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REFLECTION PRINCIPLE FOR QUASIMINIMIZERS

Olli Martio

Dedicated to Professor Bogdan Bojarski
on the occasion of his 75th birthday

Abstract: It is shown that the reflection principle holds for K–quasiminimizers in Rn, n > 2,
provided that K ∈ [1, 2). For n = 1 the principle holds for all K > 1 and an example shows that
K is not preserved in the reflection process. A local integrability result up to the boundary is
proved for the derivative of a quasiminimizer in Rn, n > 1; the result is needed for the reflection
principle.
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1. Introduction

Reflection principle is well-known for solutions of the degenerate quasilinear elliptic
equation

∇ ·A(x,∇u) = 0 (1)

where A(x, h) · h ≈ |h|p, p > 1, see [M]. More precisely, let H+ be the upper half
space in Rn, n > 1, P (x) = (x1, ..., xn−1,−xn) the reflection in ∂H+ and Ω an
open set in H+ such that there is an open set C in ∂H+ with C ⊂ ∂Ω. If now
u ∈ C(Ω ∪ C) ∩W 1,p

loc (Ω) is a weak solution of (1) in Ω, then u can be extended
by reflection to a solution of (1) in Ω∗ = Ω ∪ C ∪ P (Ω) provided that u|C = 0.
Here W 1,p(Ω) stands for the first order Sobolev space of Lp(Ω)–functions whose
first order distributional partial derivatives belong to Lp(Ω) and W 1,p

loc (Ω) is the
corresponding local space. The reflection process also involves the reflection of the
operator A to PΩ. For the p–harmonic operator A(x, h) = |h|p−2h, i.e. for the
p–harmonic equation

∇ · (|∇u|p−2∇u) = 0, (2)

the operator A remains invariant and hence the solutions to (2), the p–harmonic
functions, satisfy the usual reflection principle. For the precise assumptions on A
see [HKM].
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Let Ω ⊂ Rn be an open set and K > 1. A function u ∈ W 1,p
loc (Ω) is called

a K–quasiminimizer if
∫

Ω1

|∇u|p dx 6 K

∫

Ω1

|∇v|p dx (3)

for all open sets Ω1 ⊂⊂ Ω and for all functions v such that u− v ∈ W 1,p
0 (Ω1). The

space W 1,p
0 (Ω1) is the subspace of W 1,p(Ω1) whose functions have zero bound-

ary values, i.e. they can be approximated by compactly supported functions in
W 1,p(Ω1). A function u is called a quasiminimizer if u is a K–quasiminimizer for
some K > 1. If K = 1, then u is a minimizer and a solution of the p–harmonic
equation (2) in Ω. For the theory of quasiminimizers we refer to [GG] and [KiM].

The proof for the reflection principle for solutions of the equation (1) breaks
down to two separate problems. The first step is to show that the function u
belongs to W 1,p(U ∩ H+) for some neighborhood U of each point x ∈ ∂H+ ∩ C
and the second step is to show that the reflected u is a solution of the reflected
equation in Ω∗. In Section 2 we consider the first step for quasiminimizers in
Rn, n > 1. For n = 1 a stronger form of this result can be found in [MS].

In Section 3 we show that the reflection principle applies to K–quasi-minimizers
whenever K ∈ [1, 2) in Rn, n > 1. Our proof gives a rather rough estimate for the
quasiminimizing constant of the reflected function but in Section 5 we show, by
an example, that the reflection process does not preserve any K > 1.

We consider the reflection principle for quasiminimizers in the one dimensional
case in Sections 4 and 5. In this case it turns out that the upper bound 2 for K
is not needed. This remains an open problem in Rn, n > 2.

2. Integrability of the derivative up to the boundary

The following theorem is a slightly extended counterpart of the local result which
holds for A–harmonic functions, see [M, Lemma 2.8]. We use a version of the
concept of relative p–capacity, see [HKM, p. 144]. Let Ω ⊂ Rn be a bounded
open set and E ⊂ Ω. For a compact set K and s > 0 we denote by Ks(Ω) the
open set {x ∈ Ω : d(x,K) < s}. We say that E is of zero p–capacity relative
to Ω if for all ε > 0 and for all compact sets K ⊂ E there exists a function
ϕ ∈ C(K ∪ Ω) ∩W 1,p(Ω) such that ϕ|Ω \Kε(Ω) = 0, ϕ|K = 1 and

∫

Ω

|∇ϕ|p dx < ε.

It is easy to see that if E ⊂ Ω is of p–capacity zero, then E is of p–capacity zero
relative to Ω but the converse is not true as simple examples show.

Theorem 2.1. Let Ω ⊂ Rn be a bounded open set and C an open subset of ∂Ω.
Suppose that u ∈ W 1,p

loc (Ω) is a K–quasiminimizer in Ω and v ∈ W 1,p(Ω). If u and
v are bounded and

lim
y→x,y∈Ω

u(y) = lim
y→x,y∈Ω

v(y) (4)
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for all x ∈ C except in a set E of p–capacity zero relative to Ω, then each point
x ∈ C has an open neighborhood U such that u ∈ W 1,p(U ∩ Ω).

Proof. Let E be the set of points in C where (4) does not hold. For each i =
1, 2, · · · the set

{
x ∈ C : lim inf

y→x, y∈Ω
u(y) + 1/i 6 lim sup

y→x, y∈Ω
u(y)

}

is a closed set in C and hence the sets Su and Sv where the limits

lim
y→x, y∈Ω

u(y), lim
y→x, y∈Ω

v(y)

do not exist are countable unions of compact sets. On the other hand the sets

E+ =
{

x ∈ C : lim sup
y→x, y∈Ω

v(y) < lim inf
y→x, y∈Ω

u(y)
}

,

E− =
{

x ∈ C : lim sup
y→x, y∈Ω

u(y) < lim inf
y→x, y∈Ω

v(y)
}

are open in C and hence also countable unions of compact sets. Since E = Su ∪
Sv ∪ E+ ∪ E−, the set E is of the form ∪Fi where Fi ⊂ ∂C, i = 1, 2, · · · , are
compact sets of zero p–capacity relative to Ω.

Since u and v are bounded, |u|, |v| 6 M for some M > 0. Let ε > 0 and for each
i = 1, 2, . . . choose functions ϕi ∈ C(Fi∪Ω)∩W 1,p(Ω) such that ϕi|Ω\F ε/i

i (Ω) = 0
and

‖∇ϕi‖Lp(Ω) 6 ε

2i
(5)

with 0 6 ϕi 6 2M and ϕi = 2M on Fi. This is possible since Fi is a compact set
of zero p–capacity relative to Ω.

Fix xo ∈ C and let r = d(xo, ∂Ω \ C)/2. Choose a Lipschitz cut–off function
Ψ+such that 0 6 Ψ+ 6 2M , Ψ+ = 0 in B(xo, r/2) and Ψ+ = 2M on Rn \B(xo, r).
The function

wo = Ψ+ +
∑

i

ϕi

is continuous in Ω since each point y ∈ Ω has a neighborhood where only a finite
number of the functions ϕi are non–zero. Moreover, from (5) it follows

‖∇wo‖Lp(Ω) 6 ‖∇Ψ+‖Lp(Ω) +
∑

i

‖∇ϕi‖Lp(Ω) 6 ‖∇Ψ+‖Lp(Ω) + ε. (6)

Write U+
ε = {y ∈ Ω∩B(xo, r) : u(y) > v(y) + wo(y) + ε}. Now U

+

ε is compact
in Ω. To see this let xi ∈ U+

ε and xi → x ∈ C. Then

lim inf
i→∞

u(xi) > v(x) + ε
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provided that x ∈ C \ E and

lim inf
i→∞

u(xi) > lim inf
i→∞

v(xi) + 2M + ε > M + ε

provided that x ∈ C ∩ E. Hence U
+

ε does not meet C. It easily follows that U
+

ε

cannot meet ∂B(xo, r) because wo > Ψ > 2M there.
Since U

+

ε is compact in Ω and u − (v + wo + ε) ∈ W 1,p
o (U+

ε ), we can use the
quasiminimizing property of u although U+

ε need not be open in Ω, see [KiM,
Lemma 3.2]. This yields

‖∇u‖Lp(U+
ε ) 6 K1/p‖∇(v + wo)‖Lp(Ω+

ε )

6 K1/p
(‖∇v‖Lp(Ω+

ε ) + ‖∇wo‖Lp(Ω)

)
(7)

6 K1/p
(‖∇v‖Lp(Ω+

ε ) + ‖∇Ψ+‖Lp(Ω) + ε
)

< ∞.

Letting ε → 0 we obtain from the Lebesgue monotone convergence theorem that

‖∇u‖Lp(U+) 6 K1/p
(‖∇v‖Lp(U+) + ‖∇Ψ+‖Lp(Ω)

)
(8)

where U+ = {y ∈ Ω ∩B(xo, r) : u(y) > v(y) + Ψ+(y)}.
Setting Ψ− = −Ψ+ and using −wo instead of wo we obtain a similar estimate

‖∇u‖Lp(U−) 6 K1/p
(‖∇v‖Lp(U−) + ‖∇Ψ−‖Lp(Ω)

)
(9)

where U− = {y ∈ Ω ∩B(xo, r) : u(y) < v(y) + Ψ−(y)}. Since
{y ∈ Ω ∩B(xo, r/2) : u(y) 6= v(y)} ⊂ U+ ∪ U−

and ∇u = ∇v a.e. in the set {u(y) = v(y)}, we obtain from (8) and (9)

‖∇u‖Lp(Ω∩B(xo,r/2)) 6 2K1/p
(‖∇v‖Lp(Ω) + ‖∇Ψ+‖Lp(Ω)

)
< ∞. (10)

Since u is bounded, this shows that u ∈ W 1,p(Ω∩B(xo, r/2) and U = Ω∩B(xo, r/2)
is the required neighborhood of xo. The theorem follows. ¥

Remark 2.2. The boundedness of u cannot be dispensed in Theorem 2.1 for
n > 1; the Poisson kernel in the unit ball gives a typical counterexample in the
case p = 2.

The next theorem is a global version of Theorem 2.3.

Theorem 2.3. Suppose that u is a bounded K–quasiminimizer in a bounded open
set Ω of Rn and that v ∈ W 1,p(Ω) is bounded. If

lim
y→x,y∈Ω

u(y) = lim
y→x,y∈Ω

v(y) (11)

for all x ∈ ∂Ω except in a set E of p–capacity zero relative to Ω, then u ∈ W 1,p(Ω)
and ∫

Ω

|∇u|p dx 6 K

∫

Ω

|∇v|p dx. (12)

Moreover, u− v ∈ W 1,p
0 (Ω) provided that the set E is of p–capacity zero.
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Proof. The proof is similar to that of Theorem 2.1 except that the function Ψ
is not needed. The estimate (12) then follows from (10); the constant 2 can be
omitted in this case. If the set E is of p–capacity zero, then [HKM, Theorem 4.5]
yields u− v ∈ W 1,p

0 (Ω). ¥

3. Reflection principle for quasiminimizers

In this section we show that K–quasiminimizers can be reflected if K satisfies
1 6 K < 2. It remains an open question if an upper bound for K is needed in
Rn, n > 2.

If u is a K–quasiminimizer in an open set Ω ⊂ Rn, then, after a redefinition
on a set of measure zero, u is locally Hölder continuous in Ω. Thus we can always
assume that a quasiminimizer is continuous. We denote by P : Rn → Rn the
reflection P (x) = (x1, x2, · · · ,−xn) in ∂H+.

Theorem 3.1. Let Ω ⊂ Rn be an open set in the upper half space H+ and let
C ⊂ ∂Ω ∩ ∂H+ be open in ∂H+. Suppose that u ∈ W 1,p

loc (Ω) ∩ C(Ω ∪ C) is a
K–quasiminimizer in Ω with u|C = 0 and define u(x) = −u(Px), x ∈ PΩ. Then
for 1 6 K < 2 the reflected function u is a K ′–quasiminimizer,

K ′ =
K

2−K
,

in Ω∗ = Ω ∪ C ∪ PΩ.

Proof. Theorem 2.1 together with the continuity of u in Ω ∪ C and the ACLp

characterization of the Sobolev functions, see e.g. [HKM, p. 260], implies that the
function u belongs to C(Ω∗)∩W 1,p

loc (Ω∗). Let Ω1 be an open subset of Ω∗ with Ω1

compact in Ω∗ and let v satisfy v − u ∈ W 1,p
0 (Ω1). We need to show

∫

Ω1

|∇u|p dx 6 K ′
∫

Ω1

|∇v|p dx. (13)

Continue the function v to Ω∗ \ Ω1 as u. Then the function v belongs to
W 1,p

loc (Ω∗). Set v∗(x) = −v(Px), x ∈ PΩ1. Now v∗ − u ∈ W 1,p
0 (PΩ1) and we can

continue v∗ to Ω∗ \ PΩ1 as u. Again the function v∗ belongs to W 1,p
loc (Ω∗). Write

w = (v + v∗)/2 and Ω∗1 = Ω1 ∪ PΩ1. The open set Ω∗1 is symmetric with respect
to ∂H+ and for each x ∈ ∂H+

w(x) = (v(x) + v∗(x))/2 = (v(x)− v(Px))/2 = 0.

This means that w − u belongs to W 1,p
0 (Ω∗1 ∩H+) and to W 1,p

0 (Ω∗1 ∩ PH+) since
we can take v to be the quasicontinuous version of v in W 1,p

loc (Ω∗), see [HKM,
Chapter 4], and such a function ϕ ∈ W 1,p

loc (Ω∗) belongs to W 1,p
0 (Ω′) if and only if

ϕ(x) = 0 p–quasieverywhere in ∂Ω′ provided that Ω′ is compact in Ω∗. Note also
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that w = u in ∂Ω∗1 \ ∂H+. Now we can use the quasiminimizing property of u in
Ω∗1 ∩H+ and in Ω∗1 ∩ PH+, see also (12), to obtain

∫

Ω∗1

|∇u|p dx 6 K

∫

Ω∗1

|∇w|p dx. (14)

Since ∫

Ω1

|∇u|p dx =
∫

Ω∗1

|∇u|p dx−
∫

Ω∗1\Ω1

|∇u|p dx

and since the convexity of t → |t|p and (14) yield
∫

Ω∗1

|∇w|p dx 6 1
2

∫

Ω∗1

|∇v|p dx +
1
2

∫

Ω∗1

|∇v∗|p dx,

we obtain
∫

Ω1

|∇u|p dx 6 K

2

∫

Ω∗1

|∇v|p dx +
K

2

∫

Ω∗1

|∇v∗|p dx−
∫

Ω∗1\Ω1

|∇u|p dx. (15)

On the other hand
∫

Ω∗1

|∇v|p dx =
∫

Ω1

|∇v|p dx +
∫

Ω∗1\Ω1

|∇u|p dx (16)

and by symmetry ∫

Ω∗1

|∇v∗|p dx =
∫

Ω∗1

|∇v|p dx. (17)

Putting (15)–(17) together we obtain
∫

Ω1

|∇u|p dx 6 K

∫

Ω1

|∇v|p dx + K

∫

Ω∗1\Ω1

|∇u|p dx−
∫

Ω∗1\Ω1

|∇u|p dx

6 K

∫

Ω1

|∇v|p dx + (K − 1)
∫

Ω1

|∇u|p dx

because by the symmetry properties of u and Ω∗1
∫

Ω∗1\Ω1

|∇u|p dx 6
∫

Ω1

|∇u|p dx.

If now K < 2, then this yields (13) as required and the proof is complete. ¥

Remark 3.2. If K = 1 in Theorem 3.1, i.e. we consider minimizers, then Theorem
3.1 gives the usual reflection principle. Note that the proof is based on the Dirichlet
principle only and thus it can be applied to a great variety of situations.
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4. Reflection principle for n = 1

On the real line quasiminimizers form a much simpler class of functions than in
Rn, n > 2. In [GG] it was shown that f : (a, b) → R is a K–quasiminimizer if and
only if f satisfies a reverse type inequality

d∫

c

|f ′|p dx 6 K
|f(d)− f(c)|p
|d− c|p−1

(18)

in each subinterval [c, d] of (a, b). Every quasiminimizer is locally absolutely con-
tinuous and locally Hölder continuous in (a, b). In [MS] it was shown that a
K–quasiminimizer f : (a, b) → R always has a continuous extension to a or to b
provided that a > −∞ or b < ∞, respectively. Moreover, f then satisfies (18) in
all intervals [c, d] ⊂ [a, b]. This means that the first step, Theorem 2.1, holds for
quasiminimizers in the one dimensional case without any assumptions on bound-
ary values. Note also that a K–quasiminimizer is a monotone function and strictly
monotone if not constant, see [GG]. For additional properties of one dimensional
quasiminimizers see [MS].

Below we consider reflection principle in the case n = 1 and show, by an
example, that the quasiminimizing constant K is not preserved in the reflection
process. This is rather surprising since quasiminimizers tend to be more flexible
than minimizers. Let f : (a, b) → R be a K–quasiminimizer and a > −∞. As
noted above, the limit

f(a) = lim
x→a+

f(x)

exists. Define f∗ : (2a− b, b) → R as

f∗(x) =
{

f(x), x ∈ [a, b),
2f(a)− f(2a− x), x ∈ (2a− b, a).

If a = 0 and f(a) = 0, then f∗(x) = −f(−x), x ∈ (−b, 0) and thus f∗ is the
function obtained from f by the usual reflection.

Theorem 4.1. Suppose that f : (a, b) → R is a K–quasiminimizer, and a > −∞.
Then the function f∗ is a Ko–quasiminimizer in (2a− b, b) with Ko = 2pK.

Proof. We may assume that a = 0, f(0) = 0 and f is increasing. Let [c, d] ⊂
(−b, b). We need to show

d∫

c

|f∗′|p dx 6 Ko
|f∗(d)− f∗(c)|p
|d− c|p−1

. (19)

This is clear if [c, d] ⊂ (−b, 0] or [c, d] ⊂ [0, b). Hence we may assume that 0 ∈ (c, d).
Now either |c| > d or |c| 6 d and, by symmetry, we may assume |c| 6 d. Then

∫ 0

c

|f∗′(x)|p dx =
∫ |c|

0

|f ′(x)|p dx
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and we obtain
∫ d

c

|f∗′(x)|p dx = 2
∫ |c|

0

|f ′(x)|p dx +
∫ d

|c|
|f ′(x)|p dx

6 2
∫ d

0

|f ′(x)|p dx 6 2K
|f(d)− f(0)|p
|d− 0|p−1

.

On the other hand

|f(d)− f(0)|p = |f(d)|p 6 (f(d) + f(−c))p = (f∗(d)− f∗(c))p

and
dp−1 = (2d)p−1/2p−1 > (d− c)p−1/2p−1

because 2d > d + |c| = d − c. Hence the three previous inequalities yield (19) as
required and the proof is complete. ¥

For K > 1 set K ′′ = K/(2−K) if K < 2−2−p and K ′′ = 2pK if K > 2−2−p.
Now Theorems 3.1 and 4.1 give the following improvement for the quasiminimizing
constant of the function f∗.

Corollary 4.2. Let f and f∗ be as in Theorem 4.1. Then f∗ is a K ′′–quasiminimizer
in (2a− b, b).

5. Example

We present a simple example which shows that the quasiminimizing constant K
is not preserved in the reflection process.

For simplicity we consider the case p = 2 only. Let f : [0,∞) → R be the
function f(x) = xα, α > 1/2, α 6= 1. Note that the function f with α 6 1/2 is
not a quasiminimizer with exponent p = 2 in [0,∞) because f ′ does not belong to
L2([0, b]) for any b > 0.

Lemma 5.1. The function f is a K–quasiminimizer with K = α2/(2α − 1) and
f is not a K ′–quasiminimizer for any K ′ < K.

Proof. Let [a, b] ⊂ [0,∞). Now
∫ b

a

f ′2 dx =
α2

2α− 1
(
b2α−1 − a2α−1

)

and the inequality
(
b1/2aα−1/2 − a1/2bα−1/2

)2 > 0 yields

b2α−1 − a2α−1 6 (bα − aα)2

b− a
.

Hence we obtain

α2

2α− 1
(
b2α−1 − a2α−1

)
6 K

(bα − aα)2

b− a
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and since f(a) = aα and f(b) = bα, we see from (18) that f is a K–quasiminimizer
as required.

That K is the best possible quasiminimizing constant for f follows from the
fact that for a = 0 the above inequalities are equalities. The lemma follows. ¥

Next we consider the function f∗ obtained from f by reflection. Now f∗ : R→ R
and both f∗|(−∞, 0] and f∗|[0,∞) are K–quasiminimizers, K = α2/(2α− 1).

Lemma 5.2. The function f∗ is not a K–quasiminimizer.

Proof. Consider an interval [a, b] where a < 0 < b and |a| < b. Now
∫ b

a

|f∗′|2 dx = 2
∫ |a|

0

f ′2 dx +
∫ b

|a|
f ′2 dx =

α2

2α− 1
(
b2α−1 + |a|2α−1

)

and if f∗ is a K–quasiminimizer, then from the above equality we obtain

α2

2α− 1
(
b2α−1 + |a|2α−1

)
6 K

(|a|α + bα)2

b + |a| .

This yields
(b + |a|)(|a|2α−1 + b2α−1

)
6 b2α + 2bα|a|α + |a|2α

which is equivalent to

(b|a|)(|a|2α−2 + b2α−2
)

6 2bα|a|α.

But a simple computation shows that the last inequality implies (|a|α−1 −
bα−1)2 6 0 which is not true because |a| 6= b and α 6= 1. The lemma follows. ¥
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