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Abstract: In this study we deal with the nonlinear Riemann–Hilbert problem (in short (RHP))
for generalized analytic functions in multiply connected domains. Using a similarity principle
for multiply connected domains (presented here for the first time), we reduce the nonlinear RHP
for generalized analytic functions to a corresponding nonlinear RHP for holomorphic functions
with Hölder continuous boundary data. Then the Newton–Kantorovič method combined with a
continuation procedure as well as a new existence theorem for holomorphic solutions, which is
based on topological degree arguments, leads to existence of at least two topologically different
generalized analytic functions solving the nonlinear RHP.
Keywords: Similarity principle for multiply connected domains, nonlinear Riemann–Hilbert
problems, generalized analytic functions, topological degree

1. Introduction

In this article we are concerned with nonlinear Riemann–Hilbert problems for
generalized analytic functions in multiply connected plane domains. Let Ωm ⊂ C
be a given (m + 1)–connected bounded domain with the boundary ∂Ωm = Γ =
m⋃

j=0

Γj consisting of m + 1 separated, smooth (at least Γ ∈ C2), closed Jordan

curves, and where Γ0 is the exterior boundary. The closed curves Γj have 1–
periodic parametric representations Γj : z = tj(s) with s ∈ R, j = 0, . . . , m.

The nonlinear Riemann–Hilbert boundary value problem for generalized ana-
lytic functions in Ωm reads:

Find u(x, y) and v(x, y) in the Hölder space Cβ(Ωm), 0 < β < 1 such that
w := u + iv satisfies the Vekua system

∂w

∂z
−Aw −Bw = 0 in Ωm (1.1)

and a parameter ω ∈ Rm−1 such that the nonlinear boundary conditions

Fj(ω; z, u, v)|Γj = 0 for z = tj(s) ∈ Γj , j = 0, 1, . . . , m (1.2)
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are satisfied and ∫

Γj

d arg w = 0 for j = 0, 1, . . . , m , (1.3)

where Fj are given real–valued functions on Rm−1 × C× R2.
The differentiation ∂

∂z = 1
2

(
∂
∂x + i ∂

∂y

)
in (1.1) is the weak derivative in Sobolev’s

sense [15, S. 24ff.]. For the given coefficient functions in (1.1) we assume A,B ∈
Lq(Ωm) with q > 4.

In order to use the geometric and topological properties of the boundary con-
ditions (1.2), we reformulate them as follows.

For any fixed values of ω ∈ Rm−1 and z ∈ Γ, the real–valued functions Fj

define by

γω,z,j := {w = u + iv ∈ Cw |Fj(ω; z, u, v) = 0, z ∈ Γj} , (1.4)

a family of m+1 curves in the complex state plane Cw. Correspondingly, the prob-
lems (1.1)–(1.3) can also be formulated as follows:

Find w ∈ Cβ(Ωm) satisfying (1.1) in Ωm and (1.3), along with the parameters
ω ∈ Rm−1 such that the geometric boundary conditions

w(z) ∈ γω,z,j for z ∈ Γj , j = 0, 1, . . . ,m (1.5)

are satisfied.

The conditions on the family of these curves will be further specified after
an appropriate family of nonlinear Riemann–Hilbert problems for holomorphic
functions will be associated with (1.1)–(1.5). This will be obtained by employing
the similarity principle in a specific form in Section 2.

In previous works we considered Cauchy–Riemann systems in plane domains
with nonlinear boundary conditions (see, e.g., [9]). As for the first order systems
(1.1), the main contributions were achieved in the 50’s by I.N. Vekua and W. Haack
and their coworkers (see the monographs [15] and [11]). Some parts of I.N. Vekua’s
book [15] are in particular due to Bogdan Bojarski. There one of the basic ideas,
for tackling linear boundary value problems for (1.1), is the similarity principle due
to Bers [2] and Vekua [16], which allows to reduce the boundary value problems
(1.1) and (1.2) to corresponding ones for holomorphic functions. This approach
was successfully used for both, linear as well as nonlinear boundary value problems
of the form (1.1) and (1.2) in simply connected domains (see e.g. [1, 12, 18, 19]
and the comprehensive monograph by Wegert [17] and references therein). Most
general strongly elliptic systems of first order were considered by Bogdan Bojarski
and Tadeusz Iwaniec in [4, 5], and reduced to a nonlinear normal form which allows
the treatment of Riemann–Hilbert boundary value problems.

In all these papers, the complex function theory in simply connected domains
– as the similarity principle, the parameterization of holomorphic functions on the
boundary via their real parts employing the Hilbert transform leading to asso-
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ciated, in general nonlinear, singular integral equations on the boundary – played
a fundamental role. Since the authors investigated the nonlinear Riemann–Hilbert
problems for holomorphic functions in multiply connected domains in [7, 8, 9] the
first of the authors was asking experts, in particular Bogdan Bojarski, for similar-
ity principles in multiply connected domains needed for studying corresponding
Riemann–Hilbert problems for generalized analytic functions, but at that time for
multiply connected domains an appropriate formulation of the similarity principle
was not known, although the second author could provide the desired formulation
for a long time (see [18]). Hence, in this paper, our analysis is based on a rep-
resentation formula for generalized analytic functions together with the similarity
principle for multiply connected domains, which we present here for the first time;
an appropriate parameterization of holomorphic functions, a new existence theo-
rem for holomorphic solutions of nonlinear Riemann–Hilbert problems and a new
Newton–Kantorovič method for non invertible operators possessing only a right
inverse of their Frechét derivative (see [8, Appendix]), which is due to the multiple
connectivity of Ωm for m > 2.

The paper is organized as follows. Section 2 is devoted to the similarity prin-
ciple for multiply connected domains. In Section 3 we employ the similarity prin-
ciple for the reduction of the boundary value problem (1.1) and (1.2) to nonlinear
Riemann–Hilbert problems for holomorphic functions. The corresponding bound-
ary conditions (1.5) for the holomorphic functions, however, are multiplied by
functions %j(s), which are only Hölder continuous. Therefore, we need an exten-
sion of the method by Reissig and Wegert [12] from their simply connected to our
multiply connected case to find an appropriate a priori estimate for the solutions
in a Slobodeckii space and a Hölder space. For the case %j ≡ 1 we apply a new
topological degree theory for quasiruled Fredholm maps on quasicylindrical do-
mains to nonlinear singular integral equations on Γ associated with (1.1) and (1.2)
and prove global solvability for holomorphic functions presented in [9]. There we
lift the problem to one on the universal covering which is a perturbation of lin-
ear problems and we need (1.3). Then the linearized Frechét derivative problems
have Fredholm index 1−m, which in general are not solvable; therefore additional
unknown constants are introduced and the boundary conditions are modified cor-
respondingly (see [6]). In Section 4, the Newton–Kantorovič method is combined
with an embedding continuation method generalizing an approach in [20], which,
together with the a priori estimate of subsequent solutions, provides us a path
of homotopy. Finally, Schauder’s fixed point theorem guarantees the existence of
solutions to (1.1) and (1.2).

2. The similarity principle

Solutions of the homogeneous equation (1.1) are also called “generalized analytic
functions” since they are closely related to complex analytic functions by the so–
called similarity principle which goes back to L. Bers [2] and I.N. Vekua [16] and
can be formulated in the form of the following two theorems.
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Theorem 2.1 (S1). Let w ∈ Cβ(Ωm) with 0 < β < 1 be a generalized solution of
the Vekua system

∂w

∂z
= Aw + Bw in Ωm (2.1)

with coefficients A,B ∈ Lq(Ωm) where q > 4. Then there exists a function w̃ =
ũ + iṽ ∈ Cα(Ωm) with any positive α 6 1− 2/q and satisfying

ṽ|Γ0 = 0, ṽ|Γj
= cj = −4 Im

∫∫

Ω

(
A +

w

w
B

) N∑

k=1

cjk
∂ek

∂z
dΩ, j = 1, . . . , m ,

such that the function f := w exp(−w̃) ∈ Cα(Ωm) is holomorphic in Ωm:

∂f

∂z
= 0 . (2.2)

In fact, w̃ is given explicitly as

ũ(ξ, η) = 4 Re
∫∫

Ωm

(
A +

w

w
B)

)( ∂

∂z
ΓII(z, ζ)

)
dΩ , (2.3)

ṽ(ξ, η) = 4 Im
∫∫

Ωm

(
A +

w

w
B)

)( ∂

∂z
ΓI(z, ζ)

)
dΩ (2.4)

where ζ = ξ + iη ∈ Ωm and w
w is set zero wherever w vanishes.

The derivative ∂
∂z is defined by ∂

∂z = 1
2

(
∂
∂x − i ∂

∂y

)
.

Theorem 2.2 (S2). Let f ∈ Cβ(Ωm) be holomorphic in Ωm, 0 < β < 1. Then
there exists w̃ ∈ Cα(Ωm), α < 1− 2/q given as a solution of the nonlinear integral
equations

ṽ(ξ, η) = 2
∫∫

Ωm

{− (
ReA + |B| cos(p− 2ṽ)

)
ΓI

y(z, ζ)

+
(
(Im A + |B| sin(p− 2ṽ)

)
ΓI

x(z, ζ)
}
dΩ(z) ,

(2.5)

ũ(ξ, η) = 2
∫∫

Ωm

{(
Re A + |B| cos(p− 2ṽ)

)
ΓII

x (z, ζ)

+
(
(Im A + |B| sin(p− 2ṽ)

)
ΓII

y (z, ζ)
}
dΩ(z)

(2.6)

where

eip =
B

|B|
f

f
for B 6= 0 and p = 0 if B = 0 ; (2.7)

such that w := f(z)ew̃ is a solution of (2.1) in Ωm. Moreover, for this specific
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solution we have

ṽ|Γ0 = 0

and

ṽ|Γj = 2
m∑

k=1

ckj

∫∫

Ωm

{
(Re A + |B| cos(p− 2ṽ)eky (2.8)

− (Im A + |B| sin(p− 2ṽ)ekx

}
dΩ|Γj where j = 1, . . . ,m .

The harmonic functions ej and the modified Green’s and Neumann functions
ΓI and ΓII , respectively, are defined in the Appendix A1, Section 4.

The proofs of these two theorems will be presented in the Appendix A2, Section
4. Note that in general, the solution w̃ = ũ + iṽ might not be unique for m > 1.
However, one of those solutions is uniquely determined as the limit obtained by the
continuation method [20] in combination with the Newton–Kantorovič iteration
(4.49), Theorem 4.8, at t = 1, along the path of problems

∂w̃t

∂z
= t{A + |B|ei(p−2ṽt)} in Ωm ,

ṽt|Γ0 = 0, ṽ|tΓj
= 2t

m∑

k=1

ckj

∫∫

Ωm

{
(Re A + |B| cos(p− 2ṽt)eky

− (Im A + |B| sin(p− 2ṽt)ekx

}
dΩ|Γj , j = 1, . . . , m ,

(2.9)

where t ∈ [0, 1], since for t = 0, the solution of (2.9) is unique. Then the mapping
f 7→ w̃1 =: w̃ is well defined which then will be used later on.

3. The associated Riemann–Hilbert problems

Now let w ∈ Cα(Ωm) be a solution of the nonlinear Riemann–Hilbert problem
(1.1)–(1.3) where 0 < α < 1 − 2/q. Then we find with Theorem S1 the function
w̃ = ũ + iṽ ∈ Cα(Ωm) given by (2.3), (2.4) such that

f := we−w̃ ∈ Cα(Ωm) is holomorphic in Ωm . (3.1)

For ũ given by (2.3) we find on Γj the estimates

|ũ|Γj | 6 4max
ζ∈Γj

∫∫

Ωm

(|A|+ |B|)
∣∣∣ ∂

∂z
ΓII(z, ζ)

∣∣∣dΩ(z) =: Kj , j = 0, . . . ,m (3.2)

and from (2.4) for

ṽ|Γj = cj :=
m∑

k=1

ckj4 Im
∫∫ (

A +
w

w
B

)( d

dz
ek(z)

)
dΩ(z)|Γj , (3.3)

|cj | 6
m∑

k=1

ckj4 Im
∫∫

(|A|+ |B|)
∣∣∣ d

dz
ek(z)

∣∣∣dΩ(z)|Γj =: kj , (3.4)
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j = 1, . . . ,m and ṽ|Γ0 = 0. Hence, the holomorphic function f satisfies the
nonlinear boundary conditions

f(z) ∈ γ̃ω,z,j for z ∈ Γj , j = 0, . . . ,m (3.5)

where γ̃ω,z,1 = e−ũ(τ)|Γ0γω,z,0 and γ̃ω,z,j = e−ũ(τ)|Γj
e−icj γω,z,j , j = 1, . . . , m

According to (3.5) we now introduce the following families of closed curves
characterizing the boundary conditions for f :

γ̃ω,z,0 =
{
γ̃ω,z,0 = %0(z)γω,z,0 | e−K0 6 %0(z) 6 eK0 ,

z ∈ Γ0 ∧ %0 ∈ Cα(Γ0) ∧ ‖%0‖Cα1 6 C1

}
,

γ̃ω,z,j =
{
γ̃ω,z,j = %j(z)e−icj γω,z,j | e−Kj 6 %j(z) 6 eKj ,

|cj | 6 kj , z ∈ Γj ∧ %j ∈ Cα1(Γj) ∧ ‖%j‖Cα1 (Γj) 6 C1

}
.

(3.6)

Then the holomorpic function f defined by the solution w given by (3.1) with w̃
will satisfy

f(z) ∈ γ̃ω,z,j for z ∈ Γj , j = 0, 1, . . . , m (3.7)

for the curves γ̃ω,z,j ∈ γ̃ω,z,j in those families, together with

∫

Γj

d arg f = 0 for j = 0, . . . ,m . (3.8)

Now we are in the position to formulate the basic assumptions on our boundary
conditions.

Basic Assumptions: (see also (BCG) in [9])

(a) The curves of the families γω,z,j with ω ∈ Rm−1 and z ∈ Γj for every
j = 0, 1, . . . ,m are at least twice continuously differentiable, closed, non-
selfintersecting in the complex state plane Cw and will be parametrized as
z = tj(sj) ∈ Γj , where 0 6 sj < 2π. These curves we denote by γω,sj ,j and
γ̃ω,sj ,j , respectively.

(b) Let W1 < W2 < · · · < W2m+1 with Wm+1 = 0 be given points on the real
axis of the state space Cw and let W2m+2 be the point at infinity of its
1–point compactification. Then the family of curves must satisfy the follow-
ing topological conditions:
For each j = 0, . . . ,m we assume that all curves in γ̃ω,sj ,j for z ∈ Γj and
ω ∈ Rm−1 circumvent the closed interval [Wj+1,Wj+m+1] in its exterior but
do not include any points of [Wj+m+2,Wj+2m+2 mod (2m+2)].
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Recalling Conditions (BCG) in [9], these assumptions are also given as

W1 ∈ int γ̃ω,s0,0 ∩ ext γ̃ω,sj ,j for all (ω, s0) and (ω, sj),
j = 1, . . . , m ;

Wk ∈ int γ̃ω,s`,` ∩ ext γ̃ω,sj ,j for all (ω, s`), ` = 0, . . . , k − 1 ;
and j = k, . . . , m; for k = 2, . . . , m ;

Wm+1 ∈ int γ̃ω,s`,` for all (ω, s`), ` = 0, . . . ,m ;
Wm+1+k ∈ int γ̃ω,s`,` ∩ ext γ̃ω,sj ,j for all (ω, s`), ` = k, . . . , m

and (ω, sj), j = 0, . . . , k − 1;
for k = 1, . . . , m ;

W2m+2 ∈ ext γ̃ω,sj ,j for all (ω, sj), j = 0, . . . , m .

By int γ we denote the bounded component of Cw\γ. Correspondingly, ext γ
denotes the unbounded component of Cw \ γ. We further introduce the real
intervals ∆` := [W`,W`+1] for ` = 1, . . . , 2m + 1 and ∆0 := [−W2m+2,W1],
and corresponding segments in Cw. In addition, we require

∆` ∩ γ̃ω,sj ,j = ∅ and ∆m+1+` ∩ γ̃ω,sj ,j = ∅ for all (ω, sj) ∈ R× [0, 2π),

where ` 6= j and j, ` = 0, 1, . . . ,m.
(c) The curves γ̃ω,sj ,j lie for every (ω, sj) in a closed ring–shaped strip Πω,j :=⋃

sj
γ̃ω,sj ,j where j = 0, 1, . . . ,m, respectively, and each of the strips Πω,j ,

depends continuously on ω ∈ Rm−1 and is homeomorphic to a circular ring.
Moreover, we will assume that for every fixed ω the strips Πω,j also satisfy
the conditions (b). This means that every simple, closed smooth curve in
one of the strips satisfies the conditions (b) correspondingly.
To the point w ∈ Cw we assign the index ~α = (α0, α1, . . . , αm) where αj ∈
{0, 1} with αj = 0 if the point w ∈ ext γ̃ω,sj ,j and αj = 1 if the point
w ∈ int γ̃ω,sj ,j for j = 0, . . . , m. Correspondingly, for given j and ω ∈ Rm−1,
we define the indices for the strips Πω,j given as follows:

w ∈ extΠω,j :=
⋂
{ext γ̃ω,sj ,j | 0 6 sj 6 2π}

or
w ∈ intΠω,j :=

⋂
{int γ̃ω,sj ,j | 0 6 sj 6 2π}

respectively. We say that a domain G of the complex Cw–plane has the index
~α if all points in G have the index ~α. In order to characterize the possible
geometric situations we now require for the binary vector function ~α in the
Cw–plane the following properties.

(d) For ω = (ω0, . . . , ωm−2) with |ω| < 1, we assume rank
(

∂Fj

∂ω`

)j=0,...,m

`=0,...,m−2
=

m− 1, and that the domain Cw \ (
⋃m

j=0 γ̃ω,sj ,j) in the Cw–plane consists of
2m + 1 components which have the indices {~α1, . . . , ~α2m+1}.
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(e) For ω with |ω| > 2, we assume that the curves γ̃ω,sj ,j) do not depend on
ω anymore and that the domain Cw \ (

⋃m
j=0 γ̃ω,sj ,j) consists of components

having the indices {~β1, . . . , ~β2m+1} 6= {~α1, . . . , ~α2m+1}.

Note, then for |ω| > 2 no liftable (see Def. 3.1) holomorphic solution can exist
due to the open mapping property for holomorphic functions.

For the three–fold connected case m = 2, the authors give an explicit example
for these conditions in [9].

Definition 3.1. The solution (f(z), ω) with ω ∈ Rm−1 of the holomorphic
Riemann–Hilbert problem in Ωm subject to the nonlinear boundary conditions (3.5)
is called “liftable” if

f(Ωm) ⊂
⋃
{int γ̃ω,sj ,j |ω ∈ R, |ω| < 1, 0 6 sj 6 2πandj = 0, . . . , m} ,

f(z) : Ωm → S2 \ {W1, . . . W2m+2} is homotopic to a constant solution,

where S2 denotes the standard Riemannian sphere and Wj are the corresponding
points on S2.

The conditions (a)–(e) become clearly visible on the Riemann sphere S2, if the
assumptions are considered on S2 with the images of the intervals and of γ̃ω,sj ,jfor
z ∈ Γj , ω ∈ Rm−1, j = 0, . . . , m.

The main result of our paper is now formulated in the following theorem.

Theorem 3.1. For q > 4 and under the Basic Assumptions (a)–(e), the non-
linear Riemann–Hilbert problem (1.1)–(1.3) for the Vekua system has at least two
different solutions (w+, ω+) and (w−, ω−) ∈ Cβ(Ωm)× Rm−1 and 0 < β < 1− 4

q .

4. A priori estimates

As we have seen in Theorem S1, if w ∈ Cα(Ωm) is a solution of (1.1)–(1.3) then
we find a holomorphic function f ∈ Cα(Ωm), 1

2 < α < 1− 2
q and functions %0 on

Γ0, . . . , %m ∈ Γm, {%0, %1, . . . , %m ; c1, . . . , cm} ∈ Σα where

Σα :=
{{%0, %1, . . . , %m ; c1, . . . , cm}

∈
m∏

j=0

Cα(Γj)× Rm | e−Kj 6 %j 6 eKj ∧ c0 = 1 (4.1)

∧ |cj | 6 kj , ‖%j‖Cα 6 C1, j = 0, . . . , m
}
.

Theorem 4.1. Let f be the holomorphic solution of the nonlinear Riemann–
Hilbert problem

∂f

∂z
= 0 in Ωm (4.2)
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and

f(z) ∈ %j(z)e−icj γω,z,j for z ∈ Γj , j = 0, . . . ,m (4.3)

where c0 = 0 and (%, c) := {%0, . . . , %m ; c1, . . . , cm} ∈ Σα0 with 1
2 < α0 < 1. Then

there exists a constant C0 = C0(α0) such that

‖f‖
W

1−1/p
p (Γ)

6 C0 and ‖f‖Cβ(Γ) 6 C0 (4.4)

with
2 < p < (1− α0)−1, 0 < β < 2α0 − 1 ,

and

‖f‖
W

1−1/p
p (Γ)

:= ‖f‖Lp(Γ) +
{ ∫

Γ

∫

Γ

|f(t)− f(s)|p
|t− s|p dtds

} 1
p

The proof will be given in Appendix A3.
Now, for every choice of {%0, . . . , %m ; c1, . . . , cm} ∈ Σα0 we have to solve a

nonlinear Riemann–Hilbert problem (4.2), (4.3). These problems have been inves-
tigated in [9] where we have shown that there exist at least two different solutions
(f+, ω+) and (f−, ω−) by lifting the problem to the universal covering on the unit
disk based on the conformal mapping of two Riemann sheets of the slit complex
Cw plane with the real slits

[W1,W2], [W3,W4], . . . , [W2m+1,W2m+2]

to circular (m + 1)–polygons and their reflections on the unit disc.
For every chosen (%, c) = {%0, . . . , %m ; c1, . . . , cm} ∈ Σα we obtain at least two

different solutions which define two set valued mappings

Σα0 3 (%, c) 7→ f+ =: A+(%, c) : Σα0 7→ Cβ(Ωm) , (4.5)

Σα0 3 (%, c) → f− =: A−(%, c) : Σα0 → Cβ(Ωm) . (4.6)

With the holomorphic function f+ or f−, respectively, we now apply Theo-
rem 2.2 and obtain to f+ generalized analytic functions w+(f+), functions w̃+

from (2.5), (2.6) and (%+, c+) from (3.5), (3.6). Thus we can define the set valued
mapping

B+ : (%, c) 7→ f+ 7→ w̃+(%+, c+), i.e. ,
B+ : Σα0 → Σα2 b Σα0

(4.7)

where α2 > α0.
Correspondingly, we also define

B− : (%, c) 7→ f− 7→ w̃− 7→ (%−, c−), i.e. ,
B− : Σα0 → Σα2 b Σα0 .

(4.8)
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Theorem 4.2. Each of the mappings B+ and B− possesses at least one fixed point
(%0

+, c0+) ∈ B+(%0
+, c0+) ∈ Σα0 and at least one fixed point (%−, c−) ∈ B−(%0

−, c0−) ∈
Σα0 where 1

2 < α1 < α0 < α2 < 1− 2/q.

For the proof we show the following Lemma.

Lemma 4.3. For any given (%, c) ∈ Σα0 there exist two holomorphic functions
f+ with ω+ ∈ Rm−1 and f− with ω− ∈ Rm−1, which are solutions of the nonlinear
Riemann–Hilbert problem

∂f

∂z
= 0 in Ωm (4.9)

and
f(z) ∈ γ̃ω,z,j for z ∈ Γj , j = 0, 1, . . . , m . (4.10)

Proof of Lemma 4.3. Let us now consider a whole family of nonlinear Riemann–
Hilbert problems (4.9), (4.10) where we associate with any chosen (%, c) ∈ Σα0

the family

%j(z; τ) := 1 +
(
%j(z)− 1

)
τ, cj(τ) := τcj

for 0 6 τ 6 1, z ∈ Γj , j = 0, . . . ,m ;
(4.11)

which defines a corresponding family of boundary conditions

f(z) ∈ γ̃ω,z,j,τ = {%j(z; τ)e−icj γω,z,j}
for 0 6 τ 6 1, z ∈ Γj , j = 0, . . . ,m

(4.12)

that depends continuously on τ . For each τ ∈ [0, 1], (4.11), (4.12) defines a
nonlinear Riemann–Hilbert problem for holomorphic functions.

However, except for τ = 0 (when %j(z; 0) = 1 for j = 0, . . . ,m), we cannot
apply the arguments as in our paper [9] based on the degree theory for quasiruled
Fredholm maps since there we need smooth dependence of the curves

γ̃ω,tj(s),j = %j

(
tj(s); τ

)
e−icj(τ)γω,tj(s),j (4.13)

on the parameter s ∈ R, whereas for 0 < τ 6 1, we only have Hölder continuity of
%j

(
tj(s); τ

)
available.

For every ωj and s fixed, we parameterize the smooth, simply closed curve
γω,tj(s),j in the complex state plane by the parameter σ ∈ I as the arc length on
this regular curve divided by the total length of γω,tj(s),j . Varying now s, the curve
varies and varying both parameters, s and σ we obtain a regular, doubly periodic
C2–manifold, the restriction manifold (see [17, Sec. 1.8]),

Mj(τ, ω) : X = Uj(τ, ω; s, σ), Y = Vj(τ, ω; s, σ) for (s, σ) ∈ I × I (4.14)

for each j = 0, . . . , m. Since for fixed s, τ, j, ω, (4.14) describes a simple, closed
plane curve γω,tj ,(s),j and Uj , Vj are 2π–periodic in s, the manifolds Mj(τ, ω) can
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be embedded into the ambient space R3 forming m+1 tori for every fixed τ ∈ [0, 1]
and ω ∈ Rm−1; e.g. by the parametric representations

Mj(τ, ω) : x1 =
(
R + Uj(τ, ω; s, σ)

)
cos s, x2 =

(
R + Uj(τ, ω; s, σ)

)
sin s ,

x3 = Vj(τ, ω; s, σ),

where R > 0 is chosen large enough to avoid selfintersecting.
Hence, if f(z) is a holomorphic solution in Ωm satisfying (4.10), then on each

of the restriction manifolds we find the point
(
s, σj(s)

)
such that

f
(
tj(s)

)
= Uj

(
τ, ω; s, σj(s)

)
+ iVj

(
τ, ω; s, σj(s)

)

for s ∈ I, j = 0, . . . ,m .
(4.15)

Moreover, if f
(
tj(•)

) ∈ Cβ(I) and, for ω and τ fixed, %j

(
tj(•); τ

) ∈ Cβ(I) then
σj ∈ Cβ(I) as well (see Lemma 1.8.2 in [17]). Now we associate with (4.15), (4.9)
and (4.10) a nonlinear operator equation for the functions σ0, . . . , σm, based on an
appropriate representation of f(z) = u + iv.

In order to express v on the boundary component Γj , we employ the modified
Neumann function ΓII and Green’s theorem to find the representation

v(ξ, η) =
∫

Γ

u dΓII +
∫

Γ

vθds for ζ = ξ + iη ∈ Ωm

which holds up to the boundary Γ. In particular, for ζ ∈ Γj we have
∫

Γ

u dΓII(ζ) = −Hju|Γj +
∫

Γ

uKj

(
ζ, z(s)

)
ds,

where
Hjuj =

1
π

∫

Γj

uj(s)
d

ds
log |ζ − z(s)|ds

is Hilbert’s singular integral operator, and where the integral is defined as Cauchy’s
principal value. The functions Kj are in C2(Γ × Γ) (at least). Since each of the
closed curves Γj is 1–periodically parameterized, and on Γj the traces of functions
are 1–periodic, we replace Hj by the Hilbert transform

Hu(t) =

1
2∫

− 1
2

u(s) cot
(
π(s− t)

)
ds , (4.16)

and the difference of operators Hj−H0 then has a smooth integral operator kernel
(at least in C2(Γ× Γ) as well). Hence, with uj = u|Γj ,

v|Γj = Huj + Tu|Γj +
∫

Γ0

vθds , (4.17)
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where T : Lp(Γ) → C2(Γ) is a continuous linear mapping. Hence, solving the
nonlinear Riemann–Hilbert problem, (4.9) and (4.10), equation (4.15) with holo-
morphic f is equivalent to finding the functions σj ∈ Cβ(I) and ω ∈ Rm−1 as the
solutions of the nonlinear equations

Vj

(
τ, ω; s, σj(s)

)−
1
2∫

− 1
2

cot
(
π(s′ − s)

)
Uj

(
τ, ω; s′, σj(s′)

)
ds′ − TU |Γj

−
∫

Γ0

V0

(
τ, ω; s′, σ0(s)

)
θ(s′)ds′ = 0 for s ∈ I, j = 0, . . . , m ,

(4.18)

together with
∫

Γj

Vj

(
τ, ω; s′;σj(s′)

)∂ej

∂n
ds′ = 0 for j = 1, . . . ,m , (4.19)

where U = (U0, . . . , Um).
For τ = 0, these equations are equivalent to finding the holomorphic solution

of (4.9) and (4.10) for the case %j ≡ 1 and cj ≡ 0. This case was considered in [9]
where we obtained at least two topologically different holomorphic solutions f0

+(z)
and f0

−(z) with f0
+, f0

− ∈ Cβ(Ωm).
Let us return to the equation (4.18) written in short as

Aτ (ω; σ) = 0 (4.20)

for σ = (σ0, . . . , σm) ∈ Cβ(I) and ω ∈ Rm−1. If we take the linearization with
the Frechét derivative about a given solution (σ, ω), then it becomes a system of
linear singular integral operators together with a linear mapping in Rm−1,
(
A′τ (ω, σ)(ω̃, σ̃)

)∣∣
Γj

=





((
∂

∂σj
Vj

)(
τ, ω; s, σj(s)

))
σ̃j(s)−

(
H|Γj

(
∂

∂σj
Uj

)
σ̃j

)
(s)

−
m∑

k=0

(
T

∂U

∂σ

)
σ̃k − δ0k

∫

Γ0

∂V0

∂σ0
σ̃0(s′)σ(s′)ds′ ;

m∑

k=1

∫

Γj

∂Vj

∂n
dsω̃k

(4.21)

of Fredholm index 0 because of (3.8), operating on σ̃ and ω̃. Note that the coeffi-
cients are in Cβ(I), and that the last two terms define linear compact operators.
Moreover, the right inverse Bτ (ω, σ) to A′τ (ω, σ) exists for every τ ∈ [0, 1] and
ω ∈ Rm−1 as will be shown in Appendix A4. The dependence on τ is uniformly
continuous and defines a homotopic path of operators Aτ connecting the case τ = 0
with τ = 1 on which we can use the a priori estimate (4.4) that guarantees the
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uniform boundedness of Bτ (ω, σ) as well. Hence, we can employ the Newton–
Kantorovič method in [8, Appendix], (Appendix A4, Theorems 4.7 and 4.8) which
implies that the set T := {τ ∈ [0, 1] where (4.20) has a solution σ ∈ Cβ(Γ),
ω ∈ Rm−1} is open, and, because of the continuity of Aτ , is closed in [0, 1] as well.
Hence, T = [0, 1]. Since for τ = 0, we have a solution f0

−(z), we find also a solution
f−(z) for τ = 1, that is of (4.2) and (4.3) which is uniquely associated with f0

−(z).
If we start with f0

+(z), we find a second solution f+(z) (see [9, Theorem 7.2]).
In view of Theorem 4.1, we then have f+, f− ∈ Cβ(Ωm) with 0 < β < 2α0− 1.

¥

Note that Lemma 4.3 implies the existence of the two mappings A+ and A−
in (4.6), respectively (4.5).

Proof of Theorem 4.2. The mapping

B+ : (%, c) 7→ f+ := A+(%, c) Th.2.27−→ w̃
Th.2.17−→ (%̃, c̃) ,

B+ : Σα0 → Cβ(Ωm) Th.2.2−→ Cβ(Ωm) → Cβ(Ωm) Th.2.1−→ Σα2 ↪→ Σα0

(4.22)

with α2 > α0 is compact because of Σα2 b Σα0 ; and Σα0 is closed and convex in∏m
j=0 Cα0(Γj)×Rm−1. Hence, we apply Schauder’s fixed point principle to find a

fixed point
(%0

+, c0+) ∈ B+(%0
+, c0+)

of B+.
In the same manner we find a fixed point to B− corresponding to A− as

proposed. ¥

Appendix A1. The modified Green and Neumann functions

Based on the results in [15, Section IV] by Bogdan Bojarski and [18], we now define
the modified Green’s function

GI(z, ζ) =
1
2π

ln
1

|z − ζ| + gI(z, ζ)

of the Laplacian for Ωm with homogeneous Dirichlet conditions, i.e.

GI(z, ζ)|ζ∈∂Ωm = 0 and z ∈ Ωm .

Let ek(z) be the harmonic basis defined by the following properties:

∆ek = 0 in Ωm, k = 1, 2, . . . ,m

with ek|Γj = δk,j , j = 0, 1, 2, . . . ,m.

Then
∮
Γk

∂
∂nekds 6= 0 and

ajk :=
∫

∂Ωn

ej
∂

∂n
ekds for j, k ∈ {1, 2, . . . ,m}
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defines a positive definite symmetric capacitance matrix. Its inverse cjk with
m∑

k=1

cjkak` = δj`, j, ` = 1, 2, . . . ,m

is also positive definite.
Next, we define the modified Green’s function by

ΓI(z, ζ) := GI(z, ζ)−
m∑

j,k=1

cjkej(z)ek(ζ) (4.23)

which now satisfies the boundary conditions

ΓI(z, ζ)|ζ∈Γ`
= −

m∑

j=1

cj`ej(z) for ` = 1, . . . ,m ,

ΓI(z, ζ)|ζ∈Γ0 = 0 .

(4.24)

For any given F ∈ Cα(Ωm) and ϕ ∈ C0(∂Ωm), the function

u := −
∫

∂Ωm

ϕ
∂

∂n
ΓIds−

∫∫

Ωm

FΓIdΩ

then satisfies

∆u = F in ΩN ,

u|Γ`
= ϕ−

m∑

j,k=1

cjk

{ ∮

∂Ωm

ϕ
∂ej

∂n
ds +

∫∫

Ωm

FejdΩ
}

δk`, ` = 0, . . . ,m ,

and ∫

Γ`

∂u

∂n
ds = 0 .

Hence, u admits a harmonic conjugate.

Let ΓII(z, ζ) denote the modified harmonic Neumann’s function, given
by

ΓII(z, ζ) =
1
2π

ln
1

|z − ζ| + gII(z, ζ) (4.25)

satisfying
∂ΓII

∂n

∣∣∣
∂Ωm

= −θ(s) with
∫

∂Ωm

θΓIIds = 0 (4.26)

and
θ|Γ0 > 0, θ|Γj = 0, j = 1, . . . , m,

∫

∂Ωm

θds =
∫

Γ0

θds = 1 ,

which is uniquely determined.
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In relation with the Cauchy–Riemann operator one has the following well
known lemma, which we quote without proof (see [11, Section 9.2]).

Lemma 4.4. Let c ∈ Cα(Ωm) and ψ ∈ Cα(Γ) with 0 < α < 1.

(i) Then w(ζ) = u(ζ) + iv(ζ) given by

u(ζ) = −
∮

Γ

ψ
∂ΓI

∂n
ds + 4 Re

∫∫

Ωm

c
∂ΓI

∂z
dΩ ,

v(ζ) =
∮

Γ

ψdΓII + κ + 4 Im
∫∫

Ωm

c
∂ΓII

∂z
dΩ

(4.27)

belongs to Cα(Ωm) for every κ ∈ R and satisfies

∂w

∂z
in Ω, (4.28)

u|Γ0 = ψ|Γ0

u|Γ`
= ψ|Γ`

+
m∑

k=1

ck`

{ ∮

Γk

ψ
∂ek

∂n
ds− 4Re

∫∫

Ω

c
∂ek

∂z
dΩ

} (4.29)

for ` = 1, . . . , m.
(ii) If ∮

Γk

ψ
∂ek

∂n
ds− 4Re

∫∫

Ω

c
∂ek

∂z
dΩ = 0 for k = 1, . . . , m ,

then, for every κ ∈ R, the function w in (4.27) is the solution of (4.28) in
Ω and Re w|Γ = ψ on Γ.

Appendix A2. The similarity principle

The Theorem 2.1 (S1) of the similarity principle follows with the choice ψ = 0
and κ = 0 from the following theorem in [18], which goes back to Bers and Niren-
berg [2, 3].

Theorem 4.5. Let w ∈ Cβ(Ωm) with 0 < β < 1 be a solution of (2.1) in Ωm

with coefficients A, B ∈ Lq(Ωm) where q > 4. Then for every function w̃ = ũ + iṽ
given for ζ = ξ + iη ∈ Ωm by

ũ(ξ, η) = −
∮

Γ

ψdΓII + κ0 + 4 Re
∫∫

Ωm

g(x, y)
∂ΓII

∂z
(x, y; ξ, η)dΩ , (4.30)

ṽ(ξ, η) = −
∮

Γ

ψ
∂

∂n
ΓIds + 4 Im

∫∫

Ωm

g(x, y)
∂ΓI

∂z
(x, y; ξ, η)dΩ (4.31)
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with

g :=

{
A + B w

w where w 6= 0,
0 where w = 0,

(4.32)

and any chosen ψ ∈ Cα(Γ) with 0 < α 6 1− 2/q and κ ∈ R, the function

f(z) := w(z)e−w̃(z) (4.33)

will be holomorphic in Ωm and f ∈ Cβ′(Ωm), where β′ = min{β, α}. Moreover,
w̃ ∈ Cα(Ωm), and on Γ we have

ṽ|Γ`
= ψ|Γ`

+
m∑

k=1

ck`

{∮

Γk

ψ
∂ek

∂n
ds− 4 Im

∫∫

Ωm

g
∂ek

∂z
dΩ

}
for ` = 1, . . . ,m ;

ṽ|Γ0 = ψ|Γ0 . (4.34)

If, in addition, ψ is absolutely continuous, one has

∂ũ

∂n

∣∣
Γ
ds = dψ|Γ and κ0 =

∮

Γ0

ũθds .

Proof. Set W := iw̃. Then (4.30) and (4.31) is equivalent to the relation (4.27)
for W ,

W (ζ) = −
∮

Γ

ψ
(∂ΓI

∂n
− i

∂ΓII

∂s

)
ds− iκ

+ 2
∫∫

Ωm

{
(ig)(ΓI

z + ΓII
z ) + (ig)(ΓI

z − ΓII
z )

}
dΩ ,

which is the equation (1.1.23) in [21] with a = b = 0 and c = ig. Hence,

∂W

∂z
= ig ,

and for f defined in (4.33), we get with (4.32)

∂f

∂z
=

∂w

∂z
e−w̃ − we−w̃ ∂w̃

∂z
= e−w̃{Aw + Bw − wg} = 0 in Ω ,

so, f is holomorphic. As for the Hölder continuity of w̃, since for w ∈ Cβ(Ωm), the
function g is measurable and in Lq for q > 4, we find from [15] that w̃ ∈ Cα(Ωm)
with 0 < α 6 1 − 2

q . The boundary conditions (4.34) are a consequence of the
generalized Green functions’ properties. ¥

The proof of the existence of w̃ in Theorem 2.2 is the same as in [11, Chap.9] for
a simply connected domain Ω except for its uniqueness. To this end, we consider
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the mapping

T (v) := 2
∫∫

Ωm

{− (
Re A + |B| cos(p− 2v)

)
ΓI

y(z, ζ)

+
(
ImA + |B| sin(p− 2v)

)
ΓI

x(z, ζ)
}
dΩ

(4.35)

for continuous functions v ∈ C0(Ωm).

Lemma 4.6. The mapping T (v) has a fixed point ṽ ∈ Cα(Ωm), 0 < α < 1− 2
q < 1:

i.e.,
ṽ = T (ṽ) . (4.36)

Proof. Note that for all v ∈ C0(Ωm) the functions
(
(Re A + |B| cos(p− 2v)

)
and(

Im A + |B| sin(p− 2v)
)
belong to Lq(Ωm) and, hence,

‖T (v)‖Cα(Ωm) 6 cα

with a constant cα not depending on v, and 0 < α < 1− 2
q (see [15]). Hence, the

convex and compact subset

Bα := {v ∈ Cα(Ωm) | ‖v‖Cα(Ωm) 6 cα}

of the Banach space C0(Ωm) equipped with the maximum norm is mapped con-
tinuously by T into Bα. Hence, due to Michael’s selection theorem for multivalued
mappings, we can use Schauder’s fixed point theorem for multivalued maps (see [22,
Theorem 9.G and Corollary 2.13]), which provides us with a solution ṽ ∈ Cα(Ωm),
i.e. a solution of Equation (2.5). ¥

In contrast to the case of a simply connected domain, where ṽ is uniquely
determined, here we use Schauder’s fixed point theorem for multivalued mappings.
But then we specify among those fixed points the one obtained by applying (2.9)
for t ∈ [0, 1], the continuation method in combination with the Newton–Kantorovič
iteration (4.49) and get a well defined mapping f 7→ w̃.

With ṽ ∈ Cα(Ωm) we now compute ũ ∈ Cα(Ωm) from (2.6). Then Lemma 4.4
with W = iw̃ implies that

∂w̃

∂z
= A + |B|ei(p−2ṽ) ,

and for w := f(z)ew̃ we find

∂w

∂z
= f(z)ew̃ ∂w̃

∂z
= f(z)ew̃{A + |B|eip−2iṽ} = Aw + Bw ,

i.e., w satisfies (1.1) in Ωm.
The boundary relations (2.8) follow from (4.29) for W = iw̃ and (2.5). This

completes the proof of Theorem 2.2.
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Appendix A3: Proof of Theorem 4.1

Following [8], by using conformal mapping, we can assume that for each t0 ∈ [0, 1)
and ε > 0 there exists δ(ε) > 0 such that for |t− t0| < δ(ε) the boundary condition
Fj(ω, z, u, v) = 0 for z ∈ Γj for j = 0, . . . ,m has the form

u = gj(t, ω, v) ,

where the function gj(t, ω, v) is Hölder continuous with respect to t, i.e. in Cα,
and differentiable with respect to v, satisfying

∣∣∣∣
∂gj

∂v

∣∣∣∣ = Cgj
ε and

|gj(t1, ω, v)− gj(t2, ω, v)|
|t1 − t2|α 6 C0 (4.37)

for every fixed ω. Now, the remaining part of the proof of the Zygmund estimates
follows closely the presentation in [12]. Due to the maximum principle, for any
holomorphic f(z) = u(z) + iv(z) satisfying (4.3) we have

‖f‖C0(Γ) 6 cp (4.38)

with the constant cp given by the maximum of |%je
−icj γω,z,j | for z ∈ Γj , j =

0, . . . , m, and (%, c) ∈ Σα.
To prove (4.4), we use the localization principle mentioned above, as well

as the representation (4.17) of holomorphic functions on multiply–connected do-
mains Ωm. Let ϕ and ψ in C∞(Γj) be supported on Γj . Then for fixed ω and all
t
(1)
j = tj(t1) and t

(2)
j = tj(t2) with t

(1)
j 6= t

(2)
j we have

ϕ(t1)ψ(t2)
uj(t1)− uj(t2)

t1 − t2
= ϕ(t1)ψ(t2)

gj

(
t1, v(t1)

)− gj

(
t2, v(t1)

)

t1 − t2

+ ϕ(t1)ψ(t2)
gj

(
t2, v(t1)

)− gj

(
t2, v(t2)

)

v(t1)− v(t2)
· v(t1)− v(t2)

t1 − t2
.

(4.39)

In view of (4.39), we define the following operators (according to [12]),

PU(t1, t2) := ϕ(t1)ψ(t2)U(t1, t2) ,

Qu(t1, t2) :=
u(t1)− u(t2)

t1 − t2
,

(
B(v)

)
(t1, t2) :=

gj

(
t2, v(t1)

)− gj

(
t2, v(t2)

)

t1 − t2
,

(
A(v)

)
(t1, t2) :=

gj

(
t1, v(t1)

)− gj

(
t2, v(t1)

)

t1 − t2
.

Then (4.39) can be written as

PQu = PA(v)− PB(v) · v(t1)− v(t2)
t1 − t2

.
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Since P is defined by multiplication with C∞–functions, P is a bounded linear
operator P : Lp(I × I) → Lp(I × I) where I = [0, 1] is the periodicity interval.
By the definition of the W

1−1/p
p (I)–norm on I, the operator Q acts continuously

from W
1−1/p
p (I) into Lp(I × I). Further, we have from (4.37) the estimates

|B(v)(t1, t2)| 6 ε and |A(v)(t1, t2)| 6 c0|t1 − t2|α0−1 . (4.40)

So, we obtain for 2 < p < 1
1−α0

together with (4.38)

‖PA(v)‖Lp(I×I) 6 cp‖A(v)‖Lp(I×I) 6 cpc1 ;

since then the space W
1−1/p
p (I) ↪→ Cβ(I) is continuously imbedded into the Hölder

space Cβ(I) for β < 1− 2/q (see [14, Remark 2, p.71]); finally,

‖PQu‖Lp(I×I) 6 cpc1 + εcgj

∣∣∣v(t1)− v(t2)
t1 − t2

∣∣∣
Lp(I×I)

. (4.41)

For the last term in (4.41), we now employ the relation (4.17) and find on Γj :

v(t1)− v(t2)
t1 − t2

∣∣∣
I

=
1

t1 − t2

(Huj(t1)−Huj(t2)
)

+
1

t1 − t2

(
Tu|I(t1)− Tu|I(t2)

)
.

For the first term on the right–hand side with the Hilbert transform we now exploit
1–periodicity and follow [12], by writing just u for u|Γj :

1
t1 − t2

(Hu(t1)−Hu(t2)
)

=

1
2∫

− 1
2

u(s + t1)− u(s + t2)
(s + t1)− (s + t2)

cot(πs)ds =: GU(t1, t2) ,

where GU := QHu. With W (s, t) := U(t, s + t) we have

GU(t, r + t) =

1
2∫

− 1
2

W (r, s + t) cot(πs)ds ,

and Lp continuity of H implies

1
2∫

− 1
2

|GU(t, r + t)|pdt 6 c

1
2∫

− 1
2

|W (r, t)|pdt =

1∫

0

|U(t, r + t)|pdt .

Hence,
‖GU‖p

Lp(I×I) 6 ‖U‖p
Lp(I×I) .

Finally, we localize again,

U = PU + (I − P )U = PQu + (I − P )Qu ,
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and (I − P )Q is continuous from L1(I) into L∞(I × I) (see [12]) which yields

‖QV ‖p
Lp(I×I) 6 c1‖PQu‖p

Lp(I×I) + c1‖(I − P )Qu‖p
Lp(I×I)

+ c1‖QTu‖p
Lp(I×I) +

∣∣∣
∫

Γ

vσds
∣∣∣
p

6 c1‖PQu‖p
Lp(I×I) + c2 , (4.42)

where c2 depends on c0 and on ε, whereas c1 is independent of ε.
Now we insert (4.42) into (4.41) and obtain

‖PQu‖p
Lp(I×I) 6 εcgj

c1‖PQu‖p
Lp(I×I) + cpc1 + εcgj

c2 .

Finally, by choosing ε > 0 small enough to satisfy εcgj
c1 6 1

2 , we obtain the
first estimate in (4.4). Now, if 0 < β < 2α0 − 1 and 2 < p < (1 − α0), then
β < 1−2/p and W

1−1/p
p (I) is continuously imbedded into Cβ(I) (see [14, (1.3.10),

Remark 2 and (2.2.11) on p.71], which yields the second proposition in (4.4). Since
1
2 < α0 < 1− 2

q (cf. Theorem 4.2) we find 0 < β < 1− 4
q . ¥

Appendix A4. The Newton–Kantorovič method

From [8] we quote the following results.

Theorem 4.7. Let A : X → Y be a continuous mapping where X and Y are
Banach spaces, and let A be Frechét differentiable with Frechét derivative A′x ∈
L(X,Y ), which is Lipschitz continuous:

‖A′x0
−A′x‖L(X,Y ) 6 λ2‖x0 − x‖X (4.43)

with λ2 > 0.
Let A′x0

possess a bounded right inverse

Bx0 : Y → X̃ := Bx0Y ⊂ X with λ1 := ‖Bx0‖L(X,Y ) . (4.44)

Then there exists ε > 0 such that for every x with ‖x − x0‖ < ε the Frechét
derivatives A′x have also bounded right inverses Bx and

‖Bx‖L(Y,X) 6 λ1

1− λ1λ2‖x0 − x‖X
. (4.45)

Proof. For the restricted mapping

Ã′x0
:= A′x0

|X̃
we have

Ã′x0
Bx0y = y for all y ∈ Y and Bx0Ã′x0

x = x for all x ∈ X̃ .
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Since for
‖Bx0(A′x0

−A′x)‖L(X,X) 6 λ1λ2‖x0 − x‖X < 1

the inverse

[I − Bx0(A′x0
−A′x)]−1 =

∞∑

`=0

(Bx0(A′x0
−A′x)

)`

exists, we find for the restricted operators

Ãx|X̃ : X̃ → Y

the inverse Bx := (Ã′x)−1 as

Bx :=
∞∑

`=0

(Bx0(Ã′x0
− Ã′x)

)`Bx0 ,

which defines a right inverse to A′x. So, if Bx0 is the whole bundle of right in-
verses, we obtain with the family of spaces X̃ also the bundle of right inverses Bx.
Moreover,

‖Bx‖L(Y,X) 6 λ1

1− λ1λ2‖x− x0‖
for λ1λ2‖x−x0‖ < 1 and ε := (λ1λ2)−1. If ‖x0−x‖ < {2(λ1 +1)(λ2 +1)}−1 then
uniformly

‖Bx‖L(Y,X) < 2λ1 . (4.46)

¥

Theorem 4.8. Let x0 ∈ X and A have the properties as in Theorem 4.7. Then if

y = A(x0) ∈ Y

with
‖y‖Y < λ3 := min

{(
4λ2

1λ2

)−1
,
(
2(λ1 + 1)(λ2 + 1)

)−1}
, (4.47)

there exists a solution x ∈ X of

A(x) = 0 (4.48)

with
‖x− x0‖X < {2(λ1 + 1)(λ2 + 1)}−1 .

This solution is uniquely determined by Newton’s method:

xk+1 := xk − Bxk
fk and fk+1 := A(xk+1) , (4.49)

where f0 := −y and x = lim
k→∞

xk. Hence, for y satisfying (4.47), the mapping
y 7→ x is well defined and continuous.
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Proof. From (4.49) we obtain

xk+1 = xk + hk with hk = −Bxk
fk ,

and from

A(xk + hk) = A(xk) +

1∫

0

A′xk+thk
hkdt = A(xk) +A′xk

hk + R ,

R =

1∫

0

(A′x+thk
−A′xk

)hkdt

the relation
fk+1 = fk −A′xk

Bxk
fk + R = R .

Hence, with (4.43)

‖fk+1‖ = ‖R‖ 6 λ2

1∫

0

t‖hk‖2dt =
1
2
λ2‖hk‖2 .

If we guarantee that ‖xk−x0‖ < {2(λ1 +1)(λ2 +1)}−1 then we obtain from (4.46)

‖fk+1‖ 6 2λ2
1λ2‖fk‖2 6 2λ2

1λ2λ3‖fk‖
if ‖fk‖ 6 λ3. So, with q := 2λ2

1λ2λ3,

‖fk‖ 6 qk‖f0‖ 6 qkλ3 .

Hence, with (4.46),

‖xk+1 − xk‖ = ‖hk‖ = ‖Bxk
fk‖ 6 2λ1‖fk‖ 6 2λ1λ3q

k ,

‖xk − x0‖ 6 2λ1λ3

1− q
. (4.50)

Therefore, we choose λ3 > 0 such that

λ3 = min
{
(4λ2

1λ2)−1, {2(λ1 + 1)(λ2 + 1)}−1
}

.

Then q = 1
2 , lim

k→∞
xk = x exists, and for every k we have ‖xk − x0‖ < {2(λ1 + 1)

× (λ2 + 1)}−1, and x satisfies (4.48). ¥

Now we are in the position to apply the continuation method to (4.20) with
the family Aτ of operators with τ ∈ T ⊆ [0, 1] and X := Rm−1×Cβ(Γ) = Y . The
operators depend continuously on τ and for every τ ∈ [0, 1] the Frechét derivative
(4.21) exists. For τ0 = 0, (4.20) has a solution, and the Frechét derivative possesses
a right inverse. Theorems 4.7 and 4.8 show that T is open since if Aτ0(ωτ0 , στ0) = 0
has a solution and A′τ0

(ωτ0 , στ0) has a right inverse, then Aτ1(ωτ1 , στ1) = 0 will also
admit a solution, and A′τ1

(ωτ1 , στ1) = 0 has a right inverse if y = Aτ1(ωτ0 ,στ0),
which is the case for 0 < |τ1 − τ0| small enough. Because of (4.50), if τ1 → τ0,
also (ωτ0 , στ1) → (ωτ0 , στ0) in X since y → 0. So, T is also closed. Consequently,
T = [0, 1] as proposed in Appendix A4.
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