
Functiones et Approximatio
40.1 (2009), 117–126
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Abstract: The central theme running through this article is the embedding of Sobolev weighted
spaces into Sobolev-Orlicz spaces under minimal assumptions on the weight. As application we
prove the existence and regularity of the minimum of functionals of the Calculus of Variations
with growth governed by the weight we consider.
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1. Introduction

The main purpose of this note is to establish the existence and uniqueness of the
minima of certain functionals of the Calculus of Variations. As prototype, we
consider functionals of quadratic type

F (v, Ω) =
∫

Ω

〈A(x)∇v,∇v〉 dx, At(x) = A(x), (1.1)

where Ω is a bounded connected open set in Rn. The coefficient matrix is mea-
surable and satisfies the following conditions:

0 6 m(x)|ζ|2 6 〈A(x)ζ, ζ〉 6 M(x)|ζ|2 a.e. x ∈ Ω, ∀ξ ∈ Rn,

m−1, M ∈ L 1(Ω).
(1.2)

Notice that the minimizer u of (1.1) subjected to the condition u = u0 on ∂ Ω,
if it exists, is also a solution to the Dirichlet problem

{
divA∇u = 0 in Ω
u = u0 on ∂Ω

(1.3)

This type of equation is well-known in the literature. When 0 < λ 6 m(x) 6
M(x) 6 Λ, for some constant λ and Λ, the Hölder continuity of the weak solu-
tions has been established by De Giorgi [D], Nash [N] and Moser [M]. Furthermore
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higher integrability for ∇u was obtained by Bojarski [B] and Meyers [Me]. Murthy
and Stampacchia proved the existence, uniqueness and the boundedness of the
weak solutions of (1.3) in the isotropic case; that is, assuming that M(x) = cm(x);
with suitable integrability assumptions on m and m−1 imposed as well, see also
[T]. Under these assumptions there have also been established a lot of results
concerning gamma-convergence, G-convergence or homogenization (see for exam-
ple [MS], [FM]). These results were generalized in numerous ways. The most
significant generalization of this classical results (see for example [FKS]) has been
achieved when the weight m(x) belong to the Muckhenhoupt class A2. Recall that
a nonnegative function λ belongs to the Muckhenhoupt class A2(Ω) if and only if

λ ∈ A2 ⇐⇒ sup
B⊂Ω

∫

B

λ

∫

B

λ−1 < ∞

where B is a ball in Rn. In the present paper we prove the existence and uniqueness
of the minima of (1.1) in a suitable weighted Sobolev space W (Ω) for anisotropic
case as stated in (1.2). Then, we consider more general functionals and we obtain
a similar existence and uniqueness result.

It is just routine to observe that if the weight is a constant function, then
u ∈ L

2n
n−2 (Ω) by the classical Sobolev Imbedding Theorem. In our case, the

only assumptions m, 1
m ∈ L 1(Ω) allow us to prove some additional regularity

properties of a function u belonging to the weighted Sobolev spaces W (Ω) (see (2.1)
for the definition).

2. Preliminaries

In this section we describe the main properties of functional spaces to deal with.

2.1. Sobolev weighted spaces

Fix a non-negative integrable function m = m(x) whose reciprocal is also inte-
grable in Ω. We introduce the following weighted Sobolev spaces:

W (Ω) = {u ∈ W 1,1(Ω) :
∫

Ω

|u|+
∫

Ω

m(x)|∇u|2 < +∞}, (2.1)

W0(Ω) = {u ∈ W 1,1
0 (Ω) :

∫

Ω

|u|+
∫

Ω

m(x)|∇u|2 < +∞}. (2.2)

These spaces will be equipped with the norm (see [MS] for more details)

‖u‖2W (Ω) =
∫

Ω

|u|+
∫

Ω

m(x)|∇u|2.

Observe that an equivalent norm on W0(Ω) is

‖u‖W0(Ω) =

√∫

Ω

m(x)|∇u|2 dx.
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2.2. Orlicz spaces

A function A : [0, +∞) −→ [0,+∞) is called a Young function if it has the form

A(s) =
∫ s

0

a(r) dr (2.3)

where a : [0,+∞) −→ [0, +∞) is any increasing left-continuous function. We also
assume that a is neither identically zero nor identically infinite on (0, +∞). The
right-continuous inverse of A is defined on [0,∞] by the rule

A−1(r) = inf {s : A(s) > r} (inf ∅ = ∞),

thus,
A(A−1(r)) 6 r 6 A−1(A(r)) for r > 0.

The Young conjugate of A, denoted either by Ã or by A∼, is defined as

Ã(s) = sup{sr −A(r) : r > 0}.

Notice that when A is a Young function so is Ã and ˜̃
A = A.

The following relations hold for any Young function A:

r 6 A−1(r)Ã−1(r) 6 2r for r > 0.

Moreover,
A(s) 6 sa(s) 6 A(2s), for s > 0.

Given a Young function A the Orlicz space L A(Ω) is defined as

L A(Ω) =
{

f :
∫

Ω

A

( |f(x)|
λ

)
dx < ∞, for some λ > 0

}
.

We supply the Luxemburg norm ‖f‖L A(Ω) to this space,

‖f‖L A(Ω) = inf
{

λ > 0 :
∫

Ω

A

( |f(x)|
λ

)
dx 6 1

}
.

In this way L A(Ω) becomes a Banach space. Note that if A(s) = sp and p > 1,
then L A(Ω) coincides with the usual Lebesgue space L p(Ω), and ‖ · ‖L A(Ω) =
‖ · ‖L p(Ω).

The following generalized version of Hölder’s inequality holds:
∫

Ω

f(x)g(x) dx 6 2‖f‖L A(Ω)‖g‖L Ã(Ω)

Given a Young function A, we shall consider the (first order) Orlicz-Sobolev space

W 1,A(Ω) =
{
u ∈ L A(Ω) : u, |Du| ∈ L A(Ω)

}
.
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This space, equipped with the norm ‖u‖W 1,A(Ω) = ‖u‖L A(Ω) + ‖Du‖L A(Ω), is a
Banach space. Clearly if A(s) = sp with p > 1 then W 1,A(Ω) = W 1,p(Ω), the
standard Sobolev space.
As usually, W 1,A

0 (Ω) denotes the completion of C∞
0 (Ω) in W 1,A(Ω).

It is well-known that the validity of Poincaré-type inequalities and embeddings
for space of functions defined in an open set Ω, which do not necessarily vanish
on ∂Ω, depends on the regularity of Ω. Let E ⊂ Ω we denote by P (E, Ω) the
perimeter of E relative to Ω. For n > 2 and σ > 1

n′ we set

G(σ) =



Ω ⊂ Rn :

Ω is open and there exist positive
numbers N and Q such that
|E|σ 6 QP (E, Ω) for all E ⊂ Ω : |E| 6 N





We denote by Qσ the number that makes the following inequality true

minσ{|E|, |Ω− E|} 6 QP (E, Ω)

for all E ⊂ Ω.
For instance, any open set Ω having finite measure and satisfying the cone property
belongs to the class G( 1

n′ ). We end this section with the following Imbedding
Theorem in Orlicz-Sobolev Space.

Theorem 2.1 ([C]). Let n > 2 and let A be a Young function and let An be the
Young function defined by

An(s) =
∫ s

0

rn′−1
(
B−1

n

(
rn′))n′

dr

where B−1
n is the (generalized right-continuous) inverse of

Bn(s) =
∫ s

0

Ã(t)
tn′+1

dt.

• If Ω ∈ G( 1
n′ ) is connected and has finite measure, then there exists a constant

K depending on A, |Ω| and Q 1
n′

such that

‖u− uΩ‖L An (Ω) 6 K‖∇u‖L A(Ω) (2.4)

where uΩ is the mean value of u over Ω. If
∫ s

0
Ã(t)

tn′+1 dt < ∞ then K depends
only on Q 1

n′• For every Ω ∈ G
(

1
n′

)
the continuous imbedding holds

W 1,A(Ω) −→ L An(Ω).

Here An is the Young function defined by

An =

{
An(s), s > s2

A(s), 0 6 s 6 s1

for suitable 0 < s1 < s2.



On the existence of the minima of degenerate variational integrals 121

3. Embedding of theWeighted Sobolev Spaces into Orlicz Sobolev Spaces

Let us note that given a weight m ∈ L 1(Ω) such that m−1 ∈ L 1(Ω), one can
prove that m−1 belongs to a better space than L 1(Ω). Using this property we
can deduce also a degree of regularity for functions u ∈ W 1,1 with finite energy,
i.e. such that F (u, Ω) < ∞.

In the following we will consider a symmetric n×n measurable matrix satisfying
the bounds

0 6 m(x)|ζ|2 6 〈A(x)ζ, ζ〉 6 M(x)|ζ|2 (3.1)

for a.e. x ∈ Ω and for any ξ ∈ Rn where

m−1 ∈ L 1(Ω), M ∈ L 1(Ω) (3.2)

The classical embedding of W0(Ω) into W 1,1
0 (Ω) expressed by the inequality

‖∇u‖L 1 6 ‖m−1‖
1
2
L 1(Ω)

(∫

Ω

〈A∇u,∇u〉
) 1

2

which immediately follows by (3.1), (3.2) can be improved in the Orlicz-Sobolev
setting as follows

Theorem 3.1. Let A(x) satisfy conditions (3.1) and (3.2). Then for any q > 1
there exists a convex increasing function H : [0, +∞] → [0, +∞] satisfying

lim
t−→+∞

H(t)
t

= +∞ (3.3)

such that for u ∈ W0(Ω)

‖∇u‖L H(Ω) 6 2q
q
2 ‖m−1‖

1
2
L 1(Ω)

(∫

Ω

〈A∇u,∇u〉
) 1

2

. (3.4)

Proof. If we define

G(t) =
∫ t

0

1

(Φ(τ))
1
q

dτ

where

Φ(τ) =
∣∣∣∣
{

x ∈ Ω : m(x) <
1
τ

}∣∣∣∣ ,

G(t) is a convex increasing function such that

lim
t−→+∞

G(t)
t

= +∞. (3.5)

Moreover ∥∥m−1
∥∥

L G 6 qq
∥∥m−1

∥∥
L 1 . (3.6)
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In fact, by the inequality
∫

Ω

G(m−1) 6 q

(∫

Ω

m−1 dx

) 1
q

we obtain
∥∥m−1

∥∥
L G = inf

{
λ > 0 :

∫

Ω

G

(
m−1(x)

λ

)
6 1

}
6 inf

{
λ > 0 :

∫

Ω

m−1(x)
λ

6 1
qq

}

= inf
{

λ > 0 : qq

∫

Ω

m−1(x) 6 λ

}
= qq

∥∥m−1
∥∥

L 1 .

Now we define the function H as

H(t) = min
s>0

{
G(s) +

t2

s

}
. (3.7)

This definition is well-posed; in fact, if we consider fixed t > 0

g(s) = G(s) +
t2

s
,

g′(s) = 0 if and only if s = s0 with s0 such that

s2
0G

′(s0) = t2.

As g is strictly convex, the minimum is unique. From the above considerations
the definition of H(t) can be also reformulated as follows

H(t) = min
s>0

{
G(s) +

t2

s

}
= G(s0) +

t2

s0
.

From this remark it is easy to prove that the function H is convex increasing and
satisfies

lim
t−→+∞

H(t)
t

= +∞.

Moreover for any λ > 0 and µ > 0 taking s = m−1

µ t = ∇u
µ by (3.7) we have

H

( |∇u|
µ

)
6 G

(
m−1

λ

)
+ λm

( |∇u|
µ

)2

.

Next, integrating both sides on Ω we obtain
∫

Ω

H

( |∇u|
µ

)
6

∫

Ω

G

(
m−1

λ

)
+

λ

µ2

∫

Ω

m|∇u|2.

By definition of the Luxemburg norm taking λ = 2‖m−1‖L G(Ω) we get
∫

Ω

G

(
m−1

λ

)
6 1

2
.
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At the same time, with the following choice of µ = 2‖√m∇u‖L 2

√
‖ 1

m‖L G we
arrive to

λ

µ2

∫

Ω

m|∇u|2 =
1
2
.

Collecting the previous inequalities we can conclude with the desire estimate
∫

Ω

H

( |∇u|
µ

)
6 1

2
+

1
2

= 1.

This, in particular, means that µ > ‖∇u‖L H ; that is

‖∇u‖L H 6 2
(∫

Ω

m(x)|∇u|2
) 1

2
√
‖ 1
m
‖L G (3.8)

Therefore using (3.6) we get the desired estimate

‖∇u‖L H 6 2q
q
2 ‖√m∇u‖L 2

√
‖m−1‖L 1 . ¥

The following example gives an idea of the relations between the functions H
and G.

Example 3.2. Let α > 1; if we take G(s) = sα then H(t) = t
2α

α+1 . In fact, using
the same notation of Theorem 3.1,

H(t) = min
s

(
sα +

t2

s

)
= min g(s) (3.9)

The minimum of g(s) is obtained for s = α−( 1
α+1 )t(

2
α+1 ), that means

H(t) = C(α)t(
2α

α+1 ).

Example 3.3. Let α > 0, if G(s) = s logα(s) then H(t) ≈ t log
α
2 (t). In fact,

H(t) = min
s

(
s lgα s +

t2

s

)
(3.10)

we get

g′(s) = lgα s + α lgα−1 s− t2

s2
=

1
s2

(
s2 lgα s + αs2 lgα−1 s− t2

)
.

For s big enough up to lower infinite order terms, we get the minimum for
s2 lgα s = t2, that means s = t lg−

α
2 t, that is

H(t) ≈ 2t lg
α
2 t.

Similarly, let α > 0 if G(s) = s(lg lg s)α then H(t) = t(lg lg t)
α
2 .
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3.1. Higher integrability

Let us observe that the better integrability argument applied to the reciprocal of
the weight is similar to that already employed in [T]. However, here we are able
to give an explicit relation between the higher integrability of m−1 with respect
the higher integrability of a function u ∈ W (Ω). The novelty of our approach is
that the gradient of a function u belongs to an Orlicz space L H where H does
not depend on u but just on the reciprocal of the weight. In fact:

Remark 3.4. By (3.8) if u ∈ W (Ω) then ∇u ∈ L H ; now we can apply the
imbedding Theorem 2.1 to get:

u ∈ W (Ω) =⇒ u ∈ L Hn(Ω).

If m−1 ∈ L lg L (Ω) by (3.8) and Example 3.3 with α = 1 then ∇u ∈
L lg

1
2 L (Ω), so using imbedding Theorem 2.1 in the planar case we have:

Corollary 3.5. Let us assume that 1
m ∈ L lg L (Ω), if u ∈ W (Ω) then u ∈

L 2 lg L (Ω).

4. Existence of the minima

Now we are in a position to state the following result:

Theorem 4.1. Under the assumption in (1.2) if u0 ∈ W (Ω), then there exists a
unique solution to the following variational problem

min
{∫

Ω

〈A(x)∇u,∇u〉 : u ∈ u0 + W0(Ω)
}

. (4.1)

Proof. We appeal to the direct method of Calculus of Variations. So let uj be a
minimizing sequence; that is, uj ∈ u0 + W0(Ω) with

F (uj , Ω) −→ inf
v∈u0+W0(Ω)

F (v, Ω). (4.2)

For any measurable set E ⊂ Ω, using Hölder’s inequality, we obtain:

∫

E

|∇uj | 6
(∫

E

1
m(x)

) 1
2

(∫

Ω

m(x) |∇uj |2
) 1

2

6
∥∥∥∥

1
m

∥∥∥∥
1
2

L 1(E)

F (uj , Ω)
1
2 . (4.3)

Since (4.2), we get from (4.3) that the sequence {|∇uj |} is equi-integrable. Hence,
by the De La Vallèe-Poussin theorem, there exists a subsequence of {|∇uj |}, not
relabeled for convenience, weakly converging in σ(L 1,L∞).

On the other hand, by the classical Sobolev Imbedding Theorem, we gain a
strong convergence in L 1 of the sequence uj and so, up to a subsequence, we get
that uj ⇀ u weakly in W 1,1(Ω).
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Then, thanks to the lower semicontinuity of the integral functional

G(u, Ω) =
∫

Ω

|u|+
∫

Ω

m(x)|∇u|2

with respect to the weak convergence in W 1,1(Ω) we infer that u ∈ u0 + W0(Ω).
Finally, the weak convergence in W 1,1 guarantees the lower semicontinuity of

the functional F that implies that u is a minimum. Moreover since the strict
convexity of the functional F we have also the uniqueness. ¥

Nevertheless previous result can hold true in a more general setting.
Let f : Ω× Rn −→ R be a Carthèodory integrand; that is,

(i) f(·, z) measurable for every z ∈ Rn and
(ii) f(x, ·) continuous for a.e. x ∈ Ω

Let us also assume that

(iii) f(x, ·) is convex for a.e. x ∈ Ω

We now consider functionals of the type

F(u, Ω) =
∫

f(x,∇u) dx (4.4)

where we also assume the following p-growth conditions:

0 6 m(x)|ζ|p 6 f(x, ζ) 6 M(x)|ζ|p m,M ∈ L 1(Ω),
(

1
m

) 1
p−1

∈ L 1(Ω). (4.5)

On the analogy to the previous case we consider the following weighted Sobolev
Spaces

W p(Ω) = {u ∈ W 1,1(Ω) :
∫

Ω

|u|+
∫

Ω

m(x)|∇u|p < +∞} (4.6)

W p
0 (Ω) = {u ∈ W 1,1

0 (Ω) :
∫

Ω

|u|+
∫

Ω

m(x)|∇u|p < +∞} (4.7)

Following the same ideas as in the proof of Theorem 4.1 it is just routine to show
that:

Theorem 4.2. Under the assumption in (i), (ii), (iii) and (4.5) there exists a
unique solution of the following variational problem

min
u∈W

{∫

Ω

f(x,∇u) : u ∈ u0 + W p
0 (Ω)

}
(4.8)

for any u0 ∈ W p(Ω).



126 Luigi D’Onofrio, Anna Verde

References

[B] B. Bojarski, Generalized solutions of a system of differential equation of
the first order of elliptic type with discontinuos coefficients, Sb. math. 43
(1957), 451–503.

[C] A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana
Univ. Math. J. 45 (1996), 39–65.

[D] E. De Giorgi, Sulla differenziabilitá e l’analicità delle estremali degli inte-
grali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 3
(1957), 25–43.

[FKS] E. B. Fabes, E. Kenig, R. P. Serapioni, The local regularity of solutions
of degenerate elliptic equations, Comm. Partial Differential Equations 7
(1982), 77–116.

[FM] N. Fusco, G. Moscariello, L2-Lower Semicontinuity of Functionals of
Quadratic Type, Ann. Mat. 20 (1982), 305–326.

[MS] P. Marcellini, C. Sbordone, An approach to the asymptotic behaviour of
elliptic-parabolic operators, J. Math. pures et appl. 56 (1977), 157–182 .

[Me] N. G. Meyers, An Lp estimate for the gradient of solutions of second or-
der elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17
(1963), 189–206.

[M] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity
problem for elliptic differential equations, Comm. Pure Appl. Math. 13
(1960), 457–468.

[MuS] M.K.V. Murthy, G. Stampacchia, Boundary value problems for some de-
generate elliptic operators, Ann. Mat. Pura Appl. (4) 80 (1968), 1–122 .

[N] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer.
J. Math. 80 (1958), 931–954.

[RR] M. M. Rao, Z. D. Ren, Applications of Orlicz Spaces, CRC Edictions.
[T] N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann.

Scuola Normale Superiore di Pisa 27 (1973), n.2, 265–308.

Addresses: Luigi D’Onofrio: Dipartimento di Statistica e Matematica per la Ricerca Econom-
ica, Università di Napoli Parthenope, via Medina 40 80100 Napoli (Italy);
Anna Verde: Dipartimento di Matematica ed Applicazioni "R. Caccioppoli", Università
di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia 80126 Napoli
(Italy).

E-mail: luigi.donofrio@uniparthenope.it, anverde@unina.it
Received: 5 June 2008; revised: 19 December 2008


