Functiones et Approximatio
XXXVIII.1 (2008), 41-47

SOME ESTIMATES FOR THE AVERAGE OF THE ERROR
TERM OF THE MERTENS PRODUCT FOR ARITHMETIC
PROGRESSIONS

ALESSANDRO LANGUASCO & ALESSANDRO ZACCAGNINI

Abstract: We give estimates for the error term of the Mertens product over primes in arithmetic
progressions of the Bombieri-Vinogradov and Barban-Davenport—Halberstam type.
Keywords: Mertens product, primes in arithmetic progressions.

1. Introduction

Recall that v denotes the Euler constant. In our paper [2] we proved a gene-
ralization to primes belonging to arithmetic progressions of the famous Mertens

formula ) . .
H(l—):e +O< 5 ) as r — +00,
P log x log”

p<T

which is uniform with respect to the modulus. This generalized and strengthened
a previous result due to Williams [3] that dealt with a fized arithmetic progression.
Let ¢ > 1 and a be integers with (a,q) =1, and define

Pega= I (1-1) 1)

psz b
p=a mod ¢q
and Cla.a)
. _ q,a
M(@:0:) = fogmyirem”
where ¢ is the Euler totient function. Here C(g, a) is real and positive and satisfies
1\ «(pig,a)
C(q,a e(a) — = (1 _ ,) ,
o =0~

where a(p;q,a) = p(¢) — 1 if p=amod q and a(p;q,a) = —1 otherwise.
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In [2] we proved an asymptotic formula for the product in (1) of the form
P(xz;q,a) = M(x;q,a)(1 + O(ErrorTerm)) (2)

where both the size of error term and the range of uniformity for ¢ depend on the
existence of the “exceptional zero” (or “Siegel zero”) for a suitable set of Dirichlet
L-functions: see Lemma 1 of [2] for an accurate description of this phenomenon,
and Theorem 1 there for the precise statement.

Our aim here is to prove that, on average over ¢, the error term in (2) is
small and that its order of magnitude is the one that can be obtained assuming
the Generalized Riemann Hypothesis (GRH). In fact, Theorem 4 of [2] shows that
the GRH implies the bound

P(x;q,a) = M(x;q,a) (1 +0 ((logx)gg—l/Q»

as © — o0, uniformly for every ¢ < z and any integer a with (a,q) = 1.

Our first result can be considered as an analogue of the Bombieri-Vinogradov
theorem for primes in arithmetic progressions (see e.g. §28 of Davenport [1]) and
its proof is based on it.

Theorem 1. For every A > 0 there exists a constant B = B(A) > 0 such that

3 P(x;q,a)
max
a=1,...,q

log )‘ < (logz)™4
9<Q (a,q)=1

M(z;q,a

as & — +oo, where Q = z'/?(logz) 5.

The proof shows that we may take B = A + 4. We also study two different
but related averages of the same quantity.

Corollary 1. For every A > 0 there exists a constant B = B(A) > 0 such that

1q,a
(1) max (z:9,0) — 1| < (logz)~*
a=l1,....q (z;q,a)
ISQ (a,q)=1
(ii) E max |P(x;q,a) — M(z;q,a)| < (logz)™*
a=1,..., q
ISQ (a,q)=1

as & — +oo where, in both cases, Q = z'/*(logz) 5.

Our second result can be considered as an analogue of the Barban—Davenport-
-Halberstam theorem for primes in arithmetic progressions (see e.g. §29 of Daven-
port [1]) and its proof is based on it.
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Theorem 2. For every A > 0 there exists a constant B = B(A) > 0 such that

2
Z Z (log 7(1))> < (logz)=*
1<Q ;4,4
,Q)—l
as ¥ — +oo, where Q = z(logz)~ 5.

Corollary 2. For every A > 0 there exists a constant B = B(A) > 0 such that

(i) 3 Z ( (=34, ))—1)2<<(logx)A

<
= Q(th) 1

q

(i) > Y (Pxig,a) — M(59,a))* < (logz)~*

q<Q :1
q :

as x — +oo where, in both cases, Q = x(logx)~ 5.

2. Proof of Theorem 1

Let L(z) = exp ((log z)3/®(loglog ) ~*/®) . The proof is based on the identity

o J\Z((g;;;qq:(;)) N _@(Q) X%O ;X log(l - 7) + Rl) ®)
where
R(J:):@(v—l—loglogx—i-z:log(l—%)). (4)

Identity (3) is proved combining (10) and Lemma 6 in [2]. In fact, using Williams’
expression for C(g,a) in the statement of his Theorem 1 we have

logM(x;q,a)—gO(lq)( v+1 g —|— Z ZX log(l—l)—loglogx),

X#Xo0 P

while (10) and Lemma 6 from [2] imply that

log P(7;q,a) = ﬁ Z ZX log(l—%)

(L(log +Zlog< ) Z ZX log(l—%))

XFXo0 P
and relations (3) and (4) follow at once.
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Since R(z) < L(z)~“p(q)~* for some positive ¢ by Lemma 5 in [2], its total
contribution is < L(x) ¢log @ and therefore it is negligible. For y # xo let

ZX log(l—f) Zi—i-o 1. (5)

The total contribution of the error term is < Qx~! and we may neglect it as well.
For brevity, let

r)= Y xw)logp  md  Blzig.a) =~ 3 @)l
X#Xo0

The presence of Y(a) in the definition of © implies that we may drop the condition
(a,q) =1. By equation (9) of [2] we have

max‘ Z )‘

p<z

q<Q XFX0 p>r (6)
O(x; oo logt + 1
- Zma}{’w f/ O(t; q.a) BT L g
= xlogx - t2(logt)

After a transition to primitive characters as on page 163 of Davenport [1], we see
that

Oia.0) < logg+ — 3 Bl
e XF#X0
where ;1 denotes the primitive character that induces x. The total contribution
of logq < logQ is < QlogQ(xlogx)~! which is negligible. We also notice that
O(z,x) = ¥(x,x) + O(:cl/Q), and that the total error term arising here is <
Qxz~1/2. The triangle inequality now shows that, up to “small” error terms, the
right hand side of (6) is

\xlogxz (q) ZWle

XFX0
TS o S et B o (),
q<Q x#x ( o8 )

Arguing again as in page 163 of [1], we get

Z letxl\<<logmz letx

q<Q <p x;ﬁm q<Q x#x

and we conclude with B = A + 4 by an appeal to the following inequality, which
is (3) in Chapter 28 of [1]

Z ;D maxl (0] < oM 2QUlog ),

y<x
q<Q x mod g

where 9'(y, x) = ¥(y, x) if x # xo and ¥'(y, x0) = ¥ (¥, x0) — ¥
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3. Proof of Theorem 2

Recalling the inequality |a + b|? < 2|a|? + 2|b]? and using again (3) with R(z) <
L(z)~¢p(q)~! as above, we have

L P(z;q,a) |2
1 b b
22 e el
w1 log Q
<2 Xo(a)S(z, x1)S(z, )
< Z;; Z: oL g x1(@)X2(@)S (@, x1)S (2, %o) + (LWC)
X2#X0
23 LY S)se x2>2q*xl(a>x2<a>+0( 10g@>
— ©(q)? ’ B L(x)?
q<Q XliXo
X27FX0
1 log Q
=2 Sz, ) o( )
q<Q <p(q) X; | (x X)| ' L( )2C

where S(x,) is defined in (5). The contribution of the error term z~! in (5) has
size < Qx~2. Hence, we need to prove the bound

Z Z ‘Z x(p ’ << = (7)
x#x p>T

Arguing as in (6) and using again the inequality |a + b|? < 2|a|? + 2|b|?, we see
that the left hand side above is

<X 5w Z('iff)gxx \L+”9<t,X)W|2). (5)

For the second summand, the Cauchy inequality shows that

oo logt+ 1)dt 2 (¢, v)|? T (logt + 1)2 dt
/e(t’x)(g )‘g/ |(th)|dt/ (logt +1)*dt.

(tlogt)? t(logt)*

It is easy to see that the second integral is < (logx)~!. The contribution of the
second term in (8) is therefore

<o [ (X o X ) g

q<Q x#xO

After a transition to primitive characters as on page 163 of Davenport [1],
we see that

ZW aX <<10g q+ Z| IXl a

xsé)m X#Xo
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where Xl denotes the prlmltlve character that induces x. The total contribution
of log? ¢ <log? Q is < Qlog? Q(22logx)~" which is negligible. Hence we have to

prove that
(logx)~ / Z Z 16(t, x1)| )*<<Q 9)

Xsﬁx

Recalling that 6(z,x) = ¥(z,x) + (‘_)(961/2)7 the total error term arising here is
< Q(zlogz)~!. An appeal to the following inequality, which is the equation at
line —7 of page 170 in Chapter 29 of [1],

1
S Y W) < aQloga,

q<Q ap(q) x mod ¢

where ¢/ (z,x) = ¥(z,x) if x # xo and ¥'(z,x0) = ¥(z, x0) — z, allows us to
prove (9).

The first summand in (8) is treated analogously and its total contribution
is < Q(zlogz)~!. Hence (7) holds and so we can conclude that Theorem 2 holds
with B = A.

4. Proof of Corollaries 1 and 2

The proofs of these Corollaries are similar. The proof of point (i) is straightforward,
since it depends on the fact that e* — 1 < |u| for bounded u. Here w is the left
hand side of (3) and, to prove (i) of Corollary 1, it is enough to remark that it is
< (log )=, uniformly for Q = 2'/?(logx)~ 2, by Theorem 1. For Corollary 2, it
is < (logz)~4/2 uniformly for Q = z(logz)~F, by Theorem 2. We remark that,
in both cases, u is obviously much smaller.

For the other points, equation (3) shows that

M(x;q,a) = P(x;q,a) exp 1 E x(a)S(x,x) — R(x) ¢,
©(q)
X7#X0

where R(z) is defined in (4) and S(x,x) is defined in (5). Thus

M(wig.0) = P(ai0.0) = Plaig.) (exof = 3 @)t ) ~ (@)} ~1)
XFX0

S X(@)S(a,x) - R(x)

X#Xo

<<’

1
(q) ’
by the same argument as above, since, obviously, P(z;¢,a) < 1. This is enough

to prove (ii) of Corollary 1. Squaring out both sides of the previous equation the
second point of Corollary 2 follows.



Error term of the Mertens product 47

References

[1] H. Davenport, Multiplicative Number Theory, Springer-Verlag, third edition,
2000.

[2] A. Languasco and A. Zaccagnini, A note on Mertens’ formula for arithmetic
progressions, Journal of Number Theory 127 (2007), 37-46.

[3] K.S. Williams, Mertens’ theorem for arithmetic progressions, J. Number The-
ory 6 (1974), 353-359.

Addresses: A. Languasco, Universita di Padova, Dipartimento di Matematica, Pura e Appli-
cata, Via Trieste 63, 35121 Padova, Italy;
A. Zaccagnini, Universita di Parma, Dipartimento di Matematica, Parco Area delle Scienze
53/a, Campus Universitario, 43100 Parma, Italy

E-mail: languasco@math.unipd.it; alessandro.zaccagnini@unipr.it

Received: 8 May 2007; revised: 23 June 2007



