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SUMS OF ALMOST EQUAL PRIME SQUARES
Hongze Li∗ & Jie Wu

Abstract: In this paper, we prove that almost all integers N satisfying N ≡ 3(mod24) and
5 - N or N ≡ 4(mod24) are the sum of three or four almost equal prime squares, respectively.
Keywords: quadratic equations, exponential sums, circle method.

1. Introduction

Motivated by Lagrange’s theorem, it is natural to conjecture that all large integers
subject to a natural congruence condition are the sum of four squares of prime
numbers. Using the Hardy-Littlewood method, Hua [5] proved that an analogous
result holds for sums of five squares of primes. On the other hand, he also proved
that almost all integers n with n ≡ 4 (mod 24) are the sum of four squares of
prime numbers. Define

A3 := {N ∈ N : N ≡ 3 (mod 24), 5 - N},
A4 := {N ∈ N : N ≡ 4 (mod 24)},

and denote by Ek(z) the set of integers N ∈ Ak ∩ [z/2, z] such that N 6= p2
1 +

· · ·+ p2
k . Hua [5] proved that |E3(z)| �A z/(log z)A for z > 2 and some positive

constant A . The study on the size of Ek(z) has received attention of many authors
such as Schwarz [15], Liu & Liu [7], Wooley [18], Liu [6], Liu, Wooley & Yu [9]. The
best result is due to Harman & Kumchev [4]: |E3(z)| �ε z

6/7+ε and |E4(z)| �ε

z5/14+ε for any ε > 0.
In this paper, we will investigate this problem with localized summands:{

N = p2
1 + · · ·+ p2

k,∣∣pj − (N/k)1/2
∣∣ 6 N1/2−δ (1 6 j 6 k),

(1.1)

where δ > 0 is a constant, which is hoped to be “large” as soon as possible.
In the case of k = 3 or 4, our result is as follows.

2000 Mathematics Subject Classification: 11P32, 11P05, 11P55, 11L07.
∗ The first author was supported by the National Natural Science Foundation of China

(10771135)



50 Hongze Li & Jie Wu

Theorem 1.1. Let k = 3 or 4 . For any fixed ε > 0 , the equation (1.1) with
δ = 9

80 − ε is solvable for almost all integers N ∈ Ak .

The “almost” means that if we denote by E∗k(z) the set of integers N ∈
Ak ∩ [z/2, z] such that the equation (1.1) with δ = 9

80 − ε is insolvable, then we
have |E∗k(z)| �ε z

1−(4k−10)ε .
Following Liu & Zhan [11], we shall use the circle method to prove The-

orem 1.1. Our exponent 9/80 is determined by an estimate for exponential sums
over prime numbers of Liu, Lü & Zhan [8] (see Lemma 4.1 below) and a mean
value theorem of Choi & Kumchev [3] (see Lemma 2.1 below). However in order to
exploit these we need to introduce some new arguments in Liu & Zhan’s method.

The same method allows us to consider the following variant of (1.1).

Theorem 1.2. For any fixed ε > 0 and δ = 9
80 − ε , the equation





N = p1 + p2
2 + p2

3

|p1 −N/3| 6 N1−δ
∣∣pj − (N/3)1/2

∣∣ 6 N1/2−δ (j = 2, 3)

(1.2)

is solvable for almost all integers N ∈ A2 , where

A2 := {N ∈ N : N ≡ 1 (mod 2), N 6≡ 2 (mod 3)}.

In [5] Hua also proved that almost all integers in A2 are the sum of one prime
and two squares of primes. So Theorem 1.2 can be regarded as a generalization of
Hua’s result in short intervals. Since the proofs of Theorems 1.1 and 1.2 are very
similar, we will only give the proof of Theorem 1.1.

2. Outline and preliminary lemmas

Throughout this paper, the letter p , with or without subscript, denotes a
prime number and ε an arbitrarily small positive number. Let k = 3 or 4 and
N ∈ Ak be a sufficiently large integer. Define

x = xk := (N/k)1/2, y := N1/2−9/80+4ε (2.1)

and

P := N24ε, Q := N−24εy2. (2.2)

Without loss of generality, we can suppose that

‖x− y‖ � 1, ‖x+ y‖ � 1,

where ‖t‖ := minn∈Z |t− n| .
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The circle method begins with the observation that

Rk(N) :=
∑

x−y6p1,...,pk6x+y
p2

1+···+p2
k=N

(log p1) · · · (log pk) =
∫ 1+1/Q

1/Q
S(α)ke(−αN) dα,

(2.3)
where e(t) := e2πit and

S(α) = Sk(α) :=
∑

x−y6p6x+y

(log p) e(αp2). (2.4)

Clearly in order to prove our Theorem 1.1, it is sufficient to show that Rk(N) > 0
for almost all integers N ∈ Ak if k = 3, 4.

By Dirichlet’s lemma ([17], Lemma 2.1), each α ∈ [1/Q, 1 + 1/Q] can be
written as

α = a/q + β with |β| 6 1/(qQ) (2.5)

for some integers a and q with 1 6 a 6 q 6 Q and (a, q) = 1. We denote by
I(a, q) the set of α satisfying (2.5), and define the major arcs M and the minor
arcs m as follows:

M :=
⋃

16q6P

⋃

16a6q
(a,q)=1

I(a, q) and m := [1/Q, 1 + 1/Q] \M. (2.6)

Thus we can write

Rk(N) =
∫

M
S(α)ke(−αN) dα+

∫

m
S(α)ke(−αN) dα

=: Rk(N ; M) + Rk(N ; m).
(2.7)

We shall establish an asymptotic formula for Rk(N ; M) in Section 3 and
treat Rk(N ; m) in Section 4. The next mean value theorem, due to Choi & Kum-
chev [3], will be useful for the major arc estimate.

Lemma 2.1. ([3], Theorem 1.1) Let ` ∈ N , R > 1 , T > 1 , X > 1 and κ :=
1/ logX . Then there is an absolute positive constant c such that
∑

r∼R
`|r

∑

χ (mod r)

∗ ∫ T

−T

∣∣∣∣
∑

X6n62X

Λ(n)χ(n)
nκ+iτ

∣∣∣∣ dτ �
(
`−1R2TX11/20 +X

)
(logRTX)c,

where
∑
χ (mod r)
∗ means that the summation runs over the primitive characters

modulo r . The implied constant is absolute.

In Choi & Kumchev’s original statement (in a more general form), there is
no factor n−κ . Since n 7→ n−κ is completely multiplicative with respect to n and
n−κ � 1 for X 6 n 6 2X , their proof covers our case as well with some trivial
modification (i.e. replacing χ(n) by χ(n)n−κ in their proof). On the other hand, it
is simple to get this Lemma by partial summation and Choi & Kumchev’s original
result.

In order to exploit Choi & Kumchev’s mean value theorem effectively, we
need to prove a preliminary lemma.
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Lemma 2.2. Let χ be a Dirichlet character modulo r . Let Q > r , 2 6 X <
Y 6 2X such that ‖X‖ � ‖Y ‖ � 1 , T0 := (log(Y/X))−1 , T1 := (log(Y/X))−2 ,
T2 := 8πX2/(rQ) , T3 := X4 and κ := (logX)−1 . Define

F (s, χ) :=
∑

X6n62X

Λ(n)χ(n)n−s. (2.8)

Then we have

max
|β|61/(rQ)

∣∣∣
∑

X6n6Y
Λ(n)χ(n)e(βn2)

∣∣∣� log
(
Y

X

)∫

|τ |6T1

|F (κ+ iτ, χ)|dτ

+
∫

T1<|τ |6T2

|F (κ+ iτ, χ)|
|τ |1/2 dτ (2.9)

+
∫

T2<|τ |6T3

|F (κ+ iτ, χ)|
|τ | dτ + 1

and

∑

X6n6Y
Λ(n)χ(n)� log

(
Y

X

)∫

|τ |6T0

|F (κ+ iτ, χ)|dτ

+
∫

T0<|τ |6T3

|F (κ+ iτ, χ)|
|τ | dτ + 1. (2.10)

The implied constants are absolute.

Proof. By Perron’s formula ([16], Lemma 3.12), for any t ∈ [X, 2X] we have

∑

X6n6t
Λ(n)χ(n) =

1
2πi

∫ κ+iT3

κ−iT3

F (s, χ)
ts −Xs

s
ds

+O

(
X

T3
(logX)2 + (logX) min

{
1,

X

T3‖t‖
})

.

From this, a simple partial summation gives

∑

X6n6Y
Λ(n)χ(n)e(βn2) =

∫ Y

X

e(βt2) d
( ∑

X6n6t
Λ(n)χ(n)

)

=
1

2πi

∫ κ+iT3

κ−iT3

F (s, χ)V (s, β) ds+R,

(2.11)

where

V (s, β) :=
∫ Y

X

ts−1e(βt2) dt
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and

R :=
∫ Y

X

e(βt2) dO
(
X

T3
(logX)2 + (logX) min

{
1,

X

T3‖t‖
})

.

First we estimate R . By an integration by parts, it follows that

R�
(
X

T3
+ |β|X

2

T3
(Y −X) +

|β|X
logX

∫ Y

X

min
{

1,
X

T3‖t‖
}

dt
)

(logX)2.

Spliting the last integral, we deduce

R�
(
X

T3
+ |β|X

2

T3
(Y −X) +

|β|X
logX

∑

X6n6Y

∫ n+1/2

n−1/2
min

{
1,

X

T3|t− n|
}

dt
)

(logX)2

�
(
X

T3
+ |β|X

2

T3
(Y −X) +

|β|X
logX

∑

X6n6Y

∫ 1/2

0
min

{
1,

X

T3u

}
du
)

(logX)2

�
(
X

T3
+ |β|X

2

T3
(Y −X)

)
(logX)2

� 1.

In order to treat the first term on the right-hand side of (2.11), we notice,
for all β ∈ R ,

|V (κ+ iτ, β)| 6
∫ Y

X

tκ−1 dt� log(Y/X). (2.12)

On the other hand, the change of variables u = t2 and the second mean value
formula allow us to write

V (κ+ iτ, β) =
1
2

∫ Y 2

X2
uκ/2−1e(βu+ (τ/4π) log u) du

=
Xκ−2

2

∫ ξ

X2
e(βu+ (τ/4π) log u)du+

Y κ−2

2

∫ Y 2

ξ

e(βu+ (τ/4π) log u) du

for some ξ ∈ [X2, Y 2] . We estimate the last two integrals by using Lemma 4.3 of
[16] if T2 < |τ | 6 T3 and Lemma 4.4 of [16] if T1 < |τ | 6 T2 and use (2.12) for
|τ | 6 T1 . We obtain

max
|β|61/(rQ)

|V (κ+ iτ, β)| �




log(Y/X) if |τ | 6 T1,

|τ |−1/2 if T1 < |τ | 6 T2,

|τ |−1 if T2 < |τ | 6 T3.

Now the inequality (2.9) follows from (2.11) by splitting the integral into three
parts according to |τ | 6 T1 or T1 6 |τ | 6 T2 or T2 6 |τ | 6 T3 and by using the
preceding estimates.
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Similarly there is a real number ξ ∈ [X,Y ] such that

V (κ+ iτ, 0) = Xκ−1
∫ ξ

X

tiτ dt+ Y κ−1
∫ Y

ξ

tiτ dt� (|τ |+ 1)−1. (2.13)

Now the inequality (2.10) follows from (2.11) with β = 0 by splitting the integral
into two parts according to |τ | 6 T0 or T0 6 |τ | 6 T3 and by using (2.13) and
(2.12) with β = 0. This completes the proof.

Next we shall prove three estimates (see (2.17), (2.18) and (2.19) below),
which play an important role in Liu’s iterative procedure [6]. Define

S0(β) :=
∑

x−y6n6x+y

e(βn2), (2.14)

Wχ(β) :=
∑

x−y6p6x+y

(log p)χ(p)e(βp2)− δχS0(β) (2.15)

and δχ = 1 or 0 according as χ is principal or not. We also set

W ]
χ := max

|β|61/(rQ)
|Wχ(β)| and ‖Wχ‖2 :=

(∫ 1/(rQ)

−1/(rQ)
|Wχ(β)|2 dβ

)1/2

. (2.16)

Proposition 2.1. Let d > 1 and k = 3, 4 . Let x, y and P,Q be defined as in
(2.1) and (2.2) , respectively. Then there is an absolute positive constant c such
that for any ε > 0 we have

∑

r6P
[d, r]−(k−2)/2+ε

∑

χ (mod r)

∗
W ]
χ �ε d

−(k−2)/2+εyLc, (2.17)

∑

r6P
[d, r]−(k−2)/2+ε

∑

χ (mod r)

∗ ‖Wχ‖2 �ε d
−(k−2)/2+εN−1/4y1/2Lc, (2.18)

where L := logN and
∑∗ means that the summation runs over primitive cha-

racter. Further if d = 1 , the first estimate can be improved to

∑

r6P
r−(k−2)/2+ε

∑

χ (mod r)

∗
W ]
χ �A yL

−A (2.19)

for any fixed A > 0 .

Proof. Introducing

W̃χ(β) :=
∑

x−y6n6x+y

Λ(n)χ(n)e(βn2)− δχS0(β), (2.20)

we have, for all β ∈ R ,
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∣∣W̃χ(β)−Wχ(β)
∣∣ 6 2

∑

x−y6pν6x+y
ν>2

log p� x−1/2y � N−1/4y. (2.21)

Thus
W ]
χ 6 W̃ ]

χ +O
(
N−1/4y

)
,

where
W̃ ]
χ := max

|β|61/(rQ)

∣∣W̃χ(β)
∣∣.

The contribution of O
(
N−1/4y

)
to (2.17) is , writing [d, r] = dr/` and ` = (d, r),

� N−1/4y
∑

`|d, `6P

∑

r6P, `|r
(dr/`)−(k−2)/2+εr

� d−(k−2)/2+εyN−1/4P (9−k)/4+ε

� d−(k−2)/2+εy,

since P 9−k+4ε �ε N in view of our choice of P (see (2.2)).
Therefore in order to prove (2.17), it is enough to show

∑

r∼R
[d, r]−(k−2)/2+ε

∑

χ (mod r)

∗
W̃ ]
χ � d−(k−2)/2+εyLc (2.22)

for any R 6 P , where r ∼ R means that R 6 r < 2R .
If R = 1 and r ∼ R , we have χ = χ∗0 (mod 1) (the primitive character

modulo 1). Thus
W̃ ]
χ 6

∑

x−y6n6x+y

2L� yL.

This will contribute O(d−(k−2)/2+εyL), which is acceptable.
For 2 6 R 6 P and r ∼ R , we have δχ = 0. Since ‖x − y‖ � 1 and

‖x+ y‖ � 1, we can apply (2.9) to write

W̃ ]
χ �

y

x

∫

|τ |6T1

|F (κ+ iτ, χ)| dτ +
∫

T1<|τ |6T2

|F (κ+ iτ, χ)|
|τ |1/2 dτ

+
∫

T2<|τ |6T

|F (κ+ iτ, χ)|
|τ | dτ + 1,

(2.23)

where T1 � (x/y)2 , T2 � x2/(RQ) and T � x4 .
By Lemma 2.1, the contribution of the first term on the right-hand side of

(2.23) to (2.22) is

� d−(k−2)/2+εx−1y
∑

`|d, `62R

(R/`)−(k−2)/2+ε(`−1R2T1x
11/20 + x

)

� d−(k−2)/2+εy
(
P (9−k)/4+εN31/40y−2 + 1

)
Lc

� d−(k−2)/2+εyLc

(2.24)

in view of our choice of (P, y) (see (2.1) and (2.2)).
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Introducing

M(`, R, T ′, x) :=
∑

r∼R, `|r

∑

χ (mod r)

∗ ∫ 2T ′

T ′
|F (κ+ iτ, χ)| dτ,

the contribution of the second term on the right-hand side of (2.23) to (2.22) is

� d−(k−2)/2+εLc
∑

`|d, `6R
(R/`)−(k−2)/2+ε max

T16T ′6T2

(
T ′−1/2M(`, R, T ′, x)

)

� d−(k−2)/2+εLc
∑

`|d, `6R
(R/`)−(k−2)/2+ε(`−1R2T

1/2
2 x11/20 + T

−1/2
1 x

)
Lc

� d−(k−2)/2+εy
(
P (7−k)/4+εQ−1/2N31/40y−1 + 1

)
Lc

� d−(k−2)/2+εyLc,
(2.25)

in view of our choice of (P,Q, y) (see (2.1) and (2.2)).
Similarly the contribution of the third term on the right-hand side of (2.23)

to (2.22) is

� d−(k−2)/2+εLc
∑

`|d, `6R
(R/`)−(k−2)/2+ε max

T26T ′6T

(
T ′−1M(`, R, T ′, x)

)

� d−(k−2)/2+εLc
∑

`|d, `6R
(R/`)−(k−2)/2+ε(`−1R2x11/20 + T−1

2 x
)
Lc

� d−(k−2)/2+εy
(
P (9−k)/4+εN11/40y−1 + PQ(xy)−1)Lc

� d−(k−2)/2+εyLc,

(2.26)

in view of our choice of (P,Q, y) (see (2.1) and (2.2)).
Finally the contribution of the last term on the right-hand side of (2.23) to

(2.22) is

� d−(k−2)/2+ε
∑

`|d, `6R
(R/`)−(k−2)/2+ε � d−(k−2)/2+ε � d−(k−2)/2+εy. (2.27)

Now the inequality (2.22) follows from (2.24), (2.25), (2.26) and (2.27). This
proves (2.17).

The proof of (2.18) is rather similar. Therefore we shall only point out the
differences. First the inequality (2.21) implies

∑

χ (mod r)

∗ ‖Wχ‖2 �
∑

χ (mod r)

∗ ‖W̃χ‖2 +N−1/4y(r/Q)1/2.
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The contribution of O(N−1/4y(r/Q)1/2) to (2.18) is

� N−1/4yQ−1/2
∑

`|d, `6P

∑

r6P, `|r
(dr/`)−(k−2)/2+εr1/2

� d−(k−2)/2+εN−1/4yP 1/2+εQ−1/2

� d−(k−2)/2+εN−1/4y1/2,

since P 1+2εy �ε Q in view of our choice of (P,Q, y) (see (2.1) and (2.2)). Thus
in order to prove (2.18), it suffices to show that

∑

r∼R
[d, r]−(k−2)/2+ε

∑

χ (mod r)

∗ ‖W̃χ‖2 � d−(k−2)/2+εN−1/4y1/2Lc (2.28)

for any R 6 P . For this, by Lemma 1.9 of [14] we write, for r ∼ R ,

‖W̃χ‖2 � 1
RQ

(∫ ∞
−∞

∣∣∣
∑

v−RQ/3<n26v+RQ/3
x−y6n6x+y

(Λ(n)χ(n)− δχ)
∣∣∣
2

dv
)1/2

� 1
RQ

(∫ (x+y)2+RQ/3

(x−y)2−RQ/3

∣∣∣
∑

X6n6Y
(Λ(n)χ(n)− δχ)

∣∣∣
2

dv
)1/2

,

where X := U − 1
4 or [U ] + 1

4 according to U = max{(v −RQ/3)1/2, x− y} is an
integer or not, and Y := [min{(v +RQ/3)1/2, x+ y}] + 1

4 .
If R = 1, we have

∣∣∣
∑

X6n6Y
(Λ(n)χ(n)− δχ)

∣∣∣ =
∣∣∣
∑

X<n6Y
(Λ(n)− 1)

∣∣∣ 6 2(Y −X)L

� {
(v +Q/3)1/2 − (v −Q/3)1/2}L

� Qv−1/2L� N−1/2QL,

which implies, in view of Q < xy ,

d−(k−2)/2+ε‖W̃χ∗0‖2 � d−(k−2)/2+εQ−1((N−1/2QL)2(xy +Q)
)1/2

� d−(k−2)/2+εN−1/4y1/2L.
(2.29)

For R > 2 and r ∼ R , we have δχ = 0. Thus we can apply (2.10) of Lemma
2.2 to write

‖W̃χ‖2 �
( y
x3

)1/2
∫

|τ |6T0

|F (κ+ iτ, χ)|dτ

+
(xy)1/2

RQ

∫

T0<|τ |6T

|F (κ+ iτ, χ)|
|τ | dτ +

(xy)1/2

RQ
,

(2.30)
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since T−1
0 = log(Y/X) � RQv−1 � RQx−2 and (x + y)2 + RQ/3 − (x − y)2 +

RQ/3 � xy .

As before, the contribution of the first term on the right-hand side of (2.30)
to (2.28) is

� d−(k−2)/2+ε(x−3y)1/2
∑

`|d, `62R

(R/`)−(k−2)/2+ε(`−1R2T0x
11/20 + x

)

� d−(k−2)/2+εN−1/4y1/2(P (5−k)/4+εQ−1N31/40 + 1
)
Lc

� d−(k−2)/2+εN−1/4y1/2Lc

(2.31)

in view of our choice of (P,Q); the contribution of the second term on the
right-hand side of (2.30) to (2.28) is

� d−(k−2)/2+ε(xy)1/2(RQ)−1Lc
∑

`|d,`6R
(R/`)−(k−2)/2+ε max

T06T ′6T
T ′−1M(`, R, T ′, x)

� d−(k−2)/2+ε(xy)1/2(RQ)−1Lc
∑

`|d,`6R
(R/`)−(k−2)/2+ε(`−1R2x11/20 + T−1

0 x
)
Lc

� d−(k−2)/2+εN−1/4y1/2(P (5−k)/4+εQ−1N31/40 + 1
)
Lc (2.32)

� d−(k−2)/2+εN−1/4y1/2Lc;

the contribution of the last term on the right-hand side of (2.30) to (2.28) is

� d−(k−2)/2+εQ−1(xy)1/2
∑

`|d, `62R

∑

r∼R, `|r
(r/`)−(k−2)/2+ε

� d−(k−2)/2+εN−1/4y1/2R(5−k)/4+εQ−1x

� d−(k−2)/2+εN−1/4y1/2Lc,

(2.33)

since R(5−k)/4+εx 6 P (5−k)/4+εN1/2 6 Q .

Now the estimate (2.28) follows from (2.29), (2.31), (2.32) and (2.33). This
proves (2.18).

The estimate (2.19) can be proved in the same way as Lemma 2.3 of [13] and
we omit the details. This completes the proof of Proposition 2.1.
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3. Asymptotic formula for Rk(N ; M)Rk(N ; M)Rk(N ; M)

The aim of this section is to treat the integral Rk(N ; M).

Proposition 3.1. Let k = 3, 4 . Then for sufficiently large N ∈ Ak we have

Rk(N ; M) =
∫

M
S(α)ke(−αN) dα ∼ CkSk(N)N−1/2yk−1, (3.1)

where Ck are some positive constants, φ(q) is the Euler function and

Sk(N) :=
∞∑
q=1

1
φ(q)k

q∑
a=1

(a,q)=1

( q∑

h=1
(h,q)=1

e2πiah2/q

)k
e−2πiaN/q.

Proof. Since q 6 P < x − y , we have (p, q) = 1 for all p ∈ (x − y, x + y] . By
using the orthogonality relation, we can write

S(a/q + β) =
∑

16h6q
e2πiah2/q

∑

x−y6p6x+y
p≡h(mod q), (p,q)=1

(log p)e
(
βp2)

=
1

φ(q)

∑

χ(mod q)

∑

16h6q
χ(h)e2πiah2/q

∑

x−y6p6x+y

χ(p)(log p)e
(
βp2).

Introducing notation

C(χ, a) :=
∑

16h6q
χ(h)e2πiah2/q and C(q, a) := C(χ0, a), (3.2)

where χ0 is the principal character modulo q , the preceding relation can be written
as

S(a/q + β) =
C(q, a)
φ(q)

S0(β) +
1

φ(q)

∑

χ(mod q)

C(χ, a)Wχ(β), (3.3)

where S0(β) and Wχ(β) are defined as in (2.14) and (2.15), respectively. In view of
our choice of P and Q , we have 2P < Q . Thus the intervals I(a, q) are mutually
disjoint and we can write, by using (3.3),

∫

M
S(α)ke(−αN) dα =

∑

16q6P

∑

16a6q
(a,q)=1

e−2πiaN/q
∫ 1/(qQ)

−1/(qQ)
S(a/q + β)ke(−βN) dβ

=
∑

06j6k

k!
(k − j)!j!Ij , (3.4)
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where

Ij :=
∑

16q6P

1
φ(q)k

∑

16a6q
(a,q)=1

C(q, a)k−je−2πiaN/q×

×
∫ 1/(qQ)

−1/(qQ)
S0(β)k−j

( ∑

χ (mod q)

C(χ, a)Wχ(β)
)j
e(−βN) dβ.

We shall see that I0 contributes the main term and the others Ij are as error
terms.

By the standard major arcs techniques, we have

I0 = CkSk(N)yk−1N−1/2{1 + o(1)}. (3.5)

It remains to estimate Ij (1 6 j 6 k ). We shall only treat Ik . The others
can be treated similarly (even more easily). We can write

Ik =
∑

16q6P

∑

χ1 (mod q)

· · ·
∑

χk (mod q)

Bk(N, q;χ1, . . . , χk)Jk(N, q;χ1, . . . , χk),

where

Bk(N, q;χ1, . . . , χk) :=
1

φ(q)k

q∑
a=1

(a,q)=1

C(χ1, a) · · ·C(χk, a)e−2πiaN/q,

Jk(N, q;χ1, . . . , χk) :=
∫ 1/(qQ)

−1/(qQ)
Wχ1(β) · · ·Wχk(β)e(−βN) dβ.

Suppose that χ∗k (mod rk) with rk | q is the primitive character inducing
χk . Then we can write χk = χ0χ

∗
k . It is easy to see that Wχk(β) = Wχ∗

k
(β). By

Cauchy’s inequality, it follows that

|Jk(N, q;χ1, . . . , χk)| 6 W ]
χ∗1
· · ·W ]

χ∗
k−2
‖Wχ∗

k−1
‖2‖Wχ∗

k
‖2, (3.6)

where W ]
χ and ‖Wχ‖2 are defined as in (2.16) with r := [r1, . . . , rk] . From (3.6)

and the inequality
∑

q6z, r|q
|Bk(N, q;χ∗1χ0, . . . , χ

∗
kχ0)| �ε r

−(k−2)/2+ε(log z)c

(see [12] for k = 3 and [1] for k = 5. The general case can be treated in the same
way.), we deduce

Ik � Lc
∑

r16P

∑

χ1 (mod r1)

∗
W ]
χ1
· · ·

∑

rk−26P

∑

χk−2 (mod rk−2)

∗
W ]
χk−2
×

×
∑

rk−16P

∑

χk−1 (mod rk−1)

∗ ‖Wχk−1‖2
∑

rk6P
[r1, . . . , rk]−(k−2)/2+ε

∑

χk (mod rk)

∗ ‖Wχk‖2.
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By noticing that [r1, . . . , rk] = [[r1, . . . , rk−1], rk] , we use consecutively (2.18) (2
times), (2.17) (k − 3 times) and (2.19) (1 time) of Proposition 2.1 to write

Ik � N−1/4y1/2Lc
∑

r16P

∑

χ1 (mod r1)

∗
W ]
χ1
· · ·

∑

rk−26P

∑

χk−2 (mod rk−2)

∗
W ]
χk−2
×

×
∑

rk−16P
[r1, . . . , rk−1]−(k−2)/2+ε

∑

χk−1 (mod rk−1)

∗ ‖Wχk−1‖2

� N−1/2yLc
∑

r16P

∑

χ1 (mod r1)

∗
W ]
χ1
· · ·

∑

rk−26P
[r1, . . . , rk−2]−(k−2)/2+ε×

×
∑

χk−2 (mod rk−2)

∗
W ]
χk−2

� N−1/2yk−2Lc
∑

r16P
r
−(k−2)/2+ε
1

∑

χ1 (mod r1)

∗
W ]
χ1

� N−1/2yk−1L−A

(3.7)

for any fixed A > 0.
Now the required asymptotic formula follows from (3.4), (3.5) and (3.7).

4. Proof of Theorem 1.1

In order to bound S(α) on the minor arcs m , we need two estimates for
exponential sums over prime numbers, which are due to Liu, Lü & Zhan [8] and
Liu & Zhan [10], respectively.

Lemma 4.1. ([8], Theorem 1.1) Let j ∈ N , 2 6 v 6 u and α = a/q+β be a real
number with with 1 6 a 6 q and (a, q) = 1 . Define

Ξ := |β|uj + (u/v)2.

Then for any fixed ε > 0 , we have∑

u6n6u+v

Λ(n)e(αnj)

� (qu)ε
{
v(qΞ/u)1/2 + (qu)1/2Ξ1/6 + u3/10v1/2 + u4/5Ξ−1/6 + u(qΞ)−1/2},

where Λ(n) is von Mangoldt’s function and the implied constant depends on ε
and j only.

Lemma 4.2. ([10], Theorem 2) Let 1 6 a 6 q 6 uv with (a, q) = 1 and u, v > 1
and let α ∈ R such that |α− a/q| < 1/q2 . Then for any ε > 0 we have∑

u6n6u+v

Λ(n)e(αn2)�ε v
1+ε(q−1/4 +u1/8v−1/4 +u1/3v−1/2 +(qu)1/4v−3/4), (4.1)

where the implied constant depends on ε only.

The next proposition gives the required estimate for S(α) on the minor
arcs m .
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Proposition 4.1. With the previous notation, we have

max
α∈m

|S(α)| �ε N
−2εy (k = 3, 4). (4.2)

The implied constant depends on ε only.

Proof. Let
Q′ := N−1/2−10εy3. (4.3)

By Dirichlet’s lemma, each α ∈ m can be written as

α = a/q + β with 1 6 a 6 q 6 Q′, (a, q) = 1 and |β| 6 1/(qQ′).

We discuss two possibilities according to the size of q :
(i) If P 6 q 6 Q′ , we can use Lemma 4.2 with (u, v) = (x− y, 2y) to write

|S(α)| �ε N
−2εy. (4.4)

(ii) If q 6 P , we must have 1/(qQ) < |α−a/q| 6 1/(qQ′). Since P−1Q−1 >
y−2 , by Lemma 4.1 with j = 2 and (u, v) = (x− y, 2y) we have

NQ−1 � qΞ � q|β|N � NQ′−1.

Thus we have, for k = 3, 4,

|S(α)| �ε N
ε/10{N−1/4y(qΞ)1/2 +N1/4q1/3(qΞ)1/6

+N3/20y1/2 +N2/5Ξ−1/6 +N1/2(qΞ)−1/2}

�ε N
ε/10{N1/4Q′−1/2y +N5/12P 1/3Q′−1/6

+N3/20y1/2 +N2/5(N−1PQ)1/6 +Q1/2}

�ε N
ε/10{N1/2+10εy−1/2 +N3/20y1/2 +N7/30y1/3 +N−3εy

}

�ε N
−2εy,

provided y > N1/2−3/20+8ε .

We also need a preliminary lemma, which can be regarded as a generalization
of Hua’s lemma ([17], Lemma 2.5) in the case of short intervals.

Lemma 4.3. Let X > Y > 2 and

S∗2 (α) :=
∑

X−Y6n6X+Y

e(αn2).

Then for any ε > 0 , we have

∫ 1

0
|S∗2 (α)|4 dα�ε X

εY 2.
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Proof. We first write
∫ 1

0
|S∗2 (α)|4 dα =

∑

n2
1+n2

4=n2
2+n2

3

X−Y6ni6X+Y

1 =
∑

n2
1−n2

2=n2
3−n2

4

X−Y6ni6X+Y

1

=
∑

(n1−n2)(n1+n2)=(n3−n4)(n3+n4)
X−Y6ni6X+Y

1

� Y 2 +
∑

X−Y6n1 6=n26X+Y

τ(|(n1 − n2)(n1 + n2)|)

� XεY 2,

where τ(d) is the divisor function. This completes the proof.

Now we are ready to complete the proof of Theorem 1.1. Let k = 3 or 4 and
denote by E∗k(z) the set of integers N ∈ Ak ∩ [z/2, z] such that

N 6= p2
1 + · · ·+ p2

k with
∣∣pj − (N/k)1/2

∣∣ 6 N1/2−9/80+ε (1 6 j 6 k).

Introduce the generating function

Z(α) :=
∑

N∈E∗k(z)

e(−αN).

Clearly we have ∫ 1

0
S(α)kZ(α) dα = 0.

By using Proposition 3.1 with k = 3, 4, it follows that
∣∣∣∣
∫

m
S(α)kZ(α) dα

∣∣∣∣ =
∣∣∣∣
∫

M
S(α)kZ(α) dα

∣∣∣∣

=
∑

N∈E∗k(z)

∫

M
S(α)ke(−αN) dα

� |E∗k(z)|z−1/2yk−1.

From this and (4.2), we deduce that

|E∗k(z)| � z1/2y−k+1
∫

m

∣∣S(α)kZ(α)
∣∣ dα

� z1/2−2(k−2)εy−1
∫ 1

0

∣∣S(α)2Z(α)
∣∣ dα

� z1/2−2(k−2)εy−1
(∫ 1

0
|Z(α)|2 dα

)1/2(∫ 1

0
|S(α)|4 dα

)1/2

.
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Clearly ∫ 1

0
|Z(α)|2 dα = |E∗k(z)|

and Lemma 4.3 implies

∫ 1

0
|S(α)|4 dα� log4 z

∫ 1

0
|S∗2 (α)|4 dα� zεy2.

Thus
|E∗k(z)| � z1/2−(2k−5)ε|E∗k(z)|1/2,

which is equivalent to
E∗k(z)� z1−(4k−10)ε.

This completes the proof of Theorem 1.1.

Acknowledgment. We thank the anonymous referee for his/her useful comments
on our paper.
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