SUMS OF FOURTH POWERS OF POLYNOMIALS OVER A FINITE FIELD OF CHARACTERISTIC 3

Mireille Car

Abstract

Let F be a finite field with q elements and characteristic 3. A sum $$
M=M_{1}^{4}+\ldots+M_{s}^{4}
$$ of fourth powers of polynomials M_{1}, \ldots, M_{s} is a strict one if $4 \operatorname{deg} M_{i}<4+\operatorname{deg} M$ for each $i=1, \ldots, s$. Our main results are: Let $P \in F[T]$ of degree ≥ 329. If $q>81$ is congruent to 1 (mod. 4), then P is the strict sum of 9 fourth powers; if $q=81$ or if $q>3$ is congruent to 3 $(\bmod 4)$, then P is the strict sum of 10 fourth powers. If $q=3$, every $P \in F[T]$ which is a sum of fourth powers is a strict sum of 12 fourth powers, if $q=9$, every $P \in F[T]$ which is a sum of fourth powers and whose degree is not divisible by 4 is a strict sum of 8 fourth powers; every $P \in F[T]$ which is a sum of fourth powers, whose degree is divisible by 4 and whose leading coefficient is a fourth power is a strict sum of 7 fourth powers.

Keywords: Waring's problem, Polynomials, Finite Fields.

1. Introduction

Let F be a finite field of characteristic p with q elements and let $\mathcal{S}(q, k)$ be the set of polynomials in $F[T]$ which are sums of k-th powers. Let $g(q, k)$, respectively, $G(q, k)$ denote the least integer s, if it exists, such that every polynomial $M \in$ $\mathcal{S}(q, k)$, respectively, every polynomial $M \in \mathcal{S}(q, k)$ of sufficiently large degree, may be written as a sum

$$
M=M_{1}^{k}+\ldots+M_{s}^{k}
$$

with M_{1}, \ldots, M_{s} polynomials satisfying the degree condition: $k \operatorname{deg} M_{i}<k+$ $\operatorname{deg} M$. Such a representation is called a strict representation in opposition to representations without degree conditions. Waring's problem consists in determining or, at least, bounding the numbers $g(q, k)$ and $G(q, k)$. Bounds for $g(q, k)$ and $G(q, k)$ were given in [3] where the author described a process introduced in [8] and performed in [4] to deal with the polynomial Waring's problem for cubes.

Some notations and definitions are necessary before stating the main results proved in [3].

If every $a \in F$ is a sum of k-th powers, the field F is called a Waring field for the exponent k or briefly, a k-Waring field. If F is a k-Waring field, let $\ell(q, k)$ denote the the least integer ℓ such that every element of F is the sum of ℓk-th powers. Let $\lambda(q, k)$ denote the least integer s such that -1 is the sum of $s k$-th powers. Let $d(q, k)=\operatorname{gcd}(q-1, k)$.

Let $v(q, k)$ denote the least integer v, if it exists, such that T may be written as a sum $\left(a_{1} T+b_{1}\right)^{k}+\ldots+\left(a_{v} T+b_{v}\right)^{k}$ with $a_{i}, b_{i} \in F$. Otherwise, let $v(q, k)=\infty$. If $v(q, k)$ is finite, every $P \in F[T]$ may be written as a sum

$$
P=\left(a_{1} P+b_{1}\right)^{k}+\ldots+\left(a_{v(q, k)} P+b_{v(q, k)}\right)^{k}
$$

so that $\mathcal{S}(q, k)=F[T]$ and F is a k-Waring field. If x is a real number, $[x]$ is defined as the integral part of x and $\lceil x\rceil$ is defined as the least integer $\geq x$.

In what follows, unless otherwise stated we agree that, if R is a ring, the statement $a \in R$ is a sum of fourth powers means that a is a sum $b_{1}^{4}+\ldots+b_{s}^{4}$ with $b_{1}, \ldots, b_{s} \in R$.

In [3], the bounds for $G(q, k)$ and $g(q, k)$ arise from the two following propositions.

Proposition 1.1. ([3]) (I) If F is a k-Waring field and if $q>k$, then

$$
v(q, k) \leq k / d(q, k)+\ell(q, k)(k-k / d(q, k))) .
$$

(II) Assume that one of the following conditions is satisfied: (1) $p>k$, (2) F is a k-Waring field, $q>k, k=h p^{s}-1$ with $1 \leq h \leq p, s \geq 1$. Then every $A \in F[T]$ of degree $\leq k n$ is the strict sum of $\ell(q, k)(k n+1) k$-th powers.

Proposition 1.2. ([3]) Assume that F is a k-Waring field and that $q>k$. Put

$$
r=\log (k /(k-1)) .
$$

(I) Let $m \geq\left[\frac{\log k}{r}\right]$. Then, every $P \in F[T]$ of degree at least equal to $n(m, k)=$ $k\left\lceil\frac{k^{2}-2 k-k^{2}\left(1-\frac{1}{k}\right)^{m+1}}{1-k\left(1-\frac{1}{k}\right)^{m+1}}\right\rceil-k+1$ is the strict sum of $m+v(q, k)+\max (\ell(q, k), 1+\lambda(q, k))$ k-th powers. Moreover, if $m \geq \frac{\log k}{r}$, then, $n(m, k) \leq k^{4}-3 k^{3}+2 k^{2}-2 k+1$.
(II) Let $m \geq \frac{\log (k(k-1) / 2)}{r}$. Then, every $P \in F[T]$ of degree $\geq k^{3}-3 k+1$ is the strict sum of $m+v(q, k)+\max (\ell(q, k), 1+\lambda(q, k)) k$-th powers.
(III) Let $m \geq \frac{3 \log k}{r}-1$. Then, every $P \in F[T]$ such that $k^{3}-2 k^{2}-k+1 \leq$ $\operatorname{deg} P \leq k^{3}-3 k$ is the strict sum of $m+v(q, k)+\max (\ell(q, k), 1+\lambda(q, k)) k$-th powers.

Roughly speaking, the object of this paper is the study of the Waring problem in the particular case $k=4, p=3$. It can be viewed as a continuation of the work in [5] where it was proved that $G(q, 4) \leq 11$ for $q \notin\{3,9,5,13,17,25,29\}$ and that $G(q, 4) \leq 10$ for $q \notin\{17,25\}$ and congruent to $1(\bmod 8)$. This case does not fall in the scope of the second part of Proposition 1.1, and the study of the numbers $g\left(3^{m}, 4\right)$ has not be done. In the special case $k=4, p=3$, it
is possible to compute the exact value of $v\left(3^{m}, 4\right)$. This involves an improvement for the bounds given in [3] and [5]. Since the numbers $g\left(3^{m}, 4\right)$ and $G\left(3^{m}, 4\right)$ are not sufficient to describe every possible case, we introduce new parameters. Let $\mathcal{S}^{\star}(q, 4)$ denote the set of polynomials in $F[T]$ which are strict sums of fourth powers. Let $g^{\star}(q, 4)$, respectively, $G^{\star}(q, 4)$ denote the least integer s, if it exists, such that every polynomial $M \in \mathcal{S}^{\star}(q, 4)$ respectively, every polynomial $M \in$ $\mathcal{S}^{\star}(q, 4)$ of sufficiently large degree, may be written as a strict sum

$$
M=M_{1}^{4}+\ldots+M_{s}^{4}
$$

The main results proved in this work are summarized in the following theorem.
Theorem 1.1. Assume that F is a finite field with $q=3^{N}$ elements.
(I) For $N \geq 3, \mathcal{S}\left(3^{N}, 4\right)$ is equal to the whole ring $F[T]$ and $\mathcal{S}^{\star}\left(3^{N}, 4\right)$ is the union of the set $\{A \in F[T] \mid \operatorname{deg} A>4\}$ and the set of polynomials

$$
A=a T^{4}+b T^{3}+c T+d
$$

with $a, b, c, d \in F$. For $N \in\{1,2\}, \mathcal{S}\left(3^{N}, 4\right)$ is the subset of $F[T]$ formed by the polynomials A such that $T^{9}-T$ divides $A^{3}-A$. Moreover, $\mathcal{S}^{\star}(3,4)=\mathcal{S}(3,4)$ and $\mathcal{S}^{\star}(9,4)$ is the set formed by the polynomials $A \in \mathcal{S}(9,4)$ satisfying one of the two following conditions:
(i) 4 does not divide $\operatorname{deg} A$, (ii) 4 divides $\operatorname{deg} A$ and the leading coefficient of A is in the prime field \mathbb{F}_{3}.
(II) We have $g\left(3^{N}, 4\right)=\infty$ for $N \geq 2$ and $g(3,4) \leq 12$. We have $g^{\star}\left(3^{N}, 4\right) \leq 19$ for even $N>4, g^{\star}(81,4) \leq 21$ and $g^{\star}(9,4) \leq 8$. We have $g^{\star}\left(3^{N}, 4\right) \leq 20$ for odd $N>1$ and $g^{\star}(3,4) \leq 12$.
(III) We have $G\left(3^{N}, 4\right) \leq 9$ for even $N>4, G(81,4) \leq 10$ and $G(9,4)=\infty$. We have $G\left(3^{N}, 4\right) \leq 10$ for odd $N>1$ and $G(3,4) \leq 12$. We have $G^{\star}\left(3^{N}, 4\right) \leq 9$ for even $N>4, G^{\star}(81,4) \leq 10$ and $G^{\star}(9,4) \leq 8$. We have $G^{\star}\left(3^{N}, 4\right) \leq 10$ for odd $N>1$ and $G^{\star}(3,4) \leq 12$.

Observe that for the classical Waring's problem we have $G(4)=16$ and $g(4)=$ 19 , see [6], [1] and [7].

The paper is organized as follows. In order to prove that T is a strict sum of fourth powers, we have to prove that some algebraic equations have solutions in F. This is done in Section 2. In Section 3, we prove that for $q=27$ or $q>81$, $v(q, 4)=3$ and that $v(81,4)=4$ and we deduce bounds for the numbers $G(q, 4)$. In Section 4, we prove some identities and we show that, with the exception $q=3$, the sets $\mathcal{S}\left(3^{N}, 4\right)$ and $\mathcal{S}^{\star}\left(3^{N}, 4\right)$ are different. In section 5 , we describe a new descent process and we end the proof.

Choosing an algebraic closure \bar{F} of F, we shall denote by \mathbb{F}_{Q} the unique subfield of $\overline{\mathbb{F}}$ with Q elements, so that $F=\mathbb{F}_{q}$. Let $\alpha \in \mathbb{F}_{9}$ be such that

$$
\begin{equation*}
\alpha^{2}=-1 \tag{1.1}
\end{equation*}
$$

and let

$$
\begin{equation*}
\beta=1-\alpha . \tag{1.2}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\beta^{2}=\alpha, \beta^{4}=-1 \tag{1.3}
\end{equation*}
$$

2. Equations

Although it is very simple, the following lemma is very useful to obtain representations of polynomials as sums of fourth powers.

Lemma 2.1. Let $(u, v) \in F^{2}$ be such that $u v \neq 0$ and $u^{8} \neq v^{8}$. Then, for each ordered pair $(a, b) \in F^{2}$, the system $(\mathcal{E}(u, v, a, b))$:

$$
\left\{\begin{array}{l}
a=u^{3} x+v^{3} y \tag{2.1}\\
b=u x^{3}+v y^{3}
\end{array}\right.
$$

has a unique solution in F^{2}.
Proof. If $(x, y) \in F^{2}$ is a solution of $\mathcal{E}(u, v, a, b)$, then,

$$
\begin{equation*}
y=\frac{\left(a-u^{3} x\right)}{v^{3}} \tag{2.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
x^{3}=\frac{b v^{8}-a^{3}}{u\left(v^{8}-u^{8}\right)} . \tag{2.3}
\end{equation*}
$$

Conversely, there is one and only one $x \in F$ satisfying (2.3) and, for that x, there is one and only one $y \in F$ satisfying (2.2).

When $q \equiv 3(\bmod 4)$, the set of fourth powers in F is the set of squares in F, so that the numbers $\nu_{i}(a)$ of representations of $a \in F$ as a sum of i fourth powers are well known. (See e.g. [2]). It remains to compute these numbers in the case when q is congruent to $1(\bmod 4)$. For that, we have to introduce some character sums

2.1. Character sums

In this subsection we suppose $q \equiv 1(\bmod 4)$. Then, $\mathbb{F}_{9} \subset F$. Let $\alpha \in F$ be defined by (1.1). Let tr denote the absolute trace on F and let ψ be the character of the additive group of F defined by

$$
\begin{equation*}
\psi(x)=\exp \left(\frac{2 \pi i \operatorname{tr}(x)}{3}\right) \tag{2.4}
\end{equation*}
$$

Then, ψ is not the trivial character. For a and b elements of F let

$$
\begin{equation*}
\sigma(a, b)=\sum_{x \in F} \psi\left(a x^{3}+b x\right) . \tag{2.5}
\end{equation*}
$$

Proposition 2.1. Let $a, b \in F$. Then,
(i) $\sigma(a, b) \in\{0, q\}$.
(ii) $\sigma(a, b)=q$ if and only if $a+b^{3}=0$.

Proof. The map $\gamma: x \mapsto\left(a x^{3}+b x\right)$ is additive so that $\psi \circ \gamma$ is a character of the additive group of F. This proves (i). Let $b \in F$. Then,

$$
\sum_{a \in F} \sigma(a, b)=\sum_{a \in F} \sum_{x \in F} \psi\left(a x^{3}+b x\right) .
$$

Inverting the order of summation gives

$$
\sum_{a \in F} \sigma(a, b)=\sum_{x \in F} \psi(b x) \sum_{a \in F} \psi\left(a x^{3}\right) .
$$

Since ψ is not trivial, the last inner sum is 0 if $x \neq 0$ and q if $x=0$. Thus,

$$
\sum_{a \in F} \sigma(a, b)=q .
$$

Since $\sigma(a, b) \in\{0, q\}$ for each $a \in F$, there exists one and only one $a \in F$ such that $\sigma(a, b)=q$. For every $x \in F, \operatorname{tr}\left((b x)^{3}\right)=\operatorname{tr}(b x)$ and $\psi\left(b^{3} x^{3}-b x\right)=1$. Thus, $\sigma\left(-b^{3}, b\right)=q$ so that $-b^{3}$ is the unique $a \in F$ such that $\sigma(a, b)=q$.

Let B denote the set of non-zero fourth powers in F. Observe that

$$
\begin{equation*}
|B|=\frac{q-1}{4} . \tag{2.6}
\end{equation*}
$$

For $t \in F$ let

$$
\begin{equation*}
f(t)=\sum_{x \in F} \psi\left(t x^{4}\right) \tag{2.7}
\end{equation*}
$$

Remark 2.1. For every $t \in F$,

$$
\begin{equation*}
f(t)=f(-t)=\overline{f(t)}, \tag{2.8}
\end{equation*}
$$

so that f takes real values.
Proof. Observe that q is congruent to $1(\bmod 8)$, so that -1 is a fourth power in F, say $-1=\beta^{4}$ with β defined by (1.2).

Proposition 2.2. (I) We have $f(0)=q$.
(II) Let $t \in F^{\star}$.
(i) If $t / \alpha \notin B$, then $f(t)^{2}=q$.
(ii) If $t / \alpha \in B$, then $f(t)=f(\alpha)$ and $f(t)^{2}=9 q$.
(iii) If $t / \alpha \notin B$, then $3 f(t)+f(\alpha)=0$.
(iv) If $q=9$, then $f(1)=f(-1)=-3$ and $f(\alpha)=f(-\alpha)=9$.
(v) If $q=81$, then $f(1)=f(-1)=f(\alpha)=f(-\alpha)=-27$.

Proof. (I) is obvious. From (2.8), for every $t \in F, f(t)^{2}=|f(t)|^{2}$. Let $t \in F^{\star}$. Then, with (2.5),

$$
f(t)^{2}=\sum_{x \in F} \sum_{y \in F} \psi\left(t\left((x+y)^{4}-y^{4}\right)\right)=\sum_{x \in F} \psi\left(t x^{4}\right) \sigma\left(t x, t x^{3}\right) .
$$

From Proposition 2.1, $\sigma\left(t x, t x^{3}\right)=0$ or q and is equal to q if and only $x \in X(t)$ where

$$
X(t)=\left\{x \in F \mid t x+t^{3} x^{9}=0\right\}=\left\{x \in F \mid x+t^{2} x^{9}=0\right\} .
$$

If $X(t)$ contains a non-zero element x, then $t^{2} x^{8}=-1$ so that $t x^{4}= \pm \alpha$, and t / α is a 4 -th power. Thus, if $t / \alpha \notin B$, then $f(t)^{2}=q$. Suppose that $t / \alpha=u^{4}$ with $u \in F$. Then, $1 / u \in X(t)$. Thus, $X(t)=\left\{z / u \mid z \in \mathbb{F}_{9}\right\}$, so that

$$
f(t)^{2}=q \sum_{z \in \mathbb{F}_{9}} \psi\left(\alpha z^{4}\right)
$$

If $z \in \mathbb{F}_{9}$, then $z^{4} \in \mathbb{F}_{3}$, so that $\operatorname{tr}\left(\alpha z^{4}\right)=z^{4} \operatorname{tr}(\alpha)=0$ and $f(t)^{2}=9 q$. Moreover, if $t / \alpha=u^{4}$ with $u \in F$, the change of the variable $y=u x$ in the sum (2.7) gives $f(t)=f(\alpha)$.
Let B^{\prime} denote the set of $x \in F$ which are not fourth powers. Then,

$$
\begin{equation*}
\left|B^{\prime}\right|=\frac{3(q-1)}{4} . \tag{2.9}
\end{equation*}
$$

Let $b \in B^{\prime}$. If $t \notin \alpha B$, then $t \in \alpha B^{\prime}$, so that $|f(t)|=|f(b \alpha)|$. Set $f(t)=\varepsilon_{t} f(b \alpha)$. Observe that $\varepsilon_{t}= \pm 1$. We compute the sum

$$
\begin{equation*}
\Sigma=\sum_{t \in F^{\star}} f(t) \tag{2.10}
\end{equation*}
$$

Firstly,

$$
\Sigma=\sum_{t \in F} f(t)-q=\sum_{t \in F} \sum_{x \in F} \psi\left(t x^{4}\right)-q .
$$

Inverting the order of summation gives

$$
\begin{equation*}
\Sigma=0 \tag{2.11}
\end{equation*}
$$

On the other hand,

$$
\Sigma=\sum_{t \in \alpha B} f(t)+\sum_{t \in \alpha B^{\prime}} f(t)
$$

Thus,

$$
\begin{equation*}
\Sigma=|B| f(\alpha)+f(b \alpha) \sum_{t \in \alpha B^{\prime}} \varepsilon_{t} \tag{2.12}
\end{equation*}
$$

From (2.9) and (2.11),

$$
\left|f(b \alpha) \sum_{t \in \alpha B^{\prime}} \varepsilon_{t}\right|=\frac{q-1}{4}|f(\alpha)| .
$$

From II.(i) and II.(ii),

$$
\left|\sum_{t \in \alpha B^{\prime}} \varepsilon_{t}\right|=\frac{3(q-1)}{4}=\left|B^{\prime}\right| .
$$

Hence, for each $t \in \alpha B^{\prime}$, we have $\varepsilon_{t}=\varepsilon_{b \alpha}$ and $f(t)=f(b \alpha)$. From (2.11) and (2.12),

$$
\frac{q-1}{4} f(\alpha)+\frac{3(q-1)}{4} f(b \alpha)=0
$$

Therefore, for every $(t, u) \in B \times B^{\prime}$,

$$
\frac{q-1}{4} f(t \alpha)+\frac{3(q-1)}{4} f(u \alpha)=0
$$

proving II.(iii).
In the case when $F=\mathbb{F}_{9}$, we shall use f_{1}, ψ_{1}, in the place of f, resp. ψ, and similarly, we shall write f_{2} and ψ_{2} for f and ψ in the case $F=\mathbb{F}_{81}$. Denote by t_{1} the absolute trace map from \mathbb{F}_{9} to \mathbb{F}_{3} and by τ the relative trace map from \mathbb{F}_{81} to \mathbb{F}_{9}. If $x \in \mathbb{F}_{9}$, then $x^{4} \in \mathbb{F}_{3}$. Thus

$$
t_{1}\left(\alpha x^{4}\right)=x^{4} t_{1}(\alpha)=0, t_{1}\left(x^{4}\right)=-x^{4} .
$$

From (2.4) and (2.7),

$$
\begin{gathered}
f_{1}(\alpha)=9 \\
f_{1}(1)=1+4\left(\exp \left(\frac{2 \pi i}{3}\right)+\exp \left(\frac{-2 \pi i}{3}\right)\right)=-3
\end{gathered}
$$

Let $\omega \in \mathbb{F}_{81}$ be such that $\omega^{2}=1+\alpha$. Then, $\omega^{4}=-\alpha$, so that α is a fourth power and $f_{2}(1)=f_{2}(\alpha)$. Now,

$$
\begin{aligned}
& f_{2}(\alpha)= \sum_{x \in \mathbb{F}_{9}} \sum_{y \in \mathbb{F}_{9}} \psi_{2}\left(\alpha(x+y \omega)^{4}\right)= \\
& \sum_{x \in \mathbb{F}_{9}} \sum_{y \in \mathbb{F}_{9}} \sum_{y \in \mathbb{F}_{9}} \psi_{1}\left(\tau\left(\alpha(x+y \omega)^{4}\right)\right)= \\
& \psi_{1}\left(-\alpha x^{4}-y^{4}\right)=f_{1}(-\alpha) f_{1}(-1)=-27
\end{aligned}
$$

2.2. Sums of fourth powers in \boldsymbol{F}

Let i be a positive integer. For $a \in F$, let $\nu_{i}(a)$ denote the number of solutions $\left(x_{1}, \ldots, x_{i}\right) \in F^{i}$ of the equation

$$
\begin{equation*}
a=x_{1}^{4}+\ldots+x_{i}^{4} \tag{2.13}
\end{equation*}
$$

Proposition 2.3. If $q \equiv 3(\bmod 4)$, then

$$
\nu_{2}(0)=1,
$$

$$
\nu_{3}(0)=q^{2}
$$

and for $a \in F^{\star}$, we have

$$
\begin{gathered}
\nu_{2}(a)=q+1, \\
\nu_{3}(a)=\left\{\begin{array}{lll}
q^{2}-q & \text { if } & a \in B, \\
q^{2}+q & \text { if } & a \notin B .
\end{array}\right.
\end{gathered}
$$

Proof. Observe that $a \in F$ is a fourth power if and only if a is a square. Apply the well-known results on sums of squares in a finite field, [2, exercise 5, p.175-176].

Proposition 2.4. If $q \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
& \nu_{2}(0)=4 q-3 \\
& \nu_{3}(0)=q^{2}+2 f(\alpha)(q-1)
\end{aligned}
$$

and for $a \in F^{\star}$, we have

$$
\begin{aligned}
& \nu_{2}(a)=q-3+2 f(a \alpha) \\
& \nu_{3}(a)=q^{2}-q+q \nu_{1}(a)-2 f(\alpha)+2 f(\alpha) f(a \alpha) .
\end{aligned}
$$

Proof. By orthogonality, for $i=1,2,3$,

$$
\nu_{i}(a)=\sum_{x_{1} \in F} \ldots \sum_{x_{i} \in F} \frac{1}{q} \sum_{t \in F} \psi\left(t\left(x_{1}^{4}+\ldots+x_{i}^{4}-a\right)\right) .
$$

After inverting the order of summation, we get with (2.7),

$$
\begin{equation*}
q \nu_{i}(a)=\sum_{t \in F} \psi(-a t) f(t)^{i} . \tag{2.14}
\end{equation*}
$$

Let $i=2,3$. From Proposition 2.2,

$$
q \nu_{i}(a)=q^{i}+9 q \sum_{t \in \alpha B} \psi(-a t) f(t)^{i-2}+q \sum_{\substack{t \in F^{\star} \\ t \notin \alpha B}} \psi(-a t) f(t)^{i-2} .
$$

Hence,

$$
\begin{equation*}
q \nu_{i}(a)=q^{i}-q^{i-1}+8 q \sum_{t \in \alpha B} \psi(-a t) f(t)^{i-2}+q \sum_{t \in F} \psi(-a t) f(t)^{i-2} . \tag{2.15}
\end{equation*}
$$

Suppose $i=2$. Then, from (2.6)

$$
\nu_{2}(0)=q-1+2(q-1)+q .
$$

Let $a \in F^{\star}$. With (2.15),

$$
\nu_{2}(a)=q-1+8 \sum_{t \in \alpha B} \psi(-a t) .
$$

If $t \in \alpha B$, the equation $t / \alpha=u^{4}$ has exactly 4 solutions in F. Thus,

$$
\nu_{2}(a)=q-1+2 \sum_{u \in F^{\star}} \psi\left(-a \alpha u^{4}\right)=q-3+2 \sum_{u \in F} \psi\left(-a \alpha u^{4}\right)
$$

so that with (2.7) and (2.8),

$$
\nu_{2}(a)=q-3+2 f(-a \alpha)=q-3+2 f(a \alpha) .
$$

Suppose $i=3$. Then, from (2.15) and (2.14),

$$
\nu_{3}(a)=q^{2}-q+8 \sum_{t \in \alpha B} \psi(-a t) f(t)+q \nu_{1}(a)
$$

so that

$$
\nu_{3}(a)=q^{2}-q+2 \sum_{u \in F^{\star}} \psi\left(-a \alpha u^{4}\right) f\left(\alpha u^{4}\right)+q \nu_{1}(a) .
$$

From Proposition 2.2-(ii),

$$
\nu_{3}(a)=q^{2}-q+q \nu_{1}(a)+2 f(\alpha) \sum_{u \in F^{\star}} \psi\left(-a \alpha u^{4}\right) .
$$

With (2.7),

$$
\nu_{3}(a)=q^{2}-q+q \nu_{1}(a)-2 f(\alpha)+2 f(\alpha) f(-a \alpha) .
$$

Thus,

$$
\nu_{3}(0)=q^{2}-2 f(\alpha)+2 q f(\alpha)
$$

Proposition 2.5. (I) F is a 4 -Waring field if and only if $q \neq 9$.
(II) If $q \neq 9$, then $\ell(q, 4)=2$.

Proof. (I) is given by [10, lemma 3.6 , p. 181]. We suppose $q \neq 9$. From [9], if $q>81$, then $\ell(q, 4) \leq 2$. Let $a \in F^{\star}$. From Proposition 2.3, if $q \equiv 3(\bmod 4)$, then $\nu_{2}(a)=q-1>0$; from Proposition 2.4, if $q \equiv 1(\bmod 4)$, then $\nu_{2}(a)=$ $q-3+2 f(a \alpha)$ and in view of Proposition 2.2, $\nu_{2}(a) \geq q-3-6 q^{1 / 2} \geq 24$. In any case, a is a sum of two 4 -th powers. Therefore, F is a 4 -Waring field with $\ell(q, 4) \leq 2$. We have $d(q, 4) \geq 2$, so that, from [3, Proposition 3.1], $\ell(q, k) \geq 2$.

Proposition 2.6. For $a \in F$, let $N_{3}(a)$ denote the number of $(x, y, z) \in F^{3}$ such that

$$
\left\{\begin{array}{l}
x^{4}+y^{4}+z^{4}=a, \quad\left(e_{1}\right) \tag{a}\\
x y \neq 0, \quad\left(e_{2}\right) \\
x^{8} \neq y^{8} \quad\left(e_{3}\right)
\end{array}\right.
$$

(I) If $q \equiv 1(\bmod 4)$, then

$$
N_{3}(0)=q^{2}-28 q+27+2(q-1) f(\alpha)
$$

and for every $a \in F^{\star}$, we have

$$
N_{3}(a)=\left\{\begin{array}{lll}
q^{2}-q+54-14 f(\alpha) & \text { if } & a \in B, \\
q^{2}-13 q+18+2 f(\alpha) & \text { if } & a \notin B .
\end{array}\right.
$$

(II) If $q \equiv 3(\bmod 4)$, then

$$
N_{3}(0)=q^{2}-4 q+3
$$

and for every $a \in F^{\star}$, we have

$$
N_{3}(a)=\left\{\begin{array}{lll}
q^{2}-5 q+6 & \text { if } & a \in B, \\
q^{2}-3 q & \text { if } & a \notin B .
\end{array}\right.
$$

Proof. Let $\mathcal{A}(a)$ denote the set formed by the $(x, y, z) \in F^{3}$ satisfying conditions $\left(e_{1}\right),\left(e_{2}\right)$ and $\left(e_{3}\right)$. Then,

$$
\begin{equation*}
N_{3}(a)=|\mathcal{A}(a)| \tag{2.16}
\end{equation*}
$$

Let

$$
\begin{align*}
& \mathcal{B}_{0}(a)=\left\{(x, y, z) \in F^{3} \mid x^{4}+y^{4}+z^{4}=a, x y=0\right\} \tag{2.17}\\
& \mathcal{B}_{1}(a)=\left\{(x, y, z) \in F^{3} \mid x^{4}+y^{4}+z^{4}=a, x y \neq 0, x^{8}=y^{8}\right\} . \tag{2.18}
\end{align*}
$$

Then

$$
\begin{equation*}
\nu_{3}(a)=|\mathcal{A}(a)|+\left|\mathcal{B}_{0}(a)\right|+\left|\mathcal{B}_{1}(a)\right| . \tag{2.19}
\end{equation*}
$$

Firstly, we deal with $\mathcal{B}_{0}(a)$. We have

$$
\begin{equation*}
\mathcal{B}_{0}(a)=\mathcal{B}_{0,0}(a) \cup \mathcal{B}_{0,1}(a) \cup \mathcal{B}_{1,0}(a), \tag{2.20}
\end{equation*}
$$

with the $\mathcal{B}_{i, j}(a)$ defined as follows. For $(x, y, z) \in \mathcal{B}_{0}(a)$,

$$
\begin{aligned}
& (x, y, z) \in \mathcal{B}_{0,0}(a) \Leftrightarrow(x, y)=(0,0) \\
& (x, y, z) \in \mathcal{B}_{0,1}(a) \Leftrightarrow y \neq 0 \\
& (x, y, z) \in \mathcal{B}_{1,0}(a) \Leftrightarrow x \neq 0
\end{aligned}
$$

Now, $(0,0, z) \in \mathcal{B}_{0,0}(a) \Leftrightarrow a=z^{4}$, so that

$$
\begin{equation*}
\left|\mathcal{B}_{0,0}(a)\right|=\nu_{1}(a) ; \tag{2.21}
\end{equation*}
$$

and $(0, y, z) \in \mathcal{B}_{0,1}(a) \Leftrightarrow a=y^{4}+z^{4}$ with $y \neq 0$, so that

$$
\begin{equation*}
\left|\mathcal{B}_{0,1}(a)\right|=\nu_{2}(a)-\nu_{1}(a) . \tag{2.22}
\end{equation*}
$$

By symmetry, with (2.20), (2.21) and (2.22),

$$
\begin{equation*}
\left|\mathcal{B}_{0}(a)\right|=2 \nu_{2}(a)-\nu_{1}(a) . \tag{2.23}
\end{equation*}
$$

Now, we deal with $\mathcal{B}_{1}(a)$. Let $(x, y) \in F^{\star} \times F^{\star}$. Then $x^{8}=y^{8} \Leftrightarrow y=u x$ with $u^{8}=1$. Thus,

$$
\begin{equation*}
\left|\mathcal{B}_{1}(a)\right|=\sum_{u^{8}=1} n_{u}(a), \tag{2.24}
\end{equation*}
$$

where $n_{u}(a)$ is the number of $(x, z) \in F^{\star} \times F$ such that

$$
\begin{equation*}
a=x^{4}\left(1+u^{4}\right)+z^{4} . \tag{2.25}
\end{equation*}
$$

We have to distinguish two cases accordingly as -1 is or is not a fourth power. Suppose $\mathbb{F}_{9} \subset F$, so that $-1=\beta^{4}$. There are exactly 8 elements $u \in F$ such that $u^{8}=1$, for four of them $u^{4}=1$, and for the others, $u^{4}=-1=\beta^{4}$. Thus, by (2.24),

$$
\begin{equation*}
\left|\mathcal{B}_{1}(a)\right|=4\left(n_{1}(a)+n_{\beta}(a)\right) . \tag{2.26}
\end{equation*}
$$

Now, $n_{\beta}(a)$ is the number of $(x, z) \in F^{\star} \times F$ such that $a=z^{4}$, so that

$$
\begin{equation*}
n_{\beta}(a)=(q-1) \nu_{1}(a), \tag{2.27}
\end{equation*}
$$

and $n_{1}(a)$ is the number of $(x, z) \in F^{\star} \times F$ such that $a=-x^{4}+z^{4}$, so that

$$
\begin{equation*}
n_{1}(a)=\nu_{2}(a)-\nu_{1}(a) . \tag{2.28}
\end{equation*}
$$

From (2.26), (2.27) and (2.28),

$$
\begin{equation*}
\left|\mathcal{B}_{1}(a)\right|=4\left(\nu_{2}(a)+(q-2) \nu_{1}(a)\right) \text {. } \tag{2.29}
\end{equation*}
$$

Suppose now that $\mathbb{F}_{9} \not \subset F$, so that -1 is not a fourth power. Then, for $u \in F$, $u^{8}=1 \Leftrightarrow u= \pm 1$, and in this case $u^{4}=1$. By (2.24) and (2.25), $\left|\mathcal{B}_{1}(a)\right|=2 \mu(a)$, where $\mu(a)$ denotes the number of $(x, z) \in F^{\star} \times F$ such that

$$
a=-x^{4}+z^{4} .
$$

We have $\mu(a)=\rho(a)-\nu_{1}(a)$, where $\rho(a)$ denotes the number of $(x, z) \in F^{2}$ such that

$$
a=-x^{2}+z^{2}
$$

From [2, exercise 4, p.175],

$$
\mu(a)=\left\{\begin{array}{lll}
2 q-2 & \text { if } \quad a=0 \\
q-1-\nu_{1}(a) & \text { if } \quad a \neq 0
\end{array}\right.
$$

Thus,

$$
\left|\mathcal{B}_{1}(a)\right|=\left\{\begin{array}{lll}
4(q-1) & \text { if } & a=0 \tag{2.30}\\
2\left(q-1-\nu_{1}(a)\right) & \text { if } & a \neq 0
\end{array}\right.
$$

We are ready to conclude. Firstly, we suppose $q \equiv 1(\bmod 4)$. Combining (2.19), (2.23) and (2.29) gives

$$
\begin{aligned}
|\mathcal{A}(a)| & =\nu_{3}(a)-\left(2 \nu_{2}(a)-\nu_{1}(a)-\left(4\left(\nu_{2}(a)+(q-2) \nu_{1}(a)\right)\right)\right. \\
& =\nu_{3}(a)-6 \nu_{2}(a)-(4 q-9) \nu_{1}(a) .
\end{aligned}
$$

We end the proof, using results given by Proposition 2.4. For brevity, we only give the proof in the case $a \neq 0$. From Proposition 2.4,

$$
|\mathcal{A}(a)|=q^{2}-7 q+18-(3 q-9) \nu_{1}(a)-2 f(\alpha)+2 f(\alpha) f(-a \alpha)-12 f(-a \alpha)
$$

If $a \in B$, then from Proposition 2.2, $f(-a \alpha)=f(\alpha)$ and $f(\alpha) f(-a \alpha)=9 q$, so that

$$
|\mathcal{A}(a)|=q^{2}-q+54-14 f(\alpha) .
$$

If $a \notin B$, from Proposition 2.2, $f(-a \alpha)=-f(\alpha) / 3$ and $f(\alpha) f(-a \alpha)=-3 q$, so that

$$
|\mathcal{A}(a)|=q^{2}-13 q+18+2 f(\alpha) .
$$

Now, we suppose $q \equiv 3(\bmod 4)$. Combining (2.19), (2.23) and (2.30) gives

$$
|\mathcal{A}(a)|=\nu_{3}(a)-\left(2 \nu_{2}(a)+3 \nu_{1}(a)\right)-2(q-1)
$$

for $a \in F^{\star}$ and

$$
|\mathcal{A}(0)|=\nu_{3}(a)-\left(2 \nu_{2}(0)-\nu_{1}(0)\right)-4(q-1) .
$$

We conclude using Proposition 2.3.
Corollary 2.1. (I) Let $a \in F$. If $a \neq 0$ and $q \notin\{3,9\}$, or if $a=0$ and $q \notin$ $\{3,9,81\}$, then $(\mathcal{F}(a))$ has a solution in F^{3}. If $q \in\{3,9,81\}$, then $(\mathcal{F}(0))$ has zero solutions in F^{3}.
(II) Let $a \in \mathbb{F}_{81}$. Then there exists $(x, y, z, u) \in \mathbb{F}^{4}$ such that

$$
\left\{\begin{array}{l}
x^{4}+y^{4}+z^{4}+u^{4}=a, \quad\left(\epsilon_{1}\right) \tag{a}\\
x y \neq 0, \quad\left(e_{2}\right) \\
x^{8} \neq y^{8} \quad\left(e_{3}\right)
\end{array}\right.
$$

Proof. (I) Suppose $q>9$ and $\neq 81$. From the previous proposition, for each $a \in F$, $N_{3}(a)>0$. so that $(\mathcal{F}(a))$ has a solution. If $q \leq 9$, there is no pair $(x, y) \in F^{2}$ satisfying $\left(e_{2}\right)$ and $\left(e_{3}\right)$. If $q=81$, then $N_{3}(a)>0$ for $a \neq 0$.
(II) Let $a \in \mathbb{F}_{81}$. If $a \neq 0$, for every (x, y, z) solution of $(\mathcal{F}(a)),(x, y, z, 0)$ is a solution of $(\mathcal{G}(a))$, if $a=0$, for every (x, y, z) solution of $(\mathcal{F}(-1)),(x, y, z, 1)$ is a solution of $(\mathcal{G}(a))$.

3. The numbers $v(q, 4)$

Remark 3.1. We have $v(q, 4) \geq 3$.
Proof. Suppose $v(q, 4) \leq 2$. Then, there is $(x, y, u, v) \in F^{4}$ such that

$$
T=(x T+y)^{4}+(u T+v)^{4}
$$

so that,

$$
\begin{align*}
& 0=x^{4}+u^{4} \tag{3.1}\\
& 0=x^{3} y+u^{3} v \tag{3.2}\\
& 1=x y^{3}+u v^{3} \tag{3.3}\\
& 0=y^{4}+v^{4} \tag{3.4}
\end{align*}
$$

By (3.1), if $x u=0$, then $(x, u)=(0,0)$ and (3.3) is not satisfied, so that $x u \neq 0$. Thus, from (3.1), -1 is a 4 -th power and q is congruent to $1(\bmod 4)$. Now, by (3.1), $u=x z$ with $z^{4}=-1$, thus, with (3.2), $v=z y$ so that from (3.3), $1=x y^{3}\left(1+z^{4}\right)=0$, leading to a contradiction.

Proposition 3.1. (I) If $q \in\{3,9\}$, then $v(q, 4)=\infty$.
(II) If $q=27$ or if $q>81$, then $v(q, 4)=3$.
(III) If $q=81$, then $v(q, 4)=4$.

Proof. Suppose $v(q, 4)=s$. Then, there exists $\left(u_{1}, v_{1}, \ldots, u_{s}, v_{s}\right) \in F^{2 s}$ such that

$$
T=\sum_{i=1}^{s}\left(u_{i} T+v_{i}\right)^{4}
$$

so that

$$
\begin{equation*}
0=\sum_{i=1}^{s} u_{i}^{3} v_{i} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
1=\sum_{i=1}^{s} u_{i} v_{i}{ }^{3} \tag{3.6}
\end{equation*}
$$

Raising (3.5) to the power 3 gives

$$
0=\sum_{i=1}^{s} u_{i}{ }^{9} v_{i}{ }^{3} .
$$

If $F \subset \mathbb{F}_{9}$, then for all $i^{\prime} \mathrm{s}, u_{i}{ }^{9}=u_{i}$ leading to $0=1$, a contradiction. We suppose $q=27$ or $q>81$. From Corollary 2.1, there exists $\left(a_{1}, a_{2}, a_{3}\right) \in F^{3}$ such that

$$
\left\{\begin{array}{l}
\left(a_{1}\right)^{4}+\left(a_{2}\right)^{4}+\left(a_{3}\right)^{4}=0, \quad\left(e_{1}\right) \\
a_{1} a_{2} \neq 0, \quad\left(e_{2}\right) \\
\left(a_{1}\right)^{8} \neq\left(a_{2}\right)^{8} \quad\left(e_{3}\right)
\end{array}\right.
$$

Let $\left(b_{1}, b_{2}\right) \in F^{2}$ be solution of $\left(\mathcal{E}\left(a_{1}, a_{2}, 0,1\right)\right)$ with $(\mathcal{E}(u, v, w, t))$ defined at Lemma 2.1. Then,

$$
\begin{aligned}
& \left(a_{1}\right)^{3} b_{1}+\left(a_{2}\right)^{3} b_{2}=0, \\
& a_{1}\left(b_{1}\right)^{3}+a_{2}\left(b_{2}\right)^{3}=1,
\end{aligned}
$$

so that

$$
\left(a_{1} T+b_{1}\right)^{4}+\left(a_{2} T+b_{2}\right)^{4}+\left(a_{3} T\right)^{4}=T+\left(b_{1}\right)^{4}+\left(b_{2}\right)^{4}
$$

and T is sum of three 4 -th powers of linear polynomials. Therefore, $v(q, 4) \leq 3$ and by Remark 3.1 we get $v(q, 4)=3$. Suppose $q=81$. From [5, Corollary 3.3], $v(q, 4) \leq 4$. We prove that $v(q, 4) \geq 4$. Suppose $v(q, 4)=3$. Then, there exists $\left(u_{1}, v_{1} u_{2}, v_{2}, u_{3}, v_{3}\right) \in F^{6}$ such that

$$
T=\sum_{i=1}^{3}\left(u_{i} T+v_{i}\right)^{4}
$$

If $u_{3}=0$, the change $U=T-v_{3}^{4}$ shows that $v(q, 4)=2$ and leads to a contradiction. Thus, $u_{3} \neq 0$. Now, the change $U=T+v_{3} u_{3}^{-1}$ shows that there exists $\left(a_{1}, a_{2}, b_{1}, b_{2}, a_{3}\right) \in F^{5}$ such that

$$
T=\sum_{i=1}^{2}\left(a_{i} T+b_{i}\right)^{4}+\left(a_{3} T\right)^{4},
$$

so that $(\mathcal{F}(0))$ admits a solution in contradiction with Corollary 2.1.
Corollary 3.1. If $q \notin\{3,9\}$, then $\mathcal{S}(q, 4)=F[T]$. More precisely, if $q=27$ or if $q>81$, then, every $A \in F[T]$ is a sum of 3 fourth powers, and if $q=81$, then, every $A \in F[T]$ is a sum of 4 fourth powers.

We are ready to present our first result.
Proposition 3.2. (I) Suppose $q>81$ and congruent to $1(\bmod 4)$. Then,
(i) every $P \in F[T]$ of degree ≥ 329 is the strict sum of 9 fourth powers;
(ii) every $P \in F[T]$ of degree ≥ 89 is the strict sum of 10 fourth powers;
(iii) every $P \in F[T]$ of degree ≥ 53 is the strict sum of 12 fourth powers; (iv) every $P \in F[T]$ such that $29 \leq \operatorname{deg} P \leq 52$ is the strict sum of 19 fourth powers.
(II) Suppose $q=81$ or $q \geq 27$ congruent to $3(\bmod 4)$. Then,
(i) every $P \in F[T]$ of degree ≥ 329 is the strict sum of 10 fourth powers;
(ii) every $P \in F[T]$ of degree ≥ 89 is the strict sum of 11 fourth powers;
(iii) every $P \in F[T]$ of degree ≥ 53 is the strict sum of 13 fourth powers;
(iv) every $P \in F[T]$ such that $29 \leq \operatorname{deg} P \leq 52$ is the strict sum of 20 fourth powers.
Proof. From the first part of Proposition 1.2, if $m \geq\left[\frac{\log 4}{\log (4 / 3)}\right]=4$, then, every $P \in F[T]$ of degree $\geq n(m, 4)=4\left\lceil\frac{8-16\left(1-\frac{1}{4}\right)^{m+1}}{1-4\left(1-\frac{1}{4}\right)^{m+1}}\right\rceil-3$ is the strict sum of $m+$ $v(q, 4)+\max (\ell(q, 4), 1+\lambda(q, 4))$ fourth powers.
Moreover, if $m \geq \frac{\log 4}{\log (4 / 3)}$, then, $n(m, 4) \leq 89$. Suppose $q>81$ congruent to 1 $(\bmod 4)$. From Propositions 2.5 and $3.1, v(q, 4)+\max (\ell(q, 4), 1+\lambda(q, 4))=5$. Then, every $P \in F[T]$ of degree $\geq n(4,4)=329$ is the strict
sum of 9 fourth powers and every $P \in F[T]$ of degree ≥ 89 is the strict sum of 10 fourth powers. We get the other points using parts II and III of Proposition 1.1. When $q=81$, or when $q \neq 3$ is congruent to $3(\bmod 4)$, then
$v(q, 4)+\max (\ell(q, 4), 1+\lambda(q, 4)=6$ so that an additional fourth power is necessary.

Corollary 3.2. If $q \notin\{9,81\}$ is congruent to $1(\bmod 4)$, then $G(q, 4) \leq 9$.
If $q=81$, then $G(q, 4) \leq 10$.
If $q \neq 3$ is congruent to $3(\bmod 4)$, then $G(q, 4) \leq 10$.
Proof. Given by the first part of the previous proposition.
We end this section with the following proposition which is the case $p=3$ of Proposition 4.4 in [3].

Proposition 3.3. For every integer $n \geq 3$, there exists $B_{n} \in \mathbb{F}_{9}[T]$ of degree $4 n$ which is a sum of 3 fourth powers and which is not a strict sum of fourth powers, so that $G(9,4)=\infty$.

4. Identities and strict sums of small degree

Proposition 4.1. (I) Suppose $q \geq 27$. Let $A \in F[T]$ with $\operatorname{deg} A \leq 4$. Then, A is a strict sum of fourth powers if and only if

$$
A=a T^{4}+b T^{3}+c T+d
$$

with $a, b, c, d \in F$. Moreover, such a polynomial is a strict sum of 5 fourth powers if $q \neq 81$ and a strict sum of 6 fourth powers if $q=81$.
(II) If $q \geq 27$, then $\mathcal{S}(q, 4) \neq \mathcal{S}^{\star}(q, 4)$ and $g(q, 4)=\infty$.

Proof. Let $A \in F[T]$ be a strict sum of fourth powers and suppose that $\operatorname{deg} A \leq 4$. Then A is a sum of polynomials $A_{i}=\left(x_{i} T+y_{i}\right)^{4}$ with $x_{i}, y_{i} \in F$. Now, $A_{i}=$ $x_{i}^{4} T^{4}+x_{i}^{3} y_{i} T^{3}+x_{i} y_{i}^{3} T+y_{i}^{4}$ so that $A=a T^{4}+b T^{3}+c T+d$ with $a, b, c, d \in F$. We note that T^{2} is not a strict sum of 4 -th powers.

We suppose $q \geq 27$. From Corollary 3.1, every $P \in F[T]$ is a sum of 4 -th powers. This proves the second part of the proposition. Let $(a, b, c, d) \in F^{4}$. From Corollary 2.1, if $q \neq 81$, then $(\mathcal{F}(a))$ has a solution, say $\left(x_{1}, x_{2}, x_{3}\right)$, if $q=81$, then $(\mathcal{G}(a))$ has a solution, say $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Let $\left(y_{1}, y_{2}\right) \in F^{2}$ be solution of $\left(\mathcal{E}\left(x_{1}, x_{2}, b, c\right)\right)$ with $(\mathcal{E}(u, v, w, t))$ defined at Lemma 2.1, that is

$$
\begin{aligned}
& b=x_{1}^{3} y_{1}+x_{2}^{3} y_{2}, \\
& c=x_{1} y_{1}^{3}+x_{2} y_{2}^{3}
\end{aligned}
$$

According to Proposition 2.5, $d-y_{1}^{4}-y_{2}^{4}$ is a sum of 2 fourth powers, say

$$
d=y_{1}^{4}+y_{2}^{4}+z_{1}^{4}+z_{2}^{4}
$$

Then, if $q \neq 81$,

$$
A=\left(x_{1} T+y_{1}\right)^{4}+\left(x_{2} T+y_{2}\right)^{4}+\left(x_{3} T\right)^{4}+\left(z_{1}\right)^{4}+\left(z_{2}\right)^{4}
$$

so that A is a strict sum of 5 fourth powers and if $q=81$,

$$
A=\left(x_{1} T+y_{1}\right)^{4}+\left(x_{2} T+y_{2}\right)^{4}+\left(x_{3} T\right)^{4}+\left(x_{4} T\right)^{4}+\left(z_{1}\right)^{4}+\left(z_{2}\right)^{4}
$$

so that A is a strict sum of 6 fourth powers.
The following very simple proposition is the key of the method.
Proposition 4.2. For $r \in\{0,1,2\}$ and $X \in F[T]$ let

$$
\begin{equation*}
L_{r}(X)=X^{3} T^{r}+X T^{3 r} \tag{4.1}
\end{equation*}
$$

Then, L_{r} is additive,

$$
\begin{align*}
L_{r}(X)=\left(X-T^{r}\right)^{4}- & \left(X+T^{r}\right)^{4}= \tag{4.2}\\
L_{r}(X)+T^{4 r} & =\left(X+T^{r}\right)^{4}+\left(X+T^{r}\right)^{4}+\left(X+T^{r}\right)^{4} \tag{4.3}\\
L_{r}(X)-T^{4 r} & =X^{4}-\left(X-T^{r}\right)^{4} \tag{4.4}
\end{align*}
$$

and for every $b \in F$,

$$
\begin{equation*}
L_{r}\left(X+b T^{r}\right)=L_{r}(X)+\left(b^{3}+b\right) T^{4 r} \tag{4.5}
\end{equation*}
$$

Proof. Immediate.
Proposition 4.3. Suppose that $q \notin\{3,9,81\}$. Let $A \in F[T]$ be such that $4<$ $\operatorname{deg} A \leq 8$. Then, A is the strict sum of 8 fourth powers. Let $A \in \mathbb{F}_{81}[T]$ be such that $4<\operatorname{deg} A \leq 8$. Then A is the strict sum of 10 fourth powers.
Proof. Let

$$
A=\sum_{n=0}^{8} a_{n} T^{n}
$$

be a polynomial of $F[T]$ of degree ≤ 8. We want to prove that there exists a positive integer s and, for $i=1, \ldots, s$, polynomials

$$
X_{i}=\sum_{n=0}^{2} x_{i, n} T^{n}
$$

such that

$$
A=\sum_{i=0}^{s}\left(X_{i}\right)^{4}
$$

In other words, we want to prove that there exists a positive integer s such that the system $\left(\left(\epsilon_{8}\right),\left(\epsilon_{7}\right), \ldots,\left(\epsilon_{1}\right),\left(\epsilon_{0}\right)\right)$ is solvable in $F^{3 s}, \quad\left(\epsilon_{n}\right)$ denoting the equation

$$
\begin{equation*}
a_{n}=\sum_{r=1}^{s} \sum_{\substack{n=3 u+v \\ 0 \leq u \leq 2 \\ 0 \leq v \leq 2}}\left(x_{r, u}\right)^{3} x_{r, v} \tag{n}
\end{equation*}
$$

We suppose $q \neq 81$.
First step: Corollary 2.1 implies the existence of a solution $\left(x_{1,2}, x_{2,2}, x_{3,2}\right) \in$ F^{3} of $\left(\mathcal{F}\left(a_{8}\right)\right)$. Then, $x_{1,2} x_{2,2} \neq 0$ and $x_{1,2}^{8} \neq x_{2,2}^{8}$. Let $\left(x_{1,1}, x_{2,1}\right)$ be solution of $\left(\mathcal{E}\left(x_{1,2}, x_{2,2}, a_{7}, a_{5}\right)\right)$ and let $\left(x_{1,0}, x_{2,0}\right)$ be solution of $\left(\mathcal{E}\left(x_{1,2}, x_{2,2}, a_{6}, a_{2}\right)\right)$, with $(\mathcal{E}(u, v, w, t))$ defined at Lemma 2.1. Let $x_{3,1}=x_{3,0}=0$. Then, with $s=3$, equations $\left(\epsilon_{8}\right),\left(\epsilon_{7}\right),\left(\epsilon_{6}\right),\left(\epsilon_{5}\right),\left(\epsilon_{2}\right)$ are satisfied.

Second step: Let $x_{4,2}=x_{5,2}=x_{6,2}=0$. Corollary 2.1 implies the existence of a solution $\left(x_{4,1}, x_{5,1}, x_{6,1}\right) \in F^{3}$ of $\left(\mathcal{F}\left(a_{4}-x_{1,0}^{4}-x_{2,0}^{4}\right)\right)$. Let $\left(x_{4,0}, x_{5,0}\right)$ be solution of $\left(\mathcal{E}\left(x_{4,1}, x_{5,1}, a_{3}-\left(x_{1,1}\right)^{3} x_{1,0}-\left(x_{2,1}\right)^{3} x_{2,0}, a_{1}-x_{1,1}\left(x_{1,0}\right)^{3}-x_{2,1}\left(x_{2,0}\right)^{3}\right)\right)$. Then, with $s=6$, equations $\left(\epsilon_{8}\right),\left(\epsilon_{7}\right), \ldots,\left(\epsilon_{2}\right),\left(\epsilon_{1}\right)$ are satisfied.

For $\nu=1,2,3$, let

$$
X_{\nu}=\sum_{j=0}^{2} x_{\nu, j} T^{j}
$$

Then,

$$
A-\sum_{\nu=1}^{6}\left(X_{\nu}\right)^{4}=a_{0}-x_{1,0}^{4}-x_{2,0}^{4}-x_{4,0}^{4}-x_{5,0}^{4}=b
$$

with $b \in F$.
Last step: Since F is a 4 -Waring field, b is the sum of $\ell(q, 4)=2$ fourth powers, so that A is the sum of 8 fourth powers.

The proof is similar when $q=81$. The first and second steps need 4 fourth powers.

Lemma 4.1. Suppose $F \subset \mathbb{F}_{9}$. Let $A \in F[T]$ be a sum of fourth powers. Then, $T^{9}-T$ divides $A^{3}-A$.

Proof. Let $x \in \mathbb{F}_{9}$. Since $A \in \mathbb{F}_{9}[T], A(x)$ is a sum of fourth powers in \mathbb{F}_{9} Thus, $A(x) \in \mathbb{F}_{3}$, so that $A(x)^{3}-A(x)=0$. Therefore, $A^{3}-A$ is divisible by $(T+x)$ for every $x \in \mathbb{F}_{9}$, so that, $T^{9}-T=\prod_{x \in \mathbb{F}_{9}}(T+x)$ divides $A^{3}-A$.

Proposition 4.4. Suppose $F \subset \mathbb{F}_{9}$. Let

$$
A=\sum_{n=0}^{8} a_{n} T^{n}
$$

be a polynomial of $F[T]$ of degree ≤ 8 such that $T^{9}-T$ divides $A^{3}-A$. Then,
(I) for $n=3 j+i$ with $0 \leq j<3,0 \leq i<3$, we have

$$
a_{n}=\left(a_{\bar{n}}\right)^{3}
$$

where, $\bar{n}=3 i+j$,
(II-1) if $F=\mathbb{F}_{3}$ and $\operatorname{deg} A \leq 4$, then A is a strict sum of 3 fourth powers,
(II-2) if $F=\mathbb{F}_{3}$ and $4<\operatorname{deg} A \leq 8$, then A is a strict sum of 6 fourth powers,
(III-1) if $F=\mathbb{F}_{9}$ and $\operatorname{deg} A \leq 4$, then A is a strict sum of 3 fourth powers,
(III-2) if $F=\mathbb{F}_{9}$ and $4<\operatorname{deg} A \leq 8$, then A is a strict sum of 5 fourth powers.

Proof. (I) Let

$$
A=A_{0}+A_{1} T^{3}+A_{2} T^{6}
$$

be the expansion of A in base T^{3}. Thus, for $j=0,1,2$,

$$
A_{j}=a_{3 j}+a_{3 j+1} T+a_{3 j+2} T^{2}
$$

Then,

$$
A^{3}=\sum_{j=0}^{2}\left(A_{j}\right)^{3}\left(T^{9 j}-T^{j}\right)+\sum_{j=0}^{2}\left(A_{j}\right)^{3} T^{j} .
$$

For $j=0,1,2, \quad T^{9 j}-T^{j}$ is congruent to $0\left(\bmod T^{9}-T\right)$. Thus,

$$
A^{3} \equiv \sum_{j=0}^{2}\left(A_{j}\right)^{3} T^{j} \quad\left(\bmod \quad\left(T^{9}-T\right)\right)
$$

and

$$
\begin{equation*}
A^{3}-A \equiv \sum_{j=0}^{2}\left(A_{j}\right)^{3} T^{j}-\sum_{j=0}^{2} A_{j} T^{3 j} \quad\left(\bmod \quad\left(T^{9}-T\right)\right) \tag{4.6}
\end{equation*}
$$

For $j=0,1,2, \quad \operatorname{deg}\left(\left(A_{j}\right)^{3} T^{j}\right) \leq 8$ and $\operatorname{deg}\left(A_{j} T^{3 j}\right) \leq 8$. Hence, by (4.6),

$$
\sum_{j=0}^{2}\left(\left(A_{j}\right)^{3} T^{j}-A_{j} T^{3 j}\right)=0
$$

that is

$$
\begin{equation*}
\sum_{j=0}^{2} \sum_{k=0}^{2}\left(a_{3 j+k}\right)^{3} T^{3 k+j}-\sum_{j=0}^{2} \sum_{k=0}^{2} a_{3 j+k} T^{3 j+k}=0 \tag{4.7}
\end{equation*}
$$

Let $n \in\{0, \ldots, 8\}$. By euclidean division, n is uniquely written as $n=3 u+v$, with $u, v<3$. Set $\bar{n}=3 v+u$. By (4.7),

$$
\begin{equation*}
a_{n}=a_{3 u+v}=\left(a_{3 v+u}\right)^{3}=\left(a_{\bar{n}}\right)^{3} . \tag{4.8}
\end{equation*}
$$

this proves (I).
Let $n \in\{1, \ldots, 7\}$ be non divisible by 4 . If $n=3 j+k$ with $0 \leq j<3,0 \leq k<3$, then

$$
a_{n} T^{n}+a_{\bar{n}} T^{\bar{n}}=\left(a_{3 k+j}\right)^{3} T^{3 j+k}+\left(a_{3 k+j}\right) T^{3 k+j}
$$

By (4.1),

$$
a_{n} T^{n}+a_{\bar{n}} T^{\bar{n}}=L_{k}\left(a_{3 k+j} T^{j}\right)
$$

For n divisible by 4 , equality (4.8) gives $a_{n}=\left(a_{n}\right)^{3}$, proving that a_{n} belongs to the prime field \mathbb{F}_{3}, this fact being obvious when $F=\mathbb{F}_{3}$.
(II) Suppose $F=\mathbb{F}_{3}$. Firstly, suppose $\operatorname{deg} A \leq 4$. The result is obvious for the constants. Up to the changes $T \mapsto-T, T \mapsto T \pm 1, T \mapsto-T \pm 1$, we have to consider the following polynomials:
(i) $T^{3}+T=(T+1)^{4}+(T+1)^{4}+(T-1)^{4}$,
(ii) $T^{4}, T^{4}+1, T^{4}-1=T^{4}+1+1$,
(iii) $-T^{4}=T^{4}+T^{4},-T^{4}+1=T^{4}+T^{4}+1,-T^{4}-1=(T+1)^{4}+(T-1)^{4}$.

Each of them is a strict sum of 3 fourth powers.
Suppose now $\operatorname{deg} A \leq 8$. If $a_{8} \neq 0$, we write

$$
A=a_{0}+L_{0}\left(a_{1} T\right)+a_{4} T^{4}+L_{2}\left(a_{6}+a_{7} T\right)+a_{8} T^{8}
$$

We have seen above that $a_{0}+L_{0}\left(a_{1} T\right)+a_{4} T^{4}$ is a sum of 3 fourth powers of polynomials ≤ 1. By (4.3) and (4.4), $L_{2}\left(a_{2}+a_{5} T\right)+a_{8} T^{8}$ is a sum of 3 fourth powers of polynomials of degree ≤ 2, so that A is a strict sum of 6 fourth powers. If $a_{8}=0$, we write

$$
A=a_{0}+L_{0}\left(a_{1} T+a_{2} T^{2}\right)+a_{4} T^{4}+L_{1}\left(a_{5} T^{2}\right)
$$

and by (4.3) an (4.4), A is a strict sum of 6 fourth powers.
(III) Suppose $F=\mathbb{F}_{9}$. The trace map $y \mapsto y^{3}+y$ from F to \mathbb{F}_{3} is onto. For every $k=0,1,2$, there is $u_{k} \in F$ such that

$$
a_{4 k}=u_{k}^{3}+u_{k} .
$$

Moreover, since $a_{4 k} \in \mathbb{F}_{3}$, we have $a_{4 k}=v_{k}^{3}$ with $v_{k} \in F$.
If $\operatorname{deg} A \leq 4$, then, $a_{2}=a_{5}=0$, and

$$
A=\left(v_{1} T\right)^{4}+u_{0}^{3}+u_{0}+L_{0}\left(a_{1} T\right)
$$

so that by (4.5), then (4.3) and (4.4), A is a sum of 3 fourth powers of polynomials whose degrees are ≤ 1 and A is a strict sum of 3 fourth powers.

Now, suppose $\operatorname{deg} A>4$. Proceeding as in the \mathbb{F}_{3} case, we get that A is a strict sum of 5 fourth powers.

5. The descent

In this section, we describe a new descent process which works for exponent 4 and characteristic 3.

Proposition 5.1. Let $n \geq 3$ be an integer and let $X \in F[T]$ be such that $\operatorname{deg} X<$ $3 n$. Then, there exist $Y_{0}, Y_{1}, Y_{2}, R \in F[T]$ such that

$$
\begin{gather*}
X=\sum_{r=0}^{2} L_{r}\left(Y_{r}\right)+R, \tag{5.1}\\
\operatorname{deg}\left(Y_{r}\right)<n \quad \text { if } \quad 0 \leq r \leq 2, \tag{5.2}\\
\operatorname{deg} R<9, \tag{5.3}\\
R=\sum_{r=0}^{2} \sum_{j=0}^{r} a_{3 j+r} T^{3 j+r}, \tag{5.4}
\end{gather*}
$$

with $a_{3 j+r} \in F$.

Proof. Set

$$
\begin{equation*}
X=\sum_{j=0}^{3 n-1} x_{j} T^{j} \tag{5.5}
\end{equation*}
$$

with $x_{j} \in F$ for $j=0, \ldots, 3 n-1$. For $j=0, \ldots, 3 n-1$, let $\xi_{j} \in F$ be defined by

$$
\begin{equation*}
\xi_{j}{ }^{3}=x_{j} \tag{5.6}
\end{equation*}
$$

(I) Suppose $n=3$. Then,

$$
X=\left(\xi_{3} T+\xi_{6} T^{2}\right)^{3}+T\left(\xi_{7} T^{2}\right)^{3}+\sum_{r=0}^{2} T^{r}\left(\sum_{j=0}^{r} x_{3 j+r} T^{3 j}\right)
$$

and by (4.1),

$$
X=\sum_{r=0}^{1} L_{r}\left(\sum_{j=r+1}^{2} \xi_{3 j+r} T^{j}\right)-\xi_{3} T-\xi_{6} T^{2}-\xi_{7} T^{5}+\sum_{r=0}^{2} T^{r}\left(\sum_{j=0}^{r} x_{3 j+r} T^{3 j}\right) .
$$

Thus,

$$
X=\sum_{r=0}^{2} L_{r}\left(Y_{r}(X)\right)+R(X)
$$

with $Y_{2}=0$,

$$
Y_{r}(X)=\sum_{j=r+1}^{2} \xi_{3 j+r} T^{j}
$$

for $r=0,1$ and

$$
R(X)=\sum_{r=0}^{2} \sum_{j=0}^{r} a_{3 j+r} T^{3 j+r}
$$

that is $R(X)$ of the form (5.4). We note that $\operatorname{deg}\left(Y_{r}(X)\right)<3$.
(II) Suppose $n=4$. Then,

$$
X=L_{2}\left(\xi_{11} T^{3}\right)+L_{1}\left(\xi_{10} T^{3}\right)+\left(x_{9}-\xi_{11}\right) T^{9}+X^{\prime}
$$

with

$$
\operatorname{deg} X^{\prime}<9
$$

Set $x_{9}-\xi_{11}=\eta^{3}$. Then,

$$
\left(x_{9}-\xi_{11}\right) T^{9}=L_{0}\left(\eta T^{3}\right)-\eta T^{3},
$$

so that

$$
X=L_{2}\left(\xi_{11} T^{3}\right)+L_{1}\left(\xi_{10} T^{3}\right)+L_{0}\left(\eta T^{3}\right)+Y
$$

with $\operatorname{deg} Y<9$. From the case $n=3$,

$$
X=\sum_{r=0}^{2} L_{r}\left(Y_{r}(X)\right)+R(X)
$$

with $R(X)$ of the required form (5.4) and $\operatorname{deg} Y_{r}(X) \leq 3$ for $r=0,1,2$.
(III) Suppose now $n>4$. We proceed inductively. Set

$$
\begin{equation*}
Z_{r}(X)=\sum_{j=0}^{n-1} \xi_{3 j+r} T^{j} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(X)=-\sum_{r=0}^{2} Z_{r} T^{3 r} \tag{5.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\operatorname{deg} Z_{r}(X)<n ; \quad \operatorname{deg} \Phi(X) \leq n+5 \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
X=\sum_{r=0}^{2} L_{r}\left(Z_{r}(X)\right)+\Phi(X) \tag{5.10}
\end{equation*}
$$

(i) Step 0. Set

$$
\begin{equation*}
X=X_{0}, n=n_{0} \tag{5.11}
\end{equation*}
$$

so that

$$
\begin{equation*}
\operatorname{deg} X_{0}<3 n_{0} \tag{5.12}
\end{equation*}
$$

(ii) Steps $1, \ldots, k, \ldots$ For $k \geq 1$, let

$$
\begin{gather*}
n_{k}=\left\lceil\frac{n_{k-1}}{3}\right\rceil+2, \tag{5.13}\\
X_{k}=\Phi\left(X_{k-1}\right) \tag{5.14}\\
Y_{r, k}=Z_{r}\left(X_{k-1}\right) \tag{5.15}
\end{gather*}
$$

for $r=0,1,2$. Then, by (5.10), (5.11), (5.14) and (5.15),

$$
\begin{equation*}
X=\sum_{r=0}^{2} L_{r}\left(\sum_{i=1}^{k} Y_{r, i}\right)+X_{k} \tag{5.16}
\end{equation*}
$$

By (5.9) and (5.13),

$$
\operatorname{deg} Y_{r, k}<n_{k-1}, \quad \operatorname{deg} X_{k}<3 n_{k}
$$

If $n_{i}>4$, then $n_{i+1}<n_{i}$; if $n_{i}=3,4$, then $n_{i+1}=n_{i}$. Let k be the least integer such that $n_{k} \leq 4$. From (5.16), using results given by parts (I) or (II), we get

$$
X=\sum_{r=0}^{2} L_{r}\left(\sum_{i=1}^{k} Y_{r, i}+Y_{r}\left(X_{k}\right)\right)+R\left(X_{k}\right) .
$$

The degree conditions (5.9), (5.11) and (5.13) imply

$$
\operatorname{deg}\left(\sum_{i=1}^{k} Y_{r, i}+Y_{r}\left(X_{k}\right)\right)<n
$$

Corollary 5.1. Suppose $F \subset \mathbb{F}_{9}$. Then, $\mathcal{S}(q, 4)$ is the subset of $F[T]$ formed by the polynomials A such that $A^{3}-A$ is multiple of $T^{9}-T$.
Proof. From Lemma 4.1,

$$
\mathcal{S}(q, 4) \subset\left\{A \in F[T]\left|\left(T^{9}-T\right)\right| A^{3}-A\right\} .
$$

Conversely, let $X \in F[T]$ be such that $T^{9}-T$ divides $X^{3}-X$. By (5.1) and (5.3), X may be written as a sum

$$
X=\sum_{r=0}^{2} L_{r}\left(Y_{r}\right)+R
$$

with $Y_{1}, Y_{2}, Y_{3}, R \in F[T]$ and $\operatorname{deg} R<9$. By (4.2), for $r=0,1,2, L_{r}\left(Y_{r}\right) \in \mathcal{S}(q, 4)$ so that from Lemma 4.1, $\left(L_{r}\left(Y_{r}\right)\right)^{3}-L_{r}\left(Y_{r}\right)$ is multiple of $T^{9}-T$. Thus, $R^{3}-R$ is multiple of $T^{9}-T$. From Proposition 4.4, R is a sum of 4 -th powers so that, using Proposition 4.2, we get that X is a sum of 4 -th powers.

We are now ready to present our second result.
Proposition 5.2. (I) Suppose $q>81$ and q congruent to $1(\bmod 4)$. Then,
(i) every $H \in F[T]$ of degree ≥ 29 is the strict sum of 14 fourth powers.
(ii) every $H \in F[T]$ of degree ≥ 9 is the strict sum of 19 fourth powers.
(iii) every $H \in F[T]$ such that $5 \leq \operatorname{deg} P \leq 8$ is the strict sum of 8 fourth powers.
(II) Suppose that $q=81$. Then,
(i) every $H \in F[T]$ of degree ≥ 29 is the strict sum of 15 fourth powers.
(ii) every $H \in F[T]$ of degree ≥ 9 is the strict sum of 21 fourth powers.
(iii) every $H \in F[T]$ such that $5 \leq \operatorname{deg} P \leq 8$ is the strict sum of 10 fourth powers.
(III) Suppose q congruent to $3(\bmod 4)$ and $q \geq 27$. Then,
(i) every $H \in F[T]$ with degree ≥ 29 is the strict sum of 15 fourth powers
(ii) every $H \in F[T]$ of degree ≥ 9 is the strict sum of 20 fourth powers.
(iii) every $H \in F[T]$ such that $5 \leq \operatorname{deg} P \leq 8$ is the strict sum of 8 fourth powers.
(IV) Suppose $F=\mathbb{F}_{3}$. Then
(i) every $H \in \mathcal{S}(3,4)$ is a strict sum of 12 fourth powers.
(ii) every $H \in F[T]$ with degree multiple of 4 is a strict sum of 11 fourth powers.
(V.i) Every $H \in \mathcal{S}(9,4)$ with degree non multiple of 4 is a strict sum of 8 fourth powers.
(V.ii) Every $H \in \mathcal{S}(9,4)$ of degree multiple of 4 and whose leading coefficient belongs to \mathbb{F}_{3} is a strict sum of 7 fourth powers.

Proof. The claims (I.(iii))-(III.(iii)) are given by the second part of Proposition 4.3. We prove the other ones. Let $H \in F[T]$ and let n be the integer defined by

$$
\begin{equation*}
4(n-1)<\operatorname{deg} H \leq 4 n \tag{5.17}
\end{equation*}
$$

If $n \leq 2$, we conclude using Proposition 4.4. We suppose $n \geq 3$. According to [3, Lemma 5.1], there exist $B_{1}, \ldots, B_{\lambda}, P \in F[T]$ such that

$$
\begin{equation*}
H=B_{1}^{4}+B_{\lambda}^{4}+P \tag{5.18}
\end{equation*}
$$

with

$$
\begin{gather*}
\lambda=\lambda(q, k), \\
\operatorname{deg} B_{1} \leq n, \ldots, \operatorname{deg} B_{\lambda} \leq n, \operatorname{deg} P=4 n, \tag{5.19}
\end{gather*}
$$

the leading coefficient of P being a fourth power.
According to [3, Lemma 5.2], there exist $X, Y \in F[T]$ such that:

$$
\begin{gather*}
P=Y^{4}+X \tag{5.20}\\
\operatorname{deg} X<3 n, \operatorname{deg} Y=n . \tag{5.21}
\end{gather*}
$$

From Proposition 5.1, there exist $Y_{0}, Y_{1}, Y_{2}, R \in F[T]$ such that

$$
\begin{gather*}
X=\sum_{r=0}^{2} L_{r}\left(Y_{r}\right)+R, \tag{5.1}\\
\operatorname{deg}\left(Y_{r}\right)<n
\end{gather*}
$$

for $0 \leq r<3$ and

$$
\begin{equation*}
\operatorname{deg} R<9 \tag{5.3}
\end{equation*}
$$

(A) We suppose $q \notin\{3,9\}$. By (4.2),

$$
L_{r}\left(Y_{r}\right)=\left(Y_{r}-T^{r}\right)^{4}+2\left(Y_{r}+T^{r}\right)^{4}
$$

Thus,

$$
\begin{equation*}
X=\sum_{r=0}^{2}\left(\left(Z_{r, 1}\right)^{4}+\left(Z_{r, 2}\right)^{4}+\left(Z_{r, 3}\right)^{4}\right)+R \tag{5.22}
\end{equation*}
$$

where for $j=1,2,3, \quad Z_{r, j}$ is a polynomial such that

$$
\begin{equation*}
\operatorname{deg} Z_{r, j} \leq \max (r, n-1) \tag{5.23}
\end{equation*}
$$

Set $v=v(q, 4)$. Then, there exist $a_{1}, b_{1}, \ldots, a_{v}, b_{v}$ in F such that

$$
\begin{equation*}
R=\left(a_{1} R+b_{1}\right)^{4}+\ldots+\left(a_{v} R+b_{v}\right)^{4} \tag{5.24}
\end{equation*}
$$

From (5.18), (5.20), (5.22) and (5.24),

$$
\begin{equation*}
H=B_{1}^{4}+B_{\lambda}^{4}+Y^{4}+\sum_{r=0}^{2} \sum_{j=1}^{3}\left(Z_{r, j}\right)^{4}+\sum_{i=1}^{v}\left(a_{i} R+b_{i}\right)^{4} \tag{5.26}
\end{equation*}
$$

so that H is written as a sum of $\lambda+v+10$ fourth powers of polynomials. From (5.19), (5.21) and (5.23), these polynomials have their degrees bounded by $\max (n, 8)$. By (5.17), if $n \geq 8$, the above sum is a strict one.

On the other hand, in view of Proposition 4.3, since $\operatorname{deg} R<9, R$ may be written as a sum

$$
\begin{equation*}
R=\sum_{r=1}^{s(q)}\left(R_{s}\right)^{4} \tag{5.27}
\end{equation*}
$$

where $R_{1}, \ldots, R_{s(q)}$ are polynomials of degree ≤ 2 and where $s(q)=8$ if $q \neq 81$ and $s(q)=10$ if $q=81$. Thus, by (5.18), (5.20) and (5.22),

$$
\begin{equation*}
H=B_{1}^{4}+B_{\lambda}^{4}+Y^{4}+\sum_{r=0}^{2} \sum_{j=1}^{3}\left(Z_{r, j}\right)^{4}+\sum_{r=1}^{s(q)}\left(R_{r}\right)^{4}, \tag{5.28}
\end{equation*}
$$

so that H is sum of $\lambda+10+s(q)$ fourth powers. From (5.17), if $n \geq 2$, then (5.28) is a strict representation.

The proof of the three first parts is complete after observing that in the case (I) we have $v(q, 4)=3, \lambda(q, 4)=1$, in the case (II), we have $v(q, 4)=4, \lambda(q, 4)=1$, and in the case (III), we have $v(q, 4)=3, \lambda(q, 4)=2$.
(B) We suppose $F \subset \mathbb{F}_{9}$. In addition, in the case when $q=9$ and $\operatorname{deg} H=4 n$, we suppose that the leading coefficient of H is in \mathbb{F}_{3}. When $F=\mathbb{F}_{9}$, since the leading coefficient of H is a 4 -th power, we take $P=H$ in (5.18) so that $B_{1}=$ $B_{\lambda}=0$.

At this point, observe that R satisfies

$$
\begin{equation*}
R=\sum_{r=0}^{2} \sum_{j=0}^{r} a_{3 j+r} T^{3 j+r} \tag{5.4}
\end{equation*}
$$

In view of (5.1) and (4.2), $X-R$ is a sum of fourth powers. From (5.18) and (5.20), $H-R$ is a sum of fourth powers. Since $H \in \mathcal{S}(q, 4), R$ is also a sum of fourth powers. From Lemma 4.1 and Proposition 4.4-(I), all coefficients $a_{3 j+r}$ of R with $j>r$ are equal to 0 and all coefficients $a_{4 r}$ are in the prime field \mathbb{F}_{3}. Therefore,

$$
R=\sum_{r=0}^{2} y_{r} T^{4 r}
$$

with $y_{1}, y_{1}, y_{2} \in \mathbb{F}_{3}$. By (5.1),

$$
X=\sum_{r=0}^{2}\left(L_{r}\left(Y_{r}\right)+y_{r} T^{4 r}\right) .
$$

(B.1) Suppose $F=\mathbb{F}_{3}$ Then, $\lambda=2$.

In view of (4.2), (4.3) and (4.4), X is sum of 9 fourth powers. By (5.18) and (5.20), H is a sum of $\lambda+10=12$ fourth powers.

Since $n \geq 3$, this sum is a strict one. Suppose in addition that $\operatorname{deg} H=4 n$. The leading coefficient of H is a sum of at most 2 fourth powers, say $b^{4}+c^{4}$. In (5.18), we can take $B_{\lambda}=0$ and $P=H-b^{4 n} T^{4 n}$, so that H is a sum of 11 fourth powers.
(B.2) Suppose $F=\mathbb{F}_{9}$. Then -1 is a fourth power and $\lambda=1$.

For $r=0,1,2, y_{r}=-\left(y_{r}\right)^{3}-y_{r}$, so that

$$
L_{r}\left(Y_{r}\right)+y_{r} T^{4 r}=L_{r}\left(Y_{r}\right)-\left(\left(y_{r}\right)^{3}+y_{r}\right) T^{4 r}
$$

By (4.5), then (4.2), X is the sum of 6 fourth powers. From (5.18) and (5.20), H is the sum of 8 fourth powers. Moreover, if $\operatorname{deg} H=4 n$, we have $H=P$ so that H is the sum of 7 fourth powers. As above, this sum is a strict one.

Corollary 5.2. (I) Suppose $q \geq 27$. Then, $\mathcal{S}^{\star}(q, 4)$ is the union of the set $\{A \in F[T] \mid \operatorname{deg} A>4\}$ and the set of polynomials

$$
A=a T^{4}+b T^{3}+c T+d
$$

with $a, b, c, d \in F$. Moreover,
(i) if $q>81$ is congruent to $1(\bmod 4)$, then

$$
\begin{gathered}
G(q, 4)=G^{\star}(q, 4) \leq 9 \\
g(q, 4)=\infty, g^{\star}(q, 4) \leq 19
\end{gathered}
$$

(ii)

$$
\begin{gathered}
G(81,4)=G^{\star}(81,4) \leq 10 \\
g(81,4)=\infty, g^{\star}(81,4) \leq 21
\end{gathered}
$$

(iii) if $q \geq 27$ is congruent to $3(\bmod 4)$, then

$$
\begin{gathered}
G(q, 4)=G^{\star}(q, 4) \leq 10 \\
g(q, 4)=\infty, g^{\star}(q, 4) \leq 20
\end{gathered}
$$

(II) $\mathcal{S}^{\star}(3,4)=\mathcal{S}(3,4)=\left\{A \in F[T] \mid A^{3}-A \equiv 0 \quad\left(\bmod \quad\left(T^{9}-T\right)\right)\right\}$,

$$
G(3,4) \leq g(3,4) \leq 12, G^{\star}(q, 4) \leq g^{\star}(3,4) \leq 12 .
$$

(III) $\mathcal{S}(9,4)=\left\{A \in F[T] \mid A^{3}-A \equiv 0 \quad\left(\bmod \quad\left(T^{9}-T\right)\right)\right\}, \mathcal{S}^{\star}(9,4)$ is the set of $A \in \mathcal{S}(9,4)$ such that either $\operatorname{deg} A$ is not multiple of 4 , or $\operatorname{deg} A$ is multiple of 4 and the leading coefficient of A is in the prime field \mathbb{F}_{3};

$$
G(9,4)=g(9,4)=\infty, G^{\star}(9,4) \leq g^{\star}(9,4) \leq 8 .
$$

Proof. Apply Propositions 3.2, 3.3, 4.1, 4.3 and 4.4.

Bibliography

[1] R. Balasubramanian, J.-M. Deshouillers, F. Dress, Problème de Waring pour les bicarrés. I: schéma de la solution, C.R. Acad. Sci., Paris, Sér. I 303 (1986), 85-88.
[2] N. Bourbaki, Eléments de mathématique, Fascicule XI, chap. 5, Hermann, Paris (3rd. Ed), 1973.
[3] M. Car, New bounds on some parameters in the Waring problem for polynomials over a finite field, Contemporary Math, 461, (2008) 59-77.
[4] M. Car, L. Gallardo, Sums of cubes of polynomials, Acta Arith. 112 (2004), 41-50
[5] M. Car, L. Gallardo, Waring's problem for biquadrates over a finite field of odd characteristic, Funct. Approx. Comment. Math., 37.1 (2007), 39-50.
[6] H. Davenport, On Waring's problem for fourth powers, Annals of Math. (2) 40, (1939), 731-747
[7] J.-M. Deshouillers; K. Kawada and T. Wooley, On sums of sixteen biquadrates, Mem. Soc. Math. Fr (N.S) $n^{\circ} 100$ (2005).
[8] L. Gallardo, On the restricted Waring problem over $\mathbb{F}_{2^{n}}[t]$, Acta Arith. 42 (2000), 109-113.
[9] C. Small, Sums of powers in large finite fields, Proc. Amer. Math. Soc. 65 (1977), 35-36.
[10] M. R. Stein, Surjective stability in dimension 0 for K_{2} and related functors, Trans. Amer. Math. Soc. 178 (1973), 165-191.

Address: Université Paul Cézanne-Aix-Marseille III, LATP - UMR 6632, Faculté des Sciences et Techniques, Case cour A, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France
E-mail: mireille.car@univ-cezanne.fr
Received: 18 June 2008; revised: 8 October 2008

