SUMS OF TWO SQUARES AND ONE BIQUADRATE

Rainer Dietmann and Christian Elsholtz

Abstract

There are no nontrivial integer solutions of $x^{2}+y^{2}+z^{4}=p^{2}$ for primes $p \equiv 7$ $(\bmod 8)$, even though there are no congruence obstructions. Keywords: Sums of squares, Waring's problem for mixed powers

A classical theorem of Legendre and Gauß asserts that a positive integer n is a sum of three integer squares if and only if n is not of the form $4^{a}(8 k+7)$. Davenport and Heilbronn [2] considered the more difficult problem of representing n in the form $n=x^{2}+y^{2}+z^{k}$, solving the problem in the case of odd $k \geq 3$, for 'almost all' positive integers n. Extending their results Brüdern ([1], Satz 4.2) has shown that there are at most $O\left(N^{1-\frac{1}{k}+\epsilon}\right)$ positive integers $n \leq N$ with no solutions of $n=x^{2}+y^{2}+z^{k}$ in positive integers, where n is not in a residue class excluded by congruence obstructions. More recently, Jagy and Kaplansky [3] proved that for $k=9$ and some $c_{1}>0$ there are $c_{1} N^{1 / 3} / \log N$ positive integers $n \leq N$ that are not sums of two squares and one k-th power, showing that 'almost all' cannot be replaced by 'sufficiently large'. In this note we show that even for $k=4$, for some $c_{2}>0$ there are $c_{2} N^{1 / 2} / \log N$ exceptional positive integers $n \leq N$ that are not of the form $x^{2}+y^{2}+z^{4}$ for positive integers x, y, z, even though there are no congruence obstructions for those n.

Theorem 0.1. Let p be a prime with $p \equiv 7 \bmod 8$. Then there are no positive integers x, y, z with $x^{2}+y^{2}+z^{4}=p^{2}$.

Proof. Assume there are solutions, then $x^{2}+y^{2}=\left(p-z^{2}\right)\left(p+z^{2}\right)$. If z is even, then $p-z^{2} \equiv 3 \bmod 4$. If z is odd, then $p-z^{2} \equiv 6 \bmod 8$. In both cases $p-z^{2}$ contains a prime divisor $q \equiv 3 \bmod 4$ of odd multiplicity. Therefore by the Two Squares Theorem both $p-z^{2}$ and $p+z^{2}$ are divisible by q. Hence their sum $2 p$ and their difference $-2 z^{2}$ are also divisible by q. Since p is prime: $p=q$, and since $z \neq 0: q$ divides z. But this gives a contradiction: $x^{2}+y^{2}+z^{4}>q^{4}>q^{2}=p^{2}$.

Bibliography

[1] Brüdern, J. Iterationsmethoden in der additiven Zahlentheorie, Dissertation, Universität Göttingen (1988).
[2] Davenport, H. \& Heilbronn, H. Note on a result in the additive theory of numbers, Proc. London Math. Soc. 43 (1937), 142-151.
[3] Jagy, W.C. \& Kaplansky, I. Sums of squares, cubes, and higher powers, Experiment. Math. 4 (1995), no. 3, 169-173.

Addressess: Rainer Dietmann, Institut für Algebra und Zahlentheorie, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Christian Elsholtz, Department of Mathematics, Royal Holloway, Egham, TW20 0EX Surrey, UK
E-mail: dietmarr@mathematik.uni-stuttgart.de, christian.elsholtz@rhul.ac.uk
Received: 1 October 2008

