
Suppose first that h acts free on X, i.e. for all x ∈ X we have that hm(x) = x

and there is not x ∈ X and k|m, k < m such that hk(x) = x. The latter implies
that L(hk) = 0 for every k|m, k < m.

Remark 6. We remark that it is well-known, that there is a necessary condition
on an order m of a finite cyclic group acting freely on a compact manifold X saying
that m|χ(X). The latter is equal to 2− 2g for a Riemann surface of genus g.

On the other hand there exist elements of Aut(X) with this property, i.e. of
order m|χ(X) = 2− 2g, see [9, 5]. In this case we have Per(h) = {m}.
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Now we suppose that there exists k < m, k|m such that Fix(hk) 6= ∅. Note
that

l|k implies Fix(hl) ⊂ Fix(hk). (9)

Consequently k ∈ Per(h) if and only if there exists x ∈ Fix(hk)\⋃l|k Fix(hl). From
(9) it is enough to take only l = k/p with p prime, the largest proper divisors of
k. Indeed

Fix(hk) \
⋃

l|k
l<k

Fix(hl) = Fix(hk) \
⋃

p|k
Fix(hk/p).

It shows that k ∈ Per(h) if and only if there exists p|k such that L(hk) > L(hk/p).
Next we observe that h : Fix(hk) → Fix(hk) is a map of a finite set, because

hk(h(x)) = h(hk(x)) = h(x). Thus Fix(hk) =
∑

l|k Card Pl(h), where Pl(h)
denotes the set of all periodic points of h of period l. From the Möebius formula
and using Lemmas 18 and 19 we get

Card Pk(h) =
∑

l|k
µ

(
k

l

)
Card Fix(hl)

=
∑

l|k
µ

(
k

l

)
L(hl) =

∑

l|k
µ

(
k

l

)
N(hl).

Now in our case we show that m ∈ Per(h). It is enough to show that Pm(h) 6= ∅.
But for all k|m, k < m we have that Fix(hk) is empty or finite. This shows that

X \
⋃

k|m
k<m

Fix(hk)

is open and dense, thus it is not empty. ¥

To discuss a description of HPer(f) we have to recall the notion of Nielsen–
Jiang prime periodic number NPk(f).

Let X be a finite CW–complex (or compact ENR), and f : X → X a map.
We define the equivalence relation x∼

fk
y if and only if x, y ∈ Fix(fk) and they are

Nielsen related with respect to fk (cf. [13]). The equivalent classes [x]fk of this
relation are denoted by N (fk). For l|k and x, y ∈ Fix(f l) ⊂ Fix(f l) if x, y are
f l related they are fk related This means that we have a map N (f l) → N (fk)
defined by [x]f l 7→ [x]fk .

A class [x] ∈ N (fk), or also its orbit with respect to the action of fk is called
reducible if [x]∼

fk
[y], where [y] ∈ N (f l) for some l|k, l < k. Otherwise [x] is called

irreducible.
By definition NPk(f) is the cardinal of the classes [x] ∈ N (f l) which are

essential and irreducible. It is known that NPk(f) is a homotopy invariant and
NPk(f) 6 Card Pk(f) for every k > 1. The next result shows that a conformal
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automorphism of order m minimize the k–periodic points, k < m in the homotopy
class.

Lemma 20. Let h ∈ Aut(X) and m be its order. Then for all k|m, k < m we
have that NPk(f) = Card Pk(h).

Proof. Let l|k, l < k with k < m. Since k < m we have that Fix(hk) is finite or
empty. By Lemma 19 x ∼ hky or x ∼ hly if and only if x = y, i.e. [x] = {x} in
N (hk) or N (hl) respectively. Consequently [x] ∈ N (hk) is irreducible if and only
if

x ∈ N (hk) \
⋃

l|k
l<k

N (hl) = Fix(hk) \
⋃

l|k
l<k

Fix(hl) = Pk(h).

Since every class is essential by Lemma 15 we get the statement. ¥

Proof of Theorem 8. Since Per(f) ⊃ HPer(f) we have that HPer(f) ⊂ {m}.
For all x ∈ X we have hm(x) = x, and x ∼hm x′ for all x, x′ ∈ X. Thus there

is one Nielsen class of hm. Since L(hk) = χ(X) = 2−2g 6= 0, this class is essential.
On the other hand since Fix(hk) = ∅ for k < m, we get N (hk) = ∅ for k < m.

Consequently this class [x] ∈ N (hm) is irreducible, so NPm(h) = 1. This gives

Card Pm(f) > NPm(f) = NPm(h) = 1,

for every f ∼ h.
Now we assume that there is k < m, k|m such that Fix(hk) 6= ∅. By Lemma 19

for every k ∈ Per(h) we have that NPk(h) = Card Pk(h) > 0. Consequently for
such k we have Card Pk(f) > NPk(f) = NPk(h) > 0 for every map f ∼ h. This
shows that k ∈ HPer(h). ¥

Proof of Theorem 10. The case (a) follows from the inclusions

Per(f) ⊃ HPerHomeo(f) ⊃ HPer(f)

and Theorem 8 which says that HPer(f) \ {m} = Per(f) \ {m}.
For the case (b) note that in Theorem 8 we have already showed that m ∈

HPer(f) if f is a free homeomorphism of order m.
Let next h be a homeomorphism homotopic to a homeomorphism f of finite

order m. First note that by the Epstein theorem if h homotopic to f , then h is
isotopic to f (see [7]). Now we can use the Thurston theorem, which says that
every preserving orientation homeomorphism of an orientable surface X of genus
> 2 is isotopic to a homeomorphism g of X such that g is either (i) pseudo–Anosov,
or (ii) of finite order, or (iii) reducible (see [21]). Since h is isotopic to f , the cases
(i) and (iii) are excluded, i.e. h must have a finite order. To see that an order of
h is equal to m we can once more use the argument of Proposition 16. Indeed h
has the same order as Ah = Af = m, since h ∼ f , which ends the proof.

For a such h we have that ⋃

k|m
k<m

Fix(hk)
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is a finite set, and consequently

Pm(h) = X \
⋃

k|m
k<m

Fix(hk)

is open and dense, thus non–empty. Consequently m ∈ Per(f), which shows that
m ∈ HPerHomeo(f). ¥
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