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SOME ESTIMATES FOR THE AVERAGE OF THE ERROR
TERM OF THE MERTENS PRODUCT FOR ARITHMETIC
PROGRESSIONS
Alessandro Languasco & Alessandro Zaccagnini

Abstract: We give estimates for the error term of the Mertens product over primes in arithmetic
progressions of the Bombieri–Vinogradov and Barban–Davenport–Halberstam type.
Keywords: Mertens product, primes in arithmetic progressions.

1. Introduction

Recall that γ denotes the Euler constant. In our paper [2] we proved a gene-
ralization to primes belonging to arithmetic progressions of the famous Mertens
formula ∏

p6x

(
1− 1

p

)
=

e−γ

log x
+ O

(
1

log2 x

)
as x→ +∞,

which is uniform with respect to the modulus. This generalized and strengthened
a previous result due to Williams [3] that dealt with a fixed arithmetic progression.
Let q > 1 and a be integers with (a, q) = 1, and define

P (x; q, a) =
∏

p6x
p≡a mod q

(
1− 1

p

)
(1)

and

M(x; q, a) =
C(q, a)

(log x)1/ϕ(q)
,

where ϕ is the Euler totient function. Here C(q, a) is real and positive and satisfies

C(q, a)ϕ(q) = e−γ
∏
p

(
1− 1

p

)α(p;q,a)
,

where α(p; q, a) = ϕ(q)− 1 if p ≡ a mod q and α(p; q, a) = −1 otherwise.
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In [2] we proved an asymptotic formula for the product in (1) of the form

P (x; q, a) = M(x; q, a)(1 + O(ErrorTerm)) (2)

where both the size of error term and the range of uniformity for q depend on the
existence of the “exceptional zero” (or “Siegel zero”) for a suitable set of Dirichlet
L-functions: see Lemma 1 of [2] for an accurate description of this phenomenon,
and Theorem 1 there for the precise statement.

Our aim here is to prove that, on average over q , the error term in (2) is
small and that its order of magnitude is the one that can be obtained assuming
the Generalized Riemann Hypothesis (GRH). In fact, Theorem 4 of [2] shows that
the GRH implies the bound

P (x; q, a) = M(x; q, a)
(

1 + O
(

(log x)x−1/2
))

as x→ +∞ , uniformly for every q 6 x and any integer a with (a, q) = 1.
Our first result can be considered as an analogue of the Bombieri–Vinogradov

theorem for primes in arithmetic progressions (see e.g. §28 of Davenport [1]) and
its proof is based on it.

Theorem 1. For every A > 0 there exists a constant B = B(A) > 0 such that

∑

q6Q
max

a=1,...,q
(a,q)=1

∣∣∣∣log
P (x; q, a)
M(x; q, a)

∣∣∣∣� (log x)−A

as x→ +∞ , where Q = x1/2(log x)−B .

The proof shows that we may take B = A+ 4. We also study two different
but related averages of the same quantity.

Corollary 1. For every A > 0 there exists a constant B = B(A) > 0 such that

(i)
∑

q6Q
max

a=1,...,q
(a,q)=1

∣∣∣∣
P (x; q, a)
M(x; q, a)

− 1
∣∣∣∣� (log x)−A

(ii)
∑

q6Q
max

a=1,...,q
(a,q)=1

|P (x; q, a)−M(x; q, a)| � (log x)−A

as x→ +∞ where, in both cases, Q = x1/2(log x)−B .

Our second result can be considered as an analogue of the Barban–Davenport-
-Halberstam theorem for primes in arithmetic progressions (see e.g. §29 of Daven-
port [1]) and its proof is based on it.
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Theorem 2. For every A > 0 there exists a constant B = B(A) > 0 such that

∑

q6Q

q∑
a=1

(a,q)=1

(
log

P (x; q, a)
M(x; q, a)

)2

� (log x)−A

as x→ +∞ , where Q = x(log x)−B .

Corollary 2. For every A > 0 there exists a constant B = B(A) > 0 such that

(i)
∑

q6Q

q∑
a=1

(a,q)=1

(
P (x; q, a)
M(x; q, a)

− 1
)2

� (log x)−A

(ii)
∑

q6Q

q∑
a=1

(a,q)=1

(P (x; q, a)−M(x; q, a))2 � (log x)−A

as x→ +∞ where, in both cases, Q = x(log x)−B .

2. Proof of Theorem 1

Let L(x) = exp
(
(log x)3/5(log log x)−1/5

)
. The proof is based on the identity

log
P (x; q, a)
M(x; q, a)

= − 1
ϕ(q)

∑

χ 6=χ0

χ(a)
∑
p>x

χ(p) log
(

1− 1
p

)
+R(x) (3)

where
R(x) =

1
ϕ(q)

(
γ + log log x+

∑

p6x
log
(

1− 1
p

))
. (4)

Identity (3) is proved combining (10) and Lemma 6 in [2]. In fact, using Williams’
expression for C(q, a) in the statement of his Theorem 1 we have

logM(x; q, a) =
1

ϕ(q)

(
−γ + log

q

ϕ(q)
+
∑

χ 6=χ0

∑
p

χ(p) log
(

1− 1
p

)
− log log x

)
,

while (10) and Lemma 6 from [2] imply that

logP (x; q, a) =
1

ϕ(q)

∑

χ mod q

χ(a)
∑

p6x
χ(p) log

(
1− 1

p

)

=
1

ϕ(q)

(
log

q

ϕ(q)
+
∑

p6x
log
(

1− 1
p

)
+
∑

χ6=χ0

χ(a)
∑

p6x
χ(p) log

(
1− 1

p

))

and relations (3) and (4) follow at once.
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Since R(x)� L(x)−cϕ(q)−1 for some positive c by Lemma 5 in [2], its total
contribution is � L(x)−c logQ and therefore it is negligible. For χ 6= χ0 let

S(x, χ) =
∑
p>x

χ(p) log
(

1− 1
p

)
= −

∑
p>x

χ(p)
p

+ O
(
x−1). (5)

The total contribution of the error term is � Qx−1 and we may neglect it as well.
For brevity, let

θ(x, χ) =
∑

p6x
χ(p) log p and Θ(x; q, a) =

1
ϕ(q)

∑

χ 6=χ0

χ(a)θ(x, χ).

The presence of χ(a) in the definition of Θ implies that we may drop the condition
(a, q) = 1. By equation (9) of [2] we have

∑

q6Q

1
ϕ(q)

max
a

∣∣∣
∑

χ 6=χ0

χ(a)
∑
p>x

χ(p)
p

∣∣∣

=
∑

q6Q
max
a

∣∣∣Θ(x; q, a)
x log x

−
∫ +∞

x

Θ(t; q, a)
log t+ 1
t2(log t)2 dt

∣∣∣.
(6)

After a transition to primitive characters as on page 163 of Davenport [1], we see
that

|Θ(x; q, a)| � log q +
1

ϕ(q)

∑

χ6=χ0

|θ(x, χ1)|,

where χ1 denotes the primitive character that induces χ . The total contribution
of log q 6 logQ is � Q logQ(x log x)−1 which is negligible. We also notice that
θ(x, χ) = ψ(x, χ) + O

(
x1/2

)
, and that the total error term arising here is �

Qx−1/2 . The triangle inequality now shows that, up to “small” error terms, the
right hand side of (6) is

6 1
x log x

∑

q6Q

1
ϕ(q)

∑

χ 6=χ0

|ψ(x, χ1)|

+
∫ +∞

x

(∑

q6Q

1
ϕ(q)

∑

χ6=χ0

|ψ(t, χ1)|
) log t+ 1
t2(log t)2 dt+ O

(
Qx−1/2

)
.

Arguing again as in page 163 of [1], we get
∑

q6Q

1
ϕ(q)

∑

χ 6=χ0

|ψ(t, χ1)| � log x
∑

q6Q

1
ϕ(q)

∑∗

χ 6=χ0

|ψ(t, χ)|

and we conclude with B = A+ 4 by an appeal to the following inequality, which
is (3) in Chapter 28 of [1],

∑

q6Q

1
ϕ(q)

∑∗

χ mod q

max
y6x
|ψ′(y, χ)| � x1/2Q(log x)4,

where ψ′(y, χ) = ψ(y, χ) if χ 6= χ0 and ψ′(y, χ0) = ψ(y, χ0)− y .
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3. Proof of Theorem 2

Recalling the inequality |a+ b|2 6 2|a|2 + 2|b|2 and using again (3) with R(x)�
L(x)−cϕ(q)−1 as above, we have

∑

q6Q

q∑∗

a=1

∣∣∣log
P (x; q, a)
M(x; q, a)

∣∣∣
2

6 2
∑

q6Q

q∑∗

a=1

1
ϕ(q)2

∑

χ1 6=χ0
χ2 6=χ0

χ1(a)χ2(a)S(x, χ1)S(x, χ2) + O

(
logQ
L(x)2c

)

= 2
∑

q6Q

1
ϕ(q)2

∑

χ1 6=χ0
χ2 6=χ0

S(x, χ1)S(x, χ2)
q∑∗

a=1

χ1(a)χ2(a) + O

(
logQ
L(x)2c

)

= 2
∑

q6Q

1
ϕ(q)

∑

χ 6=χ0

|S(x, χ)|2 + O

(
logQ
L(x)2c

)
,

where S(x, χ) is defined in (5). The contribution of the error term x−1 in (5) has
size � Qx−2 . Hence, we need to prove the bound

∑

q6Q

1
ϕ(q)

∑

χ6=χ0

∣∣∣
∑
p>x

χ(p)
p

∣∣∣
2
� Q

x
. (7)

Arguing as in (6) and using again the inequality |a + b|2 6 2|a|2 + 2|b|2 , we see
that the left hand side above is

�
∑

q6Q

1
ϕ(q)

∑

χ6=χ0

( |θ(x, χ)|2
(x log x)2 +

∣∣∣
∫ +∞

x

θ(t, χ)
(log t+ 1) dt

(t log t)2

∣∣∣
2)
. (8)

For the second summand, the Cauchy inequality shows that

∣∣∣
∫ +∞

x

θ(t, χ)
(log t+ 1) dt

(t log t)2

∣∣∣
2

6
∫ +∞

x

|θ(t, χ)|2
t3

dt
∫ +∞

x

(log t+ 1)2 dt
t(log t)4 .

It is easy to see that the second integral is � (log x)−1 . The contribution of the
second term in (8) is therefore

� (log x)−1
∫ +∞

x

(∑

q6Q

1
ϕ(q)

∑

χ 6=χ0

|θ(t, χ)|2
)dt
t3
.

After a transition to primitive characters as on page 163 of Davenport [1],
we see that

1
ϕ(q)

∑

χ 6=χ0

|θ(t, χ)|2 � log2 q +
1

ϕ(q)

∑

χ6=χ0

|θ(x, χ1)|2,



46 Alessandro Languasco & Alessandro Zaccagnini

where χ1 denotes the primitive character that induces χ . The total contribution
of log2 q 6 log2Q is � Q log2Q(x2 log x)−1 which is negligible. Hence we have to
prove that

(log x)−1
∫ +∞

x

(∑

q6Q

1
ϕ(q)

∑

χ6=χ0

|θ(t, χ1)|2
)dt
t3
� Q

x
. (9)

Recalling that θ(x, χ) = ψ(x, χ) + O
(
x1/2

)
, the total error term arising here is

� Q(x log x)−1 . An appeal to the following inequality, which is the equation at
line −7 of page 170 in Chapter 29 of [1],

∑

q6Q

1
ϕ(q)

∑

χ mod q

|ψ′(x, χ1)|2 � xQ log x,

where ψ′(x, χ) = ψ(x, χ) if χ 6= χ0 and ψ′(x, χ0) = ψ(x, χ0) − x , allows us to
prove (9).

The first summand in (8) is treated analogously and its total contribution
is � Q(x log x)−1 . Hence (7) holds and so we can conclude that Theorem 2 holds
with B = A .

4. Proof of Corollaries 1 and 2

The proofs of these Corollaries are similar. The proof of point (i) is straightforward,
since it depends on the fact that eu − 1 � |u| for bounded u . Here u is the left
hand side of (3) and, to prove (i) of Corollary 1, it is enough to remark that it is
� (log x)−A , uniformly for Q = x1/2(log x)−B , by Theorem 1. For Corollary 2, it
is � (log x)−A/2 uniformly for Q = x(log x)−B , by Theorem 2. We remark that,
in both cases, u is obviously much smaller.

For the other points, equation (3) shows that

M(x; q, a) = P (x; q, a) exp
{ 1
ϕ(q)

∑

χ 6=χ0

χ(a)S(x, χ)−R(x)
}
,

where R(x) is defined in (4) and S(x, χ) is defined in (5). Thus

M(x; q, a)− P (x; q, a) = P (x; q, a)
(

exp
{ 1
ϕ(q)

∑

χ 6=χ0

χ(a)S(x, χ)−R(x)
}
− 1
)

�
∣∣∣ 1
ϕ(q)

∑

χ 6=χ0

χ(a)S(x, χ)−R(x)
∣∣∣,

by the same argument as above, since, obviously, P (x; q, a) 6 1. This is enough
to prove (ii) of Corollary 1. Squaring out both sides of the previous equation the
second point of Corollary 2 follows.
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