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Abstract: Let 6 be a Salem number. It is well-known that the sequence (0™) modulo 1 is
dense but not equidistributed. In this article we discuss equidistributed subsequences. Our
first approach is computational and consists in estimating the supremum of limy,—~ n/s(n) over
all equidistributed subsequences (95(")). As a result, we obtain an explicit upper bound on
the density of any equidistributed subsequence. Our second approach is probabilistic. Defining
a measure on the family of increasing integer sequences, we show that relatively to that measure,
almost no subsequence is equiditributed.
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1. Subsequences

Let u = (u(n)) be an infinite sequence of real numbers. A subsequence u o s =
(u(s(n))) is said to have density d < 1 if as n increases n/s(n) — d. Suppose the
sequence u is dense (mod 1). Answering a question of one of us in 1973, Y. Dupain
and J. Lesca [6] established that the set of densities d of equidistributed (mod 1)
subsequences of u is a closed interval [0, dg] where dy < 1 depends on u. They also
showed how to compute dy. For 0 < x < 1, define the repartition function

flz) = ngnoo %card{n < N | {u(n)} <z}

where {u(n)} is the fractional part of u(n). We only consider those x where f(x)
and its derivative f’(x) both exist, i.e. almost everywhere. Y. Dupain and J. Lesca
proved that dy = inf, f'(x).

A particularly striking example of such an instance concerns the distribution
(mod 1) of the powers of Salem numbers § > 1. A Salem number [10] (see also [3])
is a real algebraic integer whose algebraic conjugates other than 6 all lie in the
unit disc |z| < 1 with one conjugate at least on the boundary |z| = 1. It is then
known that one and only one of these conjugates 6! is inside the disc while the
others are on the boundary. The degree 2t of @ is necessarily even and at least
equal to 4.
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Denote the different conjugates by 6,01, exp(d2inw,),...,exp(£2irw; 1).
The sum of all conjugates of an algebraic integer is an integer and therefore for all
n €N,

t—1
0" +07" + 2Zcos 2mw; =0 (mod 1)

J=1

so that the distribution of ™ (mod 1) is essentially that of —2 231 COS 2TNw .
Ch. Pisot and R. Salem [9] observed that 1, ws,...,w;_; are Z-linearly independent
so that, according to Kronecker, the (¢ —1) dimensional sequence (win, . ..,wi—1n)
is equidistributed in (R/Z)ti . As a consequence, the sequence (0™) is therefore
clearly dense (mod 1). Furthermore, for all £ € N\ {0}

t—1
1 T | , ‘
A}gnoo N Z exp 2imkd" = A}Enoo N Z Hexp(—2mk.2 cos 2mnw; )
n<N n<N j=1
1 t—1
= (/ exp(—4imk cos 2mx) da:)
0
= Jo(4mk)" 1 #£0 (1.1)

where Jy(-) is the Bessel function of the first kind of index 0.

Since |Jo ()| < 1 for all real v # 0, the above limit tends to 0 as t — co. Y. Du-
pain and J. Lesca conclude that for large degrees t, the sequence (9” (mod 1))
is close to being equidistributed, a fact that S. Akiyama and Y. Tanigawa [1]
make very explicit in their article. This is quite remarkable since even though
for almost all real 7 > 1, (7™) is equidistributed (mod 1), no explicit 7 is known
(J. F. Koksma [8]).

We know the existence of dy < 1 (and quite obviously dy > 0) such that s(n) ~
d—lon and (95(")) equidistributed (mod 1). We shall see later on that those sequences
are rare. But we can already guess why these sequences s(n) are exceptional. This
is a consequence of our first rather trivial theorem.

Theorem 1.1. If s(n) is an increasing sequence of integers such that (93(")) 18
equidistributed (mod 1), then there exists an irrational x such that xzs(n) is not
equidistributed (mod 1).

Proof. We note that

t—1
g5 = —2Zcos 2nw;s(n) — 0~ (mod 1).
j=1

The (t — 1) dimensional sequence (w1s(n),...,w;—15(n)) is not equidistributed in
(R/Z)til since if it were, (#°(™)) would not be equidistributed (mod 1). Therefore
there exist integers hq,...,hi—1 not all 0 such that

hiwis(n) 4+ -+ + hi—1wi—15(n)
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is not equidistributed (mod 1). The theorem is established with
t—1
xr = Z hj(,dj . |
j=1

Next, we develop a method to approximate dy for the sequence (9”(mod 1)),
where 0 is a Salem number of degree 2¢. The results indicate that dy tends to 1
very quickly as t tends to infinity. A key result in this approach is the study of
the minimum of a cosine series on ]0, 1[. Under certain conditions, we show that
the minimum is always attained at = 1/2, ¢f. Theorem 2.1.

2. Explicit Computations of dg

The repartition function is explicitly determined for a Salem number of degree 4,
cf. [5]. Namely,

5 1 z—2 z z—1 z+1
f(x) == — — | arccos + arccos — + arccos + arccos .
2 7 2 2 2 2

It follows that

(m):i ! + 1 n 1 N 1
"\ e e ey

A direct study of f’(z) shows that it attains its minimum for = § and gives the
exact value of do, i.e.

f/

1/ 4 4
— | —=+—= = 0.809988350. .. 2.1

@ (ﬁ m) 1
For a Salem number of degree 2t with ¢t > 2, we want to estimate the corresponding

dp. First, let us show the following lemma.

Lemma 2.1. Let 6 be a Salem number of degree 2t, then the repartition function
f(x) of the sequence (6™) modulo 1 satisfies

fllxy=1+2 Z Jo(4km)t =t cos 2nkx
k=1
on 10, 1], for all t > 2.
Proof. We have
1 1
lim — exp 2iwkd™ = / exp 2imkx dv
N—oo N Z 0

n<N
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where v is the repartition function f(z). According to Y. Dupain [5] the measure
dv = f'(z) dzx is absolutely continuous. It follows from (1.1) that

1
Jo(drk)i—t = / exp 2irkz f'(z) dx .
0
We can associate with f/(z) its Fourier series
(o)
Z Jo(4mk) ™t exp(—2imkz) =14 2 Z Jo(4mk)t 1 cos 2mk. (2.2)

kEZ k=1

If this series converges uniformly, then its sum is continuous and equals f’(z). The
1

lemma is clear for ¢t > 3, since Jo(z) = O(m_i) and we even have equality on [0, 1].

For ¢t = 2 and 3, we need the following result.

Lemma 2.2. The sequence (J0(47Tk;)) is positive for all k > 0 and strictly de-
creasing.

Proof. In [1, Lemma 2|, it is shown that

1 /1 1 9
Jo@rk) = —— (— — —— 4t R), with |R| € ————-
o(emk) = 7 (\/5 6vank )’Wl RIS 5128

It is straightforward to deduce that

1 1
0< — Jo(drk) < —— 2.3
ong ORI S G 23)
This proves the first part of the lemma. Now
1 1 1 1 2
() s
2 \Vk k+1 8rkz  6lm2k>2
This shows that
1 1 S 1 1
orvk  6172ks  2mVEk+ 1 6ln2(k+1)3
which implies that Jo(47k) > Jo (47 (k + 1)), for k > 0. [ ]

We deduce that the series (2.2) is uniformly convergent on the compact [, 1—¢],
for any € > 0 and therefore f’(z) is equal to this series on ]0, 1]. [ |

A consequence of Lemma 3.2 is that dy only depends on ¢ and satisfies
o0
do = inf,ep0,1 <1 + 2 Z Jo(4km)' = cos 277ka:> .
k=1

Next let us recall a definition we shall use later.
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Definition 2.1. Let (by) be a sequence of real numbers and let A%, = by and
A"by = A" b — A" by, for alln > 0. The sequence (by) is said to be totally
monotone if A"by, > 0 for all k, andn =0,1,2,...

By a famous result of Hausdorff 7], the total monotonicity of (by) is equivalent
to the existence of a nonnegative measure p on [0,1] such that the by’s are the

moments of u, i.e.
1
b, = / uFdu .
0

Example 2.1. Let s be a real positive number. The sequence (b) defined by

1

by = ————
Pk + 1)

for all k£ > 0 is totally monotone.

Theorem 2.1. Let (ay) be a sequence of nonnegative real numbers (except maybe
for ap). Assume that (ag+1), k = 0 is totally monotone, then the function

o0
x) = Z ay, cos 2rkx
k=0

is well-defined and decreasing on the interval |0,1/2]. As a corollary, g(x) attains

its minimum for x = %

Proof. Let us introduce

(o) (o)
x) = Z ay cos 2rkx = Z by cos2m(k + 1)z
k=1 k=0

Since, g and h only differ by ag, it is enough to study h to prove the theorem on
g. Since (bg) = (agy1), Abg > 0, for all k. So the sequence (by) is decreasing and
this shows that the series h(x) is convergent for all z € Je,1 — ¢, for all ¢ > 0.
Since h(z) = h(1 — x), it is enough to study h on ]0,1/2].

Since the by’s are the moments of a certain nonnegative measure u, we obtain

o0
= Z by cos2m(k + 1)z
k=0

0o 1
= Z/ uk cos 2m(k + D) dp

2l7rw
—§R/ 1—62“”5u ﬂ'
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The last equality being justified by the nonnegativity of u. It follows that

1 SO —
h(a:)z/ CcoS2mx — U
0

14+ u2 — 2ucos2mx

To show that h(z) is decreasing on ]0,1/2], evaluate h(x) — h(y) for 0 < x < y <
1/2. Let

cos2mx — u

Jolu) = 1+ u? — 2ucos2mx

Then reducing to the same (positive) denominator, we see that the numerator of

Ju(u) — jy(u) is (cos 2z — cos 2my)(1 — u?) which is nonnegative for all u € [0, 1].
Since p is a nonnegative measure, we deduce that h(x) > h(y) whenever z <

y < 1/2 and that h(xz) > h(1/2) for all z € ]0,1/2]. These results apply trivially

to the function g. [ ]

Corollary 2.1. Let s > 0. Then the series
oo

cos 2wkx
g9(z) = ao + Z T
k=1

is decreasing on ]0,1/2] and satisfies

o 1vk
9(37)200-1—2(]:5)'
k=1

Remark. It is possible to compute g(1/2) very efficiently following the method
explained in [4]. For instance, for the sequence (aj) defined by a given ag and
ap = 1/\/%, for k > 1, we have that

g(x) = g(1/2) = ap — 0.6048986434216303702472659142359554997597625451 . . .

All the digits in the last equality are correct as can be established knowing the
first 60 ay’s.

Unfortunately, we are not able to show that the sequence (Jo (47rk)t’1), k>0
is totally monotone, though the extensive numerical computations of its first n-
th forward differences seem to indicate that this is the case. Based on the case
t = 2 and also on direct computations of f’(x) for various x, we conjecture that
inf, f'(z) = f/(1/2) for t > 2. However, to be totally rigorous, we cannot directly
apply Theorem 2.1 to obtain the value of dy. Nevertheless, this result will give an
approximation of dy, for t > 2.

The idea is to apply (2.3) to deduce that

1 1 (t—1)

Jo(4mk) ! — < . :
ol4rk) (2nVE)t-1 6172k (2mVk)t—2
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It follows that

inf inf
2rkx (t—1)
ey —1—9 cos ,
7e) kzl(%ft L= 617r2k2 27rf)t 2

which, combined with Theorem 2.1, implies that for all x €]0,1]

oo

(t—1)
>142
Z 27T\/_t 1 ZGlWka 27r\/_)t 2

=1

Sl S2

The main contribution, i.e. S7, can be obtained using the acceleration convergence
method explained in [4], whereas the second series S5 is simply (up to a constant)
an evaluation of the ¢ function at the point (¢t + 1)/2. This gives a lower bound
for dg. An upper bound is given by dy < f/(1/2), where f’(1/2) is bounded, for
any K even, by the truncated alternating series

1+2Z

The convergence is quite slow for ¢ = 3 so that we fixed K = 2.10% to obtain
a relevant upper bound. Much less terms are necessary for larger t. A conjectured
value df is also given relying on the assumption that dy = f/(1/2) and on the
computation of f'(1/2) using [4]. The method seems to converge and at most the
first 10 terms are sufficient to give a result with an error less than 1071°. Also,
we checked for ¢ = 2 that the value given in (2.1) is, up to several hundred digits,
equal to the one computed with this approach.

Note that if the sequence (J0(47rk‘)t_1), defined for k£ > 0 is totally monotone,
then both assumptions are valid, and therefore dy = dj;. All the figures are given
in Table 1.

Jo 47rk

Table 1: Lower bound, upper bound, and conjectured value of do

t S S S — 5 71/2) 4

3 | 0.964884753 0.000869699 0.964015054 | 0.965745539 | 0.965745543
4 | 0.993830708  0.000112882  0.993717825 | 0.994046008 | 0.994046007
5 | 0.998944571  0.000016098 0.998928472 | 0.998991788 | 0.998991787
6 | 0.999822887  0.000002401  0.999820485 | 0.999832498 | 0.999832497
7 | 0.999970695  0.000000367  0.999970328 | 0.999972560 | 0.999972559
8 | 0.999995201  0.000000056  0.999995144 | 0.999995551 | 0.999995550
9 | 0.999999220  0.000000008  0.999999211 | 0.999999285 | 0.999999284
10 | 0.999999874  0.000000001  0.999999872 | 0.999999886 | 0.999999885

In the next section we shall define the notion of "almost all" increasing se-
quences of integers (s(n)). For almost all sequences (s(n)) and for all irrational
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numbers x, (ms(n)) is equidistributed. This already shows how exceptional those
sequences (s(n)) are for which (98(”)) is equidistributed.

Furthermore R. Salem [11] demonstrated that if (s(n)) is any increasing se-
quence such that s(n) = O(n), then the Hausdorff dimension of the set of x for
which (zs(n)) is not equidistributed (mod 1), vanishes. The 2’s in Theorem 1.1

are therefore "rare" if indeed s(n) ~ dion.

3. Metrical Results

Let S be the family of finite or infinite strictly increasing sequences of positive
integers. To each s = (s(n)) € S corresponds a unique sequence y € D = {0, 1}
(characteristic sequence) and conversely:

1 ifne€s,
x(n)={

0 if not.

Any measure on D lifts to a measure on S.

Let 0 < d < 1. Put m{1} = d and m{0} = 1 —d. Then p = [[m is
a probability measure on D to which corresponds a probability measure on S
which we still denote by p or pg if we wish to emphasize the parameter d.

Theorem 3.1. Consider the polynomial P(X) =", _, agX* where at least one of
the coefficients ag, 1 < £ < v is irrational. Then for p-almost all sequences s € S,
P(s) = (P(s(n))) is equidistributed (mod 1).

Theorem 3.2. If 6 is a Salem number then u-almost no sequence (93(")) 18
equidistributed (mod 1). More generally, if P is any positive integer valued poly-
nomial, 7' = (6P(")) is p-almost never equidistributed (mod 1).

We have seen in Section 1 that there exists a dy € ]0, 1] for which no sequence
s = (s(n)) exists such that s(n) ~ in (d > dy) and (98(”)) equidistributed
(mod 1). For d < dp there do exist d-density equidistributed subsequences (98(”))
but they are pq-rare.

Remark. For d € [0,1] let T(d) be the family of increasing sequences (s(n)) of
density d such that (93(")) is equidistributed (mod 1). We know that T'(d) = 0 as
long as d > dy. Could it be true that as d decreases to 0 the family T'(d) "increases
in size"? Could one devise a way to show that this is so, e.g. by defining a fractal
dimension adapted to the question?

4. Proof of Theorem 3.1

A sequence y € {0,1}" is said to be d-normal if all finite words w = wy ... wp €
{0,1}* occur in y with the frequency d*(1 — d)*~* where k is the number of 1’s in
w. It is well known that pg4-almost all x are d-normal. For such a sequence
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and more generally, for all £k > 1 and all integers hy < - -+ < hy where at least one

couple h; < hit1 .
. 1
ngnoo N Z H(X(n + hi) —d) =

A sequence Y is said to be uncorrelated if for all kK > 1 and all integers h; < -+ <
hi where at least one couple h; < hjy1

If x € {0, 1}V is d-normal, then as remarked above, y — d is uncorrelated.

Lemma 4.1. For all real polynomials P and all uncorrelated sequences Y

o1 .
lim N 7;\] Y (n)exp2inP(n) =0.

Proof. The result is obviously true if deg P = 0. We now argue by induction
and assume the truth of the lemma for all P with degP = v —1 > 0. Let
@ be any polynomial of degree v and let h > 1 be an arbitrary integer. Put
f(n) =Y(n)exp2in@(n) and consider the correlation

—hm—Zf fn+h)

n<N
= Jim_ % T;V Y (n)Y (n + h)exp 2im(Q(n + k) — Q(n)).

The product Z(n) = Y (n)Y(n + h) is again uncorrelated and the polynomial
P(n)=Q(n+h)—Q(n) is of degree v — 1. Therefore

hm — Z fn)f(n+h)=0
n<N
for all h > 1. A classical result (see J. Bass [2]) then implies
Jim 5 3 500 .
n<N

We now prove Theorem 3.1. Suppose P(X) = >_,_,a,X* where at least one
of the coefficients ay, ..., a, is irrational. Consider the exponential mean

= lim — Z exp 2imh P (s(n))
N—oco N N

o1 )
= &gnoo — Z X (€) exp 2irhP({)
£<s(N)

where h > 1 is an integer, and where x is the characteristic function of s.
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For y = pig-almost all s, s(N) ~ 2N = L. The theorem will be established if
for L — o0

1
I Z x(¢) exp 2irhP(¢) — 0 .
(<L

The above average can be decomposed into two parts

% Z(X(@ — d) exp 2irhP(() + % Z exp 2imhP(¢f) .

L<L L<L

For pg-almost all s, x — d is uncorrelated and therefore the first average converges
to 0. As for the second average, it converges to 0 because the sequence is well
known to be equidistributed (mod 1) [12].

5. Proof of Theorem 3.2

Let P(X) =Y",_,arX" a, > 0, be a polynomial which takes integer values when
X runs through N. If s € 5,

OP(S(")) = —2§:cos 2rw; P(s(n)) + o(1)

if P is nonconstant (if P is constant the theorem is trivial). The (¢ — 1) polynomi-
als w1 P, ...,w;—1 P all have irrational coefficients. According to Theorem 3.1, the
sequences (w;P(s(n))) are pq-almost surely equidistributed (mod 1) and more to
the point, for all b = (h1,...,h—1) € Z!=1\ {0} the sequences hwP(s) are equidis-
tributed (mod 1). Here hwP(s) is the scalar product of h and w = (w1, ..., wi—1).
Therefore the (¢t — 1) dimensional sequence (wiP(s),...,w;—1P(S)) is equidis-
tributed in (R/Z)til and as in the first section, we conclude that

1 , _
N Z exp 2inkP(s(n)) el Jo(4km) "1 #£0.

n<N

6. A Final Remark

All our arguments are based on the fact that 6™ is essentially a finite sum of
cos 2mw;n. We could probably extend some of our results to the study of sequences
u = (u(n)) of the type

u(n) = ZF(nwj) .
j=1
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