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Abstract: It is proved that for every positive B there exist real numbers 0 = a0 < a1 < . . . <
aN = 1 and max1≤j≤N (aj−1/aj) ≤ θ < 1 such that

lim sup
x→∞

1
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x

N
X

j=1
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θajx<n≤ajx

µ(n) ≥ B

and

lim inf
x→∞

1
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X

θajx<n≤ajx

µ(n) ≤ −B,

where µ(n) denotes the Möbius function.
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1. Introduction and statement of the Theorem

Let µ(n) denote the Möbius function, and let us write

M(x) =
∑

n≤x

µ(n),

m− = lim inf
x→∞

1√
x

M(x) and m+ = lim sup
x→∞

1√
x

M(x).

The most important unproved conjecture concerning these quantities predicts that

m− = −∞ and m+ = ∞. (1.1)

In particular it is expected that

lim sup
x→∞

1√
x
|M(x)| = ∞. (1.2)
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The best result in this direction is due to Odlyzko and te Riele [5] who showed
that

m− ≤ −1.009 and m+ ≥ 1.06

disproving in this way the famous Mertens conjecture

|M(x)| <
√

x for x > 1

(see also [6]). Another type of approximation to the above conjectures was dis-
cussed in [3]. It was proved there that for every real a 6= 0 we have as x → ∞
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= Ω
(

x1/2 log log log x
)

, (1.3)

so that at least one of the sums on the left is very large infinitely often. Observe
that if we could pass to the limit as a → 0, then (1.3) would imply

M(x) = Ω(x1/2 log log log x),

a result much stronger than (1.2).
In this paper we prove the following result.

Theorem 1.1. For every positive B there exist real numbers

0 = a0 < a1 < . . . < aN = 1 (1.4)

and a real number θ satisfying

max
1≤j≤N

(aj−1/aj) ≤ θ < 1 (1.5)

such that

lim sup
x→∞

1√
x

N
∑

j=1

∑

θajx<n≤ajx

µ(n) ≥ B

and

lim inf
x→∞

1√
x

N
∑

j=1

∑

θajx<n≤ajx

µ(n) ≤ −B.

It is an interesting problem to estimate N in terms of B. Our method of proof
gives N ≪ B2(log B)C for certain positive C. Sufficiently sharp estimates of this
type would have important consequences. For instance N = o(B) easily implies
(1.2). Indeed, suppose in contrary, that M(x) ≪ √

x. Then

1√
x

N
∑

j=1

∑

θajx<n≤ajx

µ(n) =
1√
x

N
∑

j=1

(M(ajx) − M(θajx)) ≪ N.

Passing to the limit as x → ∞ over a suitably chosen values of x, and applying
Theorem 1.1 we obtain B ≪ N . If N = o(B) this leads to contradiction, and
hence (1.2) holds.

Acknowledgement. The author thanks Alberto Perelli who read the first version
of this paper and made a number of valuable remarks.
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2. Lemmas

Lemma 2.1. Suppose the Riemann Hypothesis is true. Then for almost all y ∈
[x, 2x], x ≥ 2, there is a prime p ∈ [y, y + f(y) log2 y], where f(y) is any positive

function tending to infinity when y → ∞.

This is a classical result proved by Selberg [7]. Let us remark that ‘almost all’
in the formulation of the lemma means that the Lebesgue measure of exceptions
is o(x) as x → ∞.

Following [2] let us denote by A the set of all functions defined on the upper
half-plane H = {z ∈ C : Im(z) > 0} by the formula

F (z) =
∞
∑

n=1

aneiwnz , (2.1)

and satisfying the following conditions:

1. 0 ≤ w1 < w2 < . . . are real numbers;

2. an ∈ C, n = 1, 2, 3, . . . ;

3. There exists a non-negative integer D such that

∞
∑

n=2

|an|w−D
n < ∞ ;

4. There exists L0 = L0(F ) ≥ 0 such that the limit

P (x) = lim
y→0+

ℜF (x + iy)

exists for every real x ≥ L0 and represents a locally bounded function of
x ∈ [L0,∞).

5. For every bounded interval I ⊂ (L0,∞) we have

ℜF (x + iy) ≪I 1

for x ∈ I and y > 0.

Note that in [2] condition 5 was erroneously omitted. With this notation we
have the following result, which is the basis for the proof of Theorem 1.1.

Lemma 2.2. (See [2], Corollary 2.) Let F ∈ A. Then

lim inf
x→∞

P (x) = infz∈HℜF (z)

and

lim sup
x→∞

P (x) = sup
z∈H

ℜF (z).
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In order to construct an F (z) suitable for our purposes, we consider subsidiary
functions m(z) and M(z) defined as follows. Let ζ(s) = ζ(σ + it) denote as usual
the Riemann zeta function. The function m(z) is defined for z from the upper half
plane by the following formula

m(z) =
1

2πi

∫

L

1

ζ(s)
esz ds. (2.2)

The path of integration consists of the half-line s = −1/2 + it, ∞ > t ≥ 0, the
line segment [−1/2, 3/2], and the half-line s = 3/2 + it, 0 ≤ t < ∞. Since 1/ζ(s)
is bounded on C, the integral converges absolutely and uniformly for z ∈ H, and
hence represents a holomorphic function on this half-plane. Moreover, for z ∈ H

we put

M(z) =

∫ z

z+i∞

m(w) dw,

where the integration is taken along the vertical half-line w = z + it, ∞ > t ≥
Im(z).

In the case when all non-trivial zeros are simple and |ζ′(ρ)| ≫ e−ε|γ| for every
positive ε, we have for z ∈ H

m(z) =
∑

γ>0

1

ζ′(ρ)
eρz

and

M(z) =
∑

γ>0

1

ρζ′(ρ)
eρz .

Basic analytic properties of m(z) were established in [1] and [3]. In particular,
it was proved that m(z) admits meromorphic continuation to the whole complex
plane with simple poles at logarithms of positive squarefree integers and corre-
sponding residues

Resz=log n = −µ(n)

2πi
(n ≥ 1). (2.3)

Moreover, m(z) satisfies the following functional equation

m(z) + m(z) = A(z), (2.4)

where A(z) is an entire function defined as follows

A(z) = −2

∞
∑

n=1

µ(n)

n
cos

(

2π

n
e−z

)

. (2.5)

For real x, we write

Mℜ(x) = lim
y→0+

ℜM(x + iy).
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The limit exists for all x, and we have

Mℜ(x) =
1

2
(Mℜ(x − 0) + Mℜ(x + 0)). (2.6)

Discontinuities occur only at x = log n, where µ(n) 6= 0. We have also the following
result, which is implicitly contained in [1]. However, for the sake of completeness,
we shall give a detailed proof.

Lemma 2.3. For real x we have

Mℜ(x) =
1

2
M0(e

x) + 1 + H(x), (2.7)

where

M0(x) =
1

2
(M(x − 0) + M(x + 0)),

and H is an entire function which for z ∈ C is defined as follows

H(z) =

∞
∑

n=1

(−1)n

2n(2n)!ζ(2n + 1)
(2πe−z)2n.

In particular for x > 0 we have

Mℜ(x) =
1

2
M0(e

x) + 1 + O(e−2x). (2.8)

Let us remark that in this paper we do not need as precise formulae as provided
by Lemma 2.3. We formulate them in the full generality for the sake of a possible
future references.

Proof of Lemma 2.3. Because of (2.6) we can assume without the loss of gen-
erality that x 6= log n, µ(n) 6= 0. Let a < min(0, x), and let us denote by l(a, x)
a smooth curve τ : [0, 1] → C such that τ(0) = a, τ(1) = x, and Im(τ(t)) > 0 for
0 < t < 1. Then using (2.3) and (2.4) we obtain

M(x) = M(a) +

∫

l(a,x)

m(z) dz

= M(a) + M(ex) +

∫

l(a,x)

m(z) dz

= M(a) + M(ex) −
∫

l(a,x)

m(z) dz −
∫ x

a

A(t) dt

= −M(x) + M(ex) + 2Mℜ(a) + 2H(x) − 2H(a).

Hence
2Mℜ(x) = M(ex) + ca + 2H(x),

where
ca = 2Mℜ(a) − 2H(a),
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and all what remains to be proved is that ca = 2. To this end let us consider the
integral

Ia =
1

2πi

∫

C

eas

sζ(s)
ds,

where C = C(0, δ) denotes the circle with center 0 and radius δ > 0. Obviously,

Ia =
1

ζ(0)
= −2.

On the other hand we have

Ia = lim
η→0+

{

1

2πi

∫

C−

e(a+iη)s

sζ(s)
ds +

1

2πi

∫

C+

e(a−iη)s

sζ(s)
ds,

}

where
C− = {δeiϕ : 0 ≤ ϕ ≤ π} and C+ = {δeiϕ : −π ≤ ϕ ≤ 0}.

Let k be a real number greater than 1, and let Lk be the contour consisting of the
vertical half-line [−k+i∞,−k+i], the polygon line with vertices −k+i, −1+i, −1,
−δ, the half-circle −C+, the line segment [δ, k] and the vertical half-line [k, k+i∞].
For η > 0 and sufficiently small positive δ we have

1

2πi

∫

Lk

e(a+iη)s

sζ(s)
ds = M(a + iη).

It is easy to show that the integrals along vertical half-lines tend to 0 as k → ∞.
Therefore

M(a + iη) =
1

2πi

(

∫

L+

−
∫

C+

+

∫ ∞

δ

)

e(a+iη)s

sζ(s)
ds,

where L+ the the infinite polygon line with vertices −∞ + i, −1 + i, −1 and −δ.
In the similar way, but working on the lower half-plane we obtain

M(a + iη) =
1

2πi

(

−
∫

L−

−
∫

C−

−
∫ ∞

δ

)

e(a−iη)s

sζ(s)
ds,

where L− = L−. Adding the above two formulae and passing to the limit as η → 0
and then counting residues, we obtain

2Mℜ(a) =
1

2πi

(

−
∫

L−∪(−L+)

−
∫

C

)

eas

sζ(s)
ds

= 2 +

∞
∑

n=1

e−2na

2nζ′(−2n)

= 2 + 2H(a).

Consequently ca = 2, and the result follows. �
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Lemma 2.4. Suppose m− > −∞ or m+ < ∞. Then the Riemann Hypothesis is

true, all non-trivial zeros of the Riemann zeta function are simple, and moreover

1

ζ′(ρ)
≪ |γ|. (2.9)

This is well known and classical (see for instance [4], Section 15.1).

Lemma 2.5. Suppose m− > −∞ or m+ < ∞. Then the function

F (z) = e−z/2M(z)

belongs to the class A. More generally, for arbitrary real numbers b1, . . . , bk, c1, . . . ,
ck the function

G(z) =

k
∑

n=1

bkF (z + ck)

belongs to A.

Proof. Using Lemma 2.4 we can assume Riemann Hypothesis and simplicity of
zeros. For z ∈ C we have

F (z) =
∑

γ>0

1

ρζ′(ρ)
eiγz,

and hence it is of the form (2.1). Other conditions in the definition of A easily
follow from described earlier properties of M(z). According to (2.9), condition 3
is satisfied with D = 3. Finally, G ∈ A since A is a real vector space which is
invariant under the shifts of arguments by real numbers. �

3. Proof of the Theorem

We can assume m− > −∞ or m+ < ∞ since otherwise Theorem 1.1 follows with
N = 1 and θ = 0. Consequently, using Lemma 2.4, we can assume Riemann
Hypothesis and simplicity of zeros.

Let X be sufficiently large and write L = [log X ]. By Lemma 2.1 almost all
intervals [x, x + L3], where X ≤ x ≤ 2X , contain primes. Applying the same
lemma for X/2 in place of X we see that also almost all of them contain even P2

almost primes, i.e. numbers of the form 2p, where p is a prime, X/2 ≤ p ≤ X . It
follows also that almost all intervals [x, x+L3], where X ≤ x ≤ 2X , contain both a
prime and an even almost prime. Applying the pigeon hole principle we infer that
there exists a subinterval I ⊂ [X, 2X ] of length XL−4 containing at least 1

2XL−7

disjoint subintervals of the form [x, x + L3] containing both a prime and an even
almost prime. Applying the pigeon hole principle once more we infer that there are
≫ XL−10 disjoint subintervals [x, x + L3] ⊂ I containing a prime p and an even
almost prime 2q, with a fixed absolute value of the difference |p−2q| = h for certain
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h ≤ L3. Consequently, it is easy to see that there exists X ≤ Y ≤ 2X − XL−4

and a sequence of integers

Y ≤ n1 < n2 < . . . < nN ≤ Y + XL−4

satisfying the following properties:

nj − nj−1 ≥ L3 for every j = 1, . . . , N ; (3.1)

N ≫ XL−10; (3.2)

µ(nj) = µ(nj′ ) for 1 ≤ j, j′ ≤ N ; (3.3)

µ(nj)µ(nj − h) = −1 for j = 1, . . . , N, (3.4)

where h is fixed and ≤ L3, and we put n0 = 0.
Let ω = 1/(2Y ) and define F (z) for z from the upper half-plane by the following

formula

F (z) = e−z/2
N
∑

j=1

(

M(z + log
nj

nN
) −M(z + log

nj

nN
− ω)

)

.

According to Lemma 2.5, F (z) belongs to the class A. We put

aj =
nj

nN
, (j = 0, . . . , N) and θ = e−ω

(recall that n0 = 0). These numbers obviously satisfy (1.4), and for sufficiently
large X we have using (3.1)

aj−1

aj
=

nj−1

nj
≤ nj − L3

nj

< 1 − L3

2Y
< e−1/(2Y ) = θ < 1,

and consequently (1.5) holds as well. By (2.8), for real x → ∞, we have

2ℜF (x) = e−x/2
N
∑

j=1

(

M0(e
x nj

nN
) − M0(e

x−ω nj

nN
) + O(e−2x)

)

= e−x/2
N
∑

j=1

∑

θajex<n≤ajex

µ(n) + o(1).

(3.5)

Hence, using Lemma 2.2, we see that the assertion of Theorem 1.1 will follow if
we find two real numbers x1 and x2 both being regular points of F (z) such that
|ℜ(F (xj))| ≥ B/2, j = 1, 2, and ℜ(F (x1))ℜ(F (x2)) < 0.

Let us put x1 = log nN + ω/2. Then for every j = 1, 2, . . . , N we have

aje
x1 = nje

ω/2 = nj

(

1 +
1

4Y
+ O

(

1

X2

))

= nj +
ni

4Y
+ O(

1

X
)
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and similarly

θaje
x1 = nje

−ω/2 = nj −
ni

4Y
+ O(

1

X
).

Since for large X

0 <
nj

4Y
+ O

(

1

X

)

< 1,

we have

nj − 1 < θaje
x1 < nj < aje

x1 < nj + 1. (3.6)

Moreover, let us put x2 = x1 − h/Y . Then

aje
x2 = aje

x1e−h/Y = nj

(

1 +
1

4Y
+ O

(

1

X2

))(

1 − h

Y
+ O

(

L6

X2

))

= nj − h +
nj

4Y
+ O

(

1

L

)

,

and similarly

θaje
x2 = nj − h − nj

4Y
+ O

(

1

L

)

.

Consequently, for large X we have

nj − h − 1 < θaje
x2 < nj − h < aje

x2 < nj − h + 1. (3.7)

Applying (3.5), (3.6), (3.3) and (3.2) we obtain

µ(n1)ℜF (x1) = µ(n1)e
−x1/2

N
∑

j=1

µ(nj) + o(1)

= e−x1/2N + o(1) ≫ X1/2L−10.

Similarly, but using (3.7) in place of (3.6) we prove

µ(n1 − h)ℜF (x2) ≫ X1/2L−10.

Hence

|ℜF (xj)| ≥ B/2

for j = 1, 2 if X is large enough. Moreover, because of (3.4), we have

ℜF (x1)ℜF (x2) < 0,

and Theorem 1.1 follows.



70 Jerzy Kaczorowski

References

[1] K. M. Bartz, On some complex explicit formulae connected with the Möbius

function, I, II, Acta Arith. 57 (1991), 283–293; ibidem 57(1991), 295–305.
[2] J. Kaczorowski, The k-functions in multiplicative number theory, IV; On

a method of A.E. Ingham, Acta Arith. 57 (1991), 231–244.
[3] J. Kaczorowski, Results on the Möbius function, J. London Math. Soc. 75

(2007), no. 2, 509–521.
[4] H. L. Montgomery, R. C. Vaughan, Multiplicative Number Theory, I. Classical

Theory, Cambridge University Press, Cambridge 2007.
[5] A. M. Odlyzko, H. J. J. te Riele, Disproof of the Mertens conjecture, J. reine

angew. Math. 357 (1985), 138–160.
[6] J. Pintz, An effective disproof of the Mertens conjecture, Astérisque, 147-148

(1987), 325–333.
[7] A. Selberg, On the normal density of primes in short intervals, and the differ-

ence between consequtive primes, Arch. Math. Naturvid. 47 (1943), 87–105.

Address: Jerzy Kaczorowski, Adam Mickiewicz University, Faculty of Mathematics and Com-

puter Science, ul. Umultowska 87, 61-614 Poznań, Poland

E-mail: kjerzy@amu.edu.pl

Received: 28 March 2007


