A REMARK ON THE MÖBIUS FUNCTION

Jerzy Kaczorowski

Dedicated to
Professor Władysław Narkiewicz for his 70th birthday

Abstract: It is proved that for every positive B there exist real numbers $0=a_{0}<a_{1}<\ldots<$ $a_{N}=1$ and $\max _{1 \leq j \leq N}\left(a_{j-1} / a_{j}\right) \leq \theta<1$ such that

$$
\limsup _{x \rightarrow \infty} \frac{1}{\sqrt{x}} \sum_{j=1}^{N} \sum_{\theta a_{j} x<n \leq a_{j} x} \mu(n) \geq B
$$

and

$$
\liminf _{x \rightarrow \infty} \frac{1}{\sqrt{x}} \sum_{j=1}^{N} \sum_{\theta a_{j} x<n \leq a_{j} x} \mu(n) \leq-B
$$

where $\mu(n)$ denotes the Möbius function.
Keywords: Möbius function, Mertens conjecture, omega estimates

1. Introduction and statement of the Theorem

Let $\mu(n)$ denote the Möbius function, and let us write

$$
\begin{gathered}
M(x)=\sum_{n \leq x} \mu(n) \\
m^{-}=\liminf _{x \rightarrow \infty} \frac{1}{\sqrt{x}} M(x) \quad \text { and } \quad m^{+}=\limsup _{x \rightarrow \infty} \frac{1}{\sqrt{x}} M(x) .
\end{gathered}
$$

The most important unproved conjecture concerning these quantities predicts that

$$
\begin{equation*}
m^{-}=-\infty \quad \text { and } \quad m^{+}=\infty \tag{1.1}
\end{equation*}
$$

In particular it is expected that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{1}{\sqrt{x}}|M(x)|=\infty \tag{1.2}
\end{equation*}
$$

The best result in this direction is due to Odlyzko and te Riele [5] who showed that

$$
m^{-} \leq-1.009 \quad \text { and } \quad m^{+} \geq 1.06
$$

disproving in this way the famous Mertens conjecture

$$
|M(x)|<\sqrt{x} \quad \text { for } \quad x>1
$$

(see also [6]). Another type of approximation to the above conjectures was discussed in [3]. It was proved there that for every real $a \neq 0$ we have as $x \rightarrow \infty$

$$
\begin{equation*}
\left|\sum_{n \leq x} \mu(n)\right|+\left|\sum_{n \leq x} \mu(n) \cos \left(\frac{a x}{n}\right)\right|=\Omega\left(x^{1 / 2} \log \log \log x\right) \tag{1.3}
\end{equation*}
$$

so that at least one of the sums on the left is very large infinitely often. Observe that if we could pass to the limit as $a \rightarrow 0$, then (1.3) would imply

$$
M(x)=\Omega\left(x^{1 / 2} \log \log \log x\right)
$$

a result much stronger than (1.2).
In this paper we prove the following result.
Theorem 1.1. For every positive B there exist real numbers

$$
\begin{equation*}
0=a_{0}<a_{1}<\ldots<a_{N}=1 \tag{1.4}
\end{equation*}
$$

and a real number θ satisfying

$$
\begin{equation*}
\max _{1 \leq j \leq N}\left(a_{j-1} / a_{j}\right) \leq \theta<1 \tag{1.5}
\end{equation*}
$$

such that

$$
\limsup _{x \rightarrow \infty} \frac{1}{\sqrt{x}} \sum_{j=1}^{N} \sum_{\theta a_{j} x<n \leq a_{j} x} \mu(n) \geq B
$$

and

$$
\liminf _{x \rightarrow \infty} \frac{1}{\sqrt{x}} \sum_{j=1}^{N} \sum_{\theta a_{j} x<n \leq a_{j} x} \mu(n) \leq-B
$$

It is an interesting problem to estimate N in terms of B. Our method of proof gives $N \ll B^{2}(\log B)^{C}$ for certain positive C. Sufficiently sharp estimates of this type would have important consequences. For instance $N=o(B)$ easily implies (1.2). Indeed, suppose in contrary, that $M(x) \ll \sqrt{x}$. Then

$$
\frac{1}{\sqrt{x}} \sum_{j=1}^{N} \sum_{\theta a_{j} x<n \leq a_{j} x} \mu(n)=\frac{1}{\sqrt{x}} \sum_{j=1}^{N}\left(M\left(a_{j} x\right)-M\left(\theta a_{j} x\right)\right) \ll N .
$$

Passing to the limit as $x \rightarrow \infty$ over a suitably chosen values of x, and applying Theorem 1.1 we obtain $B \ll N$. If $N=o(B)$ this leads to contradiction, and hence (1.2) holds.

Acknowledgement. The author thanks Alberto Perelli who read the first version of this paper and made a number of valuable remarks.

2. Lemmas

Lemma 2.1. Suppose the Riemann Hypothesis is true. Then for almost all $y \in$ $[x, 2 x], x \geq 2$, there is a prime $p \in\left[y, y+f(y) \log ^{2} y\right]$, where $f(y)$ is any positive function tending to infinity when $y \rightarrow \infty$.

This is a classical result proved by Selberg [7]. Let us remark that 'almost all' in the formulation of the lemma means that the Lebesgue measure of exceptions is $o(x)$ as $x \rightarrow \infty$.

Following [2] let us denote by \mathfrak{A} the set of all functions defined on the upper half-plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ by the formula

$$
\begin{equation*}
F(z)=\sum_{n=1}^{\infty} a_{n} e^{i w_{n} z}, \tag{2.1}
\end{equation*}
$$

and satisfying the following conditions:

1. $0 \leq w_{1}<w_{2}<\ldots$ are real numbers;
2. $a_{n} \in \mathbb{C}, n=1,2,3, \ldots$;
3. There exists a non-negative integer D such that

$$
\sum_{n=2}^{\infty}\left|a_{n}\right| w_{n}^{-D}<\infty
$$

4. There exists $L_{0}=L_{0}(F) \geq 0$ such that the limit

$$
P(x)=\lim _{y \rightarrow 0^{+}} \Re F(x+i y)
$$

exists for every real $x \geq L_{0}$ and represents a locally bounded function of $x \in\left[L_{0}, \infty\right)$.
5. For every bounded interval $I \subset\left(L_{0}, \infty\right)$ we have

$$
\Re F(x+i y) \ll_{I} 1
$$

for $x \in I$ and $y>0$.
Note that in [2] condition 5 was erroneously omitted. With this notation we have the following result, which is the basis for the proof of Theorem 1.1.

Lemma 2.2. (See [2], Corollary 2.) Let $F \in \mathfrak{A}$. Then

$$
\liminf _{x \rightarrow \infty} P(x)=\inf _{z \in \mathbb{H}} \Re F(z)
$$

and

$$
\limsup _{x \rightarrow \infty} P(x)=\sup _{z \in \mathbb{H}} \Re F(z) .
$$

In order to construct an $F(z)$ suitable for our purposes, we consider subsidiary functions $m(z)$ and $\mathcal{M}(z)$ defined as follows. Let $\zeta(s)=\zeta(\sigma+i t)$ denote as usual the Riemann zeta function. The function $m(z)$ is defined for z from the upper half plane by the following formula

$$
\begin{equation*}
m(z)=\frac{1}{2 \pi i} \int_{\mathcal{L}} \frac{1}{\zeta(s)} e^{s z} d s \tag{2.2}
\end{equation*}
$$

The path of integration consists of the half-line $s=-1 / 2+i t, \infty>t \geq 0$, the line segment $[-1 / 2,3 / 2]$, and the half-line $s=3 / 2+i t, 0 \leq t<\infty$. Since $1 / \zeta(s)$ is bounded on \mathcal{C}, the integral converges absolutely and uniformly for $z \in \mathbb{H}$, and hence represents a holomorphic function on this half-plane. Moreover, for $z \in \mathbb{H}$ we put

$$
\mathcal{M}(z)=\int_{z+i \infty}^{z} m(w) d w
$$

where the integration is taken along the vertical half-line $w=z+i t, \infty>t \geq$ $\operatorname{Im}(z)$.

In the case when all non-trivial zeros are simple and $\left|\zeta^{\prime}(\rho)\right| \gg e^{-\varepsilon|\gamma|}$ for every positive ε, we have for $z \in \mathbb{H}$

$$
m(z)=\sum_{\gamma>0} \frac{1}{\zeta^{\prime}(\rho)} e^{\rho z}
$$

and

$$
\mathcal{M}(z)=\sum_{\gamma>0} \frac{1}{\rho \zeta^{\prime}(\rho)} e^{\rho z} .
$$

Basic analytic properties of $m(z)$ were established in [1] and [3]. In particular, it was proved that $m(z)$ admits meromorphic continuation to the whole complex plane with simple poles at logarithms of positive squarefree integers and corresponding residues

$$
\begin{equation*}
\operatorname{Res}_{z=\log n}=-\frac{\mu(n)}{2 \pi i} \quad(n \geq 1) \tag{2.3}
\end{equation*}
$$

Moreover, $m(z)$ satisfies the following functional equation

$$
\begin{equation*}
m(z)+\overline{m(\bar{z})}=A(z) \tag{2.4}
\end{equation*}
$$

where $A(z)$ is an entire function defined as follows

$$
\begin{equation*}
A(z)=-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right) . \tag{2.5}
\end{equation*}
$$

For real x, we write

$$
\mathcal{M}_{\Re}(x)=\lim _{y \rightarrow 0^{+}} \Re \mathcal{M}(x+i y) .
$$

The limit exists for all x, and we have

$$
\begin{equation*}
\mathcal{M}_{\Re}(x)=\frac{1}{2}\left(\mathcal{M}_{\Re}(x-0)+\mathcal{M}_{\Re}(x+0)\right) . \tag{2.6}
\end{equation*}
$$

Discontinuities occur only at $x=\log n$, where $\mu(n) \neq 0$. We have also the following result, which is implicitly contained in [1]. However, for the sake of completeness, we shall give a detailed proof.

Lemma 2.3. For real x we have

$$
\begin{equation*}
\mathcal{M}_{\Re}(x)=\frac{1}{2} M_{0}\left(e^{x}\right)+1+H(x), \tag{2.7}
\end{equation*}
$$

where

$$
M_{0}(x)=\frac{1}{2}(M(x-0)+M(x+0)),
$$

and H is an entire function which for $z \in \mathbb{C}$ is defined as follows

$$
H(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n(2 n)!\zeta(2 n+1)}\left(2 \pi e^{-z}\right)^{2 n} .
$$

In particular for $x>0$ we have

$$
\begin{equation*}
\mathcal{M}_{\Re}(x)=\frac{1}{2} M_{0}\left(e^{x}\right)+1+O\left(e^{-2 x}\right) \tag{2.8}
\end{equation*}
$$

Let us remark that in this paper we do not need as precise formulae as provided by Lemma 2.3. We formulate them in the full generality for the sake of a possible future references.

Proof of Lemma 2.3. Because of (2.6) we can assume without the loss of generality that $x \neq \log n, \mu(n) \neq 0$. Let $a<\min (0, x)$, and let us denote by $l(a, x)$ a smooth curve $\tau:[0,1] \rightarrow \mathbb{C}$ such that $\tau(0)=a, \tau(1)=x$, and $\operatorname{Im}(\tau(t))>0$ for $0<t<1$. Then using (2.3) and (2.4) we obtain

$$
\begin{aligned}
\mathcal{M}(x) & =\mathcal{M}(a)+\int_{l(a, x)} m(z) d z \\
& =\mathcal{M}(a)+M\left(e^{x}\right)+\int_{\overline{l(a, x)}} m(z) d z \\
& =\mathcal{M}(a)+M\left(e^{x}\right)-\overline{\int_{l(a, x)} m(z) d z}-\int_{a}^{x} A(t) d t \\
& =-\overline{\mathcal{M}(x)}+M\left(e^{x}\right)+2 \mathcal{M}_{\Re}(a)+2 H(x)-2 H(a) .
\end{aligned}
$$

Hence

$$
2 \mathcal{M}_{\Re}(x)=M\left(e^{x}\right)+c_{a}+2 H(x),
$$

where

$$
c_{a}=2 \mathcal{M}_{\Re}(a)-2 H(a),
$$

and all what remains to be proved is that $c_{a}=2$. To this end let us consider the integral

$$
I_{a}=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{e^{a s}}{s \zeta(s)} d s
$$

where $\mathcal{C}=\mathcal{C}(0, \delta)$ denotes the circle with center 0 and radius $\delta>0$. Obviously,

$$
I_{a}=\frac{1}{\zeta(0)}=-2
$$

On the other hand we have

$$
I_{a}=\lim _{\eta \rightarrow 0^{+}}\left\{\frac{1}{2 \pi i} \int_{\mathcal{C}_{-}} \frac{e^{(a+i \eta) s}}{s \zeta(s)} d s+\frac{1}{2 \pi i} \int_{\mathcal{C}_{+}} \frac{e^{(a-i \eta) s}}{s \zeta(s)} d s,\right\}
$$

where

$$
\mathcal{C}_{-}=\left\{\delta e^{i \varphi}: 0 \leq \varphi \leq \pi\right\} \quad \text { and } \quad \mathcal{C}_{+}=\left\{\delta e^{i \varphi}:-\pi \leq \varphi \leq 0\right\}
$$

Let k be a real number greater than 1 , and let \mathcal{L}_{k} be the contour consisting of the vertical half-line $[-k+i \infty,-k+i]$, the polygon line with vertices $-k+i,-1+i,-1$, $-\delta$, the half-circle $-\mathcal{C}_{+}$, the line segment $[\delta, k]$ and the vertical half-line $[k, k+i \infty]$. For $\eta>0$ and sufficiently small positive δ we have

$$
\frac{1}{2 \pi i} \int_{\mathcal{L}_{k}} \frac{e^{(a+i \eta) s}}{s \zeta(s)} d s=\mathcal{M}(a+i \eta)
$$

It is easy to show that the integrals along vertical half-lines tend to 0 as $k \rightarrow \infty$. Therefore

$$
\mathcal{M}(a+i \eta)=\frac{1}{2 \pi i}\left(\int_{\mathcal{L}_{+}}-\int_{\mathcal{C}_{+}}+\int_{\delta}^{\infty}\right) \frac{e^{(a+i \eta) s}}{s \zeta(s)} d s
$$

where \mathcal{L}_{+}the the infinite polygon line with vertices $-\infty+i,-1+i,-1$ and $-\delta$. In the similar way, but working on the lower half-plane we obtain

$$
\overline{\mathcal{M}(a+i \eta)}=\frac{1}{2 \pi i}\left(-\int_{\mathcal{L}_{-}}-\int_{\mathcal{C}_{-}}-\int_{\delta}^{\infty}\right) \frac{e^{(a-i \eta) s}}{s \zeta(s)} d s
$$

where $\mathcal{L}_{-}=\overline{\mathcal{L}_{-}}$. Adding the above two formulae and passing to the limit as $\eta \rightarrow 0$ and then counting residues, we obtain

$$
\begin{aligned}
2 \mathcal{M}_{\Re}(a) & =\frac{1}{2 \pi i}\left(-\int_{\mathcal{L}_{-} \cup\left(-\mathcal{L}_{+}\right)}-\int_{\mathcal{C}}\right) \frac{e^{a s}}{s \zeta(s)} d s \\
& =2+\sum_{n=1}^{\infty} \frac{e^{-2 n a}}{2 n \zeta^{\prime}(-2 n)} \\
& =2+2 H(a) .
\end{aligned}
$$

Consequently $c_{a}=2$, and the result follows.

Lemma 2.4. Suppose $m^{-}>-\infty$ or $m^{+}<\infty$. Then the Riemann Hypothesis is true, all non-trivial zeros of the Riemann zeta function are simple, and moreover

$$
\begin{equation*}
\frac{1}{\zeta^{\prime}(\rho)} \ll|\gamma| . \tag{2.9}
\end{equation*}
$$

This is well known and classical (see for instance [4], Section 15.1).
Lemma 2.5. Suppose $m^{-}>-\infty$ or $m^{+}<\infty$. Then the function

$$
F(z)=e^{-z / 2} \mathcal{M}(z)
$$

belongs to the class \mathfrak{A}. More generally, for arbitrary real numbers $b_{1}, \ldots, b_{k}, c_{1}, \ldots$, c_{k} the function

$$
G(z)=\sum_{n=1}^{k} b_{k} F\left(z+c_{k}\right)
$$

belongs to \mathfrak{A}.
Proof. Using Lemma 2.4 we can assume Riemann Hypothesis and simplicity of zeros. For $z \in \mathbb{C}$ we have

$$
F(z)=\sum_{\gamma>0} \frac{1}{\rho \zeta^{\prime}(\rho)} e^{i \gamma z}
$$

and hence it is of the form (2.1). Other conditions in the definition of \mathfrak{A} easily follow from described earlier properties of $\mathcal{M}(z)$. According to (2.9), condition 3 is satisfied with $D=3$. Finally, $G \in \mathfrak{A}$ since \mathfrak{A} is a real vector space which is invariant under the shifts of arguments by real numbers.

3. Proof of the Theorem

We can assume $m^{-}>-\infty$ or $m^{+}<\infty$ since otherwise Theorem 1.1 follows with $N=1$ and $\theta=0$. Consequently, using Lemma 2.4, we can assume Riemann Hypothesis and simplicity of zeros.

Let X be sufficiently large and write $L=[\log X]$. By Lemma 2.1 almost all intervals $\left[x, x+L^{3}\right]$, where $X \leq x \leq 2 X$, contain primes. Applying the same lemma for $X / 2$ in place of X we see that also almost all of them contain even P_{2} almost primes, i.e. numbers of the form $2 p$, where p is a prime, $X / 2 \leq p \leq X$. It follows also that almost all intervals $\left[x, x+L^{3}\right]$, where $X \leq x \leq 2 X$, contain both a prime and an even almost prime. Applying the pigeon hole principle we infer that there exists a subinterval $I \subset[X, 2 X]$ of length $X L^{-4}$ containing at least $\frac{1}{2} X L^{-7}$ disjoint subintervals of the form $\left[x, x+L^{3}\right]$ containing both a prime and an even almost prime. Applying the pigeon hole principle once more we infer that there are $\gg X L^{-10}$ disjoint subintervals $\left[x, x+L^{3}\right] \subset I$ containing a prime p and an even almost prime $2 q$, with a fixed absolute value of the difference $|p-2 q|=h$ for certain
$h \leq L^{3}$. Consequently, it is easy to see that there exists $X \leq Y \leq 2 X-X L^{-4}$ and a sequence of integers

$$
Y \leq n_{1}<n_{2}<\ldots<n_{N} \leq Y+X L^{-4}
$$

satisfying the following properties:

$$
\begin{gather*}
n_{j}-n_{j-1} \geq L^{3} \quad \text { for every } \quad j=1, \ldots, N ; \tag{3.1}\\
N \gg X L^{-10} ; \tag{3.2}\\
\mu\left(n_{j}\right)=\mu\left(n_{j^{\prime}}\right) \text { for } 1 \leq j, j^{\prime} \leq N \tag{3.3}\\
\mu\left(n_{j}\right) \mu\left(n_{j}-h\right)=-1 \quad \text { for } j=1, \ldots, N \tag{3.4}
\end{gather*}
$$

where h is fixed and $\leq L^{3}$, and we put $n_{0}=0$.
Let $\omega=1 /(2 Y)$ and define $F(z)$ for z from the upper half-plane by the following formula

$$
F(z)=e^{-z / 2} \sum_{j=1}^{N}\left(\mathcal{M}\left(z+\log \frac{n_{j}}{n_{N}}\right)-\mathcal{M}\left(z+\log \frac{n_{j}}{n_{N}}-\omega\right)\right) .
$$

According to Lemma 2.5, $F(z)$ belongs to the class \mathfrak{A}. We put

$$
a_{j}=\frac{n_{j}}{n_{N}}, \quad(j=0, \ldots, N) \quad \text { and } \quad \theta=e^{-\omega}
$$

(recall that $n_{0}=0$). These numbers obviously satisfy (1.4), and for sufficiently large X we have using (3.1)

$$
\begin{aligned}
\frac{a_{j-1}}{a_{j}} & =\frac{n_{j-1}}{n_{j}} \leq \frac{n_{j}-L^{3}}{n_{j}} \\
& <1-\frac{L^{3}}{2 Y}<e^{-1 /(2 Y)}=\theta<1,
\end{aligned}
$$

and consequently (1.5) holds as well. By (2.8), for real $x \rightarrow \infty$, we have

$$
\begin{align*}
2 \Re F(x) & =e^{-x / 2} \sum_{j=1}^{N}\left(M_{0}\left(e^{x} \frac{n_{j}}{n_{N}}\right)-M_{0}\left(e^{x-\omega} \frac{n_{j}}{n_{N}}\right)+O\left(e^{-2 x}\right)\right) \\
& =e^{-x / 2} \sum_{j=1}^{N} \sum_{\theta a_{j} e^{x}<n \leq a_{j} e^{x}} \mu(n)+o(1) . \tag{3.5}
\end{align*}
$$

Hence, using Lemma 2.2, we see that the assertion of Theorem 1.1 will follow if we find two real numbers x_{1} and x_{2} both being regular points of $F(z)$ such that $\left|\Re\left(F\left(x_{j}\right)\right)\right| \geq B / 2, j=1,2$, and $\Re\left(F\left(x_{1}\right)\right) \Re\left(F\left(x_{2}\right)\right)<0$.

Let us put $x_{1}=\log n_{N}+\omega / 2$. Then for every $j=1,2, \ldots, N$ we have

$$
a_{j} e^{x_{1}}=n_{j} e^{\omega / 2}=n_{j}\left(1+\frac{1}{4 Y}+O\left(\frac{1}{X^{2}}\right)\right)=n_{j}+\frac{n_{i}}{4 Y}+O\left(\frac{1}{X}\right)
$$

and similarly

$$
\theta a_{j} e^{x_{1}}=n_{j} e^{-\omega / 2}=n_{j}-\frac{n_{i}}{4 Y}+O\left(\frac{1}{X}\right) .
$$

Since for large X

$$
0<\frac{n_{j}}{4 Y}+O\left(\frac{1}{X}\right)<1,
$$

we have

$$
\begin{equation*}
n_{j}-1<\theta a_{j} e^{x_{1}}<n_{j}<a_{j} e^{x_{1}}<n_{j}+1 . \tag{3.6}
\end{equation*}
$$

Moreover, let us put $x_{2}=x_{1}-h / Y$. Then

$$
\begin{aligned}
a_{j} e^{x_{2}} & =a_{j} e^{x_{1}} e^{-h / Y}=n_{j}\left(1+\frac{1}{4 Y}+O\left(\frac{1}{X^{2}}\right)\right)\left(1-\frac{h}{Y}+O\left(\frac{L^{6}}{X^{2}}\right)\right) \\
& =n_{j}-h+\frac{n_{j}}{4 Y}+O\left(\frac{1}{L}\right)
\end{aligned}
$$

and similarly

$$
\theta a_{j} e^{x_{2}}=n_{j}-h-\frac{n_{j}}{4 Y}+O\left(\frac{1}{L}\right) .
$$

Consequently, for large X we have

$$
\begin{equation*}
n_{j}-h-1<\theta a_{j} e^{x_{2}}<n_{j}-h<a_{j} e^{x_{2}}<n_{j}-h+1 . \tag{3.7}
\end{equation*}
$$

Applying (3.5), (3.6), (3.3) and (3.2) we obtain

$$
\begin{aligned}
\mu\left(n_{1}\right) \Re F\left(x_{1}\right) & =\mu\left(n_{1}\right) e^{-x_{1} / 2} \sum_{j=1}^{N} \mu\left(n_{j}\right)+o(1) \\
& =e^{-x_{1} / 2} N+o(1) \gg X^{1 / 2} L^{-10} .
\end{aligned}
$$

Similarly, but using (3.7) in place of (3.6) we prove

$$
\mu\left(n_{1}-h\right) \Re F\left(x_{2}\right) \gg X^{1 / 2} L^{-10} .
$$

Hence

$$
\left|\Re F\left(x_{j}\right)\right| \geq B / 2
$$

for $j=1,2$ if X is large enough. Moreover, because of (3.4), we have

$$
\Re F\left(x_{1}\right) \Re F\left(x_{2}\right)<0,
$$

and Theorem 1.1 follows.

References

[1] K. M. Bartz, On some complex explicit formulae connected with the Möbius function, I, II, Acta Arith. 57 (1991), 283-293; ibidem 57(1991), 295-305.
[2] J. Kaczorowski, The k-functions in multiplicative number theory, IV; On a method of A.E. Ingham, Acta Arith. 57 (1991), 231-244.
[3] J. Kaczorowski, Results on the Möbius function, J. London Math. Soc. 75 (2007), no. 2, 509-521.
[4] H. L. Montgomery, R. C. Vaughan, Multiplicative Number Theory, I. Classical Theory, Cambridge University Press, Cambridge 2007.
[5] A. M. Odlyzko, H. J. J. te Riele, Disproof of the Mertens conjecture, J. reine angew. Math. 357 (1985), 138-160.
[6] J. Pintz, An effective disproof of the Mertens conjecture, Astérisque, 147-148 (1987), 325-333.
[7] A. Selberg, On the normal density of primes in short intervals, and the difference between consequtive primes, Arch. Math. Naturvid. 47 (1943), 87-105.

Address: Jerzy Kaczorowski, Adam Mickiewicz University, Faculty of Mathematics and Computer Science, ul. Umultowska 87, 61-614 Poznań, Poland
E-mail: kjerzy@amu.edu.pl
Received: 28 March 2007

