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MULTIPOINT METHOD FOR GENERALIZED EQUATIONS
UNDER MILD DIFFERENTIABILITY CONDITIONS

Ioannis K. Argyros & Säid Hilout

Abstract: We are concerned with the problem of approximating a locally unique solution of a
generalized equation using a multipoint method in a Banach spaces.In [9]–[11] the authors showed
that the previous method is superquadratically (or cubically) convergent when the second Fréchet
derivative satisfies the usual Hölder continuity condition (or center–Hölder continuity condition).
Here, we weaken these conditions by using ω –condition (or σ –condition) on the second deri-
vative introduced by us [1]–[4], [22] (for nonlinear equations), with ω and σ a non–decreasing
continuous real functions. We provide also an improvement of the ratio of our algorithm under
some ω –center–condition (or σ –center–condition) and less computational cost.
Keywords: Banach space, local convergence, multipoint method, generalized equation, Aubin
continuity, Lipschitz condition, set-valued map, ω –condition, radius of convergence.

1. Introduction

There are many interesting scientific problems based of the solution of generalized
equations introduced by Robinson [19, 20]. These equations are an abstract model
of a wide variety of variational including systems of inequalities, variational inequ-
alities (for example first–order necessary conditions for nonlinear programming),
linear and nonlinear complementary problems, systems of nonlinear equations.
Generalized equations may characterize optimality or equilibrium and then have
several applications economics and engineering (see for example [14]).

Our notation is basically standard (see [4], [17]). X and Y are arbitrary
Banach spaces with the norms denoted by ‖ . ‖ . The distance from a point x
and a subset A of X will be denoted by dist (x,A) = inf

a∈A
‖ x − a ‖ . The excess

e from A to the set C ⊂ X is given by e(C,A) = sup {dist (x,A), x ∈ C} .
We denote by Br(x) the closed ball centered at x with radius r . A set–valued
mapping Λ from X to Y is indicated by Λ : X −→ 2Y , its graph is the set
gph Λ := {(x, y) ∈ X × Y, y ∈ Λ(x)} and Λ−1(y) = {x ∈ X, y ∈ Λ(x)} . From
now on F : X → Y denotes a Fréchet differentiable function while G : X −→ 2Y

stands for a set–valued mapping with closed graph.
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We are concerned with the problem of approximating a solution x∗ of the
generalized equation in the form

0 ∈ F (x) +G(x). (1.1)

We consider the following iterative method for solving (1.1):

0 ∈ A(xk+1, xk) +G(xk+1), (1.2)

ai and βi are real numbers for i = 1, 2, · · · ,M with M is a fixed integer in N ,

A(y, x) = F (x) +
i=M∑

i=1

ai∇F (x+ βi (y − x)) (y − x), ∀x, y ∈ X, (1.3)

i=M∑

i=1

ai = 1 and
i=M∑

i=1

ai (1− βi) =
1
2
. (1.4)

Algorithm (1.2) is based on some multipoint iteration formula for approximating
the solution of nonlinear equations. The cubically convergence of method (1.2)
is presented in [10] when the second Fréchet derivative is L -Lipschitz in some
neighborhood V of x∗ :

‖ ∇2F (x)−∇2F (y) ‖6 L ‖ x− y ‖, x, y ∈ V, (1.5)

and the set–valued mapping [A(·, x∗)+G(·)]−1 is Aubin continuous around (0, x∗)
(or pseudo–Lipschitz at (0, x∗)). The same hypotheses are used in [15] to study
of the convergence and the stability of some method based on the second–degree
Taylor polynomial expansion of F . Recall that a set–valued map Γ : Y −→ 2X is
pseudo–Lipschitz at (y?, x?) ∈ gphΓ if there exist constants a, b,M such that for
every y1, y2 ∈ Bb(y?) and for every x1 ∈ Γ(y1) ∩ Ba(x?) there exists x2 ∈ Γ(y2)
with

‖ x1 − x2 ‖6 M ‖ y1 − y2 ‖ .
The pseudo–lipschitzian property is introduced in [8] and is tied to the concept of
metric regularity; actually, the Aubin continuity of Γ around (y?, x?) is equivalent
to the metric regularity of the inverse Γ−1 of Γ at x? for y? , i.e., y? ∈ Γ−1(x?)
and there exists κ ∈ [0,∞[ along with neighborhoods U of x? and V of y? such
that

dist (x,Γ(y)) 6 κ dist (y,Γ−1(x)), ∀x ∈ U, y ∈ V.
The infimum of such moduli κ is called the exact regularity bound of Γ−1 around
(x? , y? ). For more details on these topics one can refer to the books [8, 17,
18, 21] and the references therein. Cabuzel in [9] showed that the sequence (1.2)
is locally superquadratic convergent to the solution x∗ whenever ∇2F satisfies
α–Hölder–type condition on some neighborhood V of x∗ with constant K (α ∈
(0, 1], L > 0):

‖ ∇2F (x)−∇2F (y) ‖6 L ‖ x− y ‖α, x, y ∈ V. (1.6)
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In [11] the authors provided a finer local superquadratic convergence of algori-
thm (1.2) using α–center–Hölder condition on some neighborhood V of x∗ with
constant K0 (α ∈ (0, 1], L0 > 0):

‖ ∇2F (x)−∇2F (x∗) ‖6 L0 ‖ x− x∗ ‖α, x ∈ V. (1.7)

In this paper, we relax these usual Lipschitz, α–Hölder and α–center–Hölder
conditions (see assumptions (1.5), (1.6) and (1.7)) by ω -condition and Ptak-type
condition [2] on the second Fréchet derivative. The main conditions required are

‖ ∇2F (x)−∇2F (y) ‖6 ω(‖ x− y ‖), for x, y in V, (1.8)

and
‖ ∇2F (x)−∇2F (y) ‖6 σ(‖ x− y ‖) ‖ x− y ‖θ,

for all x, y in V and θ is fixed in (0, 1],
(1.9)

where ω, σ : R+ −→ R+ are a continuous nondecreasing functions. When the
condition (1.8) is satisfied, we say that ∇2F is ω–conditioned. The conditions
(1.8) and (1.9) are used in [1, 2, 13, 16] to study of Newton’s method for solving
nonlinear equations (G = {0} in (1.1)). Some part of our goal is also to provide
a finer local convergence of algorithm (1.2) by using a center–type conditions of
(1.8) and (1.9) as follows

‖ ∇2F (x)−∇2F (x∗) ‖6 ω(‖ x− x∗ ‖), for x in V, (1.10)

and

‖ ∇2F (x)−∇2F (x∗) ‖6 σ(‖ x− x∗ ‖) ‖ x− x∗ ‖θ, for x in V, (1.11)

where ω, σ : R+ −→ R+ are continuous nondecreasing functions. Similar condi-
tions to (1.8) – (1.11) are used in [5]–[7] to study Newton’s methods, the superqu-
adratic algorithm and Hummel–Seebeck–type method for solving (1.1). The rest
of this paper is organized as follows. In section 2 we have collected a fixed point
theorem [12] and a number of necessary results, needed in our local analysis. In
section 3, we give some convergence results of algorithm (1.2) under the different
assumptions. Finally, we provide in section 4 an improvement of the ratio of this
algorithm under a center–conditioned second Fréchet derivative and we give some
remarks on our method using some ideas related to nonlinear equations [1]–[4].

2. Background material and assumptions

Let us begin with some basic results that will be used throughout this paper. By
the second order Taylor expansion of F at y ∈ V with the remainder is given by
integral form, the following Lemma is obtained directely (see [7]).
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Lemma 2.1. The following assertions are checked:
1. If the assumption (1.8) is satisfied on a convex neighborhood V , then for all
x and y in V we have the following

‖ F (x)− F (y)−∇F (y) (x− y)− 1
2
∇2F (y) (x− y)2 ‖

‖ x− y ‖2
∫ 1

0
(1− t)ω(t ‖ x− y ‖) dt.

2. If the assumption (1.9) is satisfied on a convex neighborhood V , then for all
x and y in V we have the following

‖ F (x)− F (y)−∇F (y) (x− y)− 1
2
∇2F (y) (x− y)2 ‖

‖ x− y ‖2+θ
∫ 1

0
tθ (1− t)σ(t ‖ x− y ‖) dt.

The second tool in our analysis is the fixed point theorem for set–valued
maps proved by Dontchev and Hager [12].

Lemma 2.2. (see [12]) Let φ a set–valued map from X into the closed subsets
of X , let η0 ∈ X and let r and λ be such that 0 6 λ < 1 and the following
conditions hold:

(a) dist (η0, φ(η0)) 6 r(1− λ) .
(b) e(φ(x1) ∩ Br(η0), φ(x2)) 6 λ ‖ x1 − x2 ‖, ∀x1, x2 ∈ Br(η0) .

Then φ has a fixed–point in Br(η0) . That is, there exists x ∈ Br(η0) such that
x ∈ φ(x) . If φ is single–valued, then x is the unique fixed point of φ in Br(η0) .

We need also to introduce some notations before stating the main results on
this study. First, for k ∈ N and (xk ) defined in (1.2), let us define the set–valued
mappings Q : X −→ 2Y and ψk : X −→ 2X by the following

Q(.) := A(., x∗) +G(.); φk(.) := Q−1(Zk(.)), (2.1)

where Zk is defined from X to Y by

Zk(x) := A(x, x∗)−A(x, xk). (2.2)

Let us note that x1 is a fixed point of φ0 if and only if 0 ∈ A(x1, x0) + G(x1).
We will make the following assumptions in a open convex neighborhood V of x∗ :
(H0) ∇F is K –Lipschitz on V with K > 0.
(H1) The condition (1.8) is satisfied on V .
(H1)? The condition (1.9) is satisfied on V .
(H2) The set–valued map [A(., x∗)+G(.)]−1 is pseudo–Lipschitz around (0, x∗)

with constants M , a and b (these constants are given by definition of
Aubin continuity).
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Finally, we consider the following constants:

κ1 =
∫ 1

0
tθ (1− t) σ(t a) dt, (2.3)

κ2 =
i=M∑

i=1

(
|ai| |1− βi|1+θ

∫ 1

0
(1− t)θ σ(|1− βi| (1− t) a) dt

)
, (2.4)

and

κ3 =

√√√√√√
2 b

3K
i=M∑

i=1

|ai| (1 + 2 |βi|)
. (2.5)

3. Convergence analysis

The main theorem of this study read as follows:

Theorem 3.1. Let x∗ be a solution of (1.1). We suppose that assumptions (H0),
(H1)? and (H2) are satisfied. For every C > M (κ1 + κ2) , where κ1 and κ2

are given respectively by (2.3) and (2.4) , there exist δ > 0 such that for every
starting point x0 ∈ Bδ(x∗) , and a sequence (xk) for (1.1) , defined by (1.2) , which
satisfies

‖ xk+1 − x∗ ‖6 C ‖ xk − x∗ ‖2+θ . (3.1)

In other words, (1.2) generates (xk) with superquadratic convergence.

Theorem 3.1 is showed as follows. Once xk is computed, we show that the
function φk has a fixed point xk+1 in X . This process allows us to prove the
existence of a sequence (xk) satisfying (1.2). Now, we state a result which is the
starting point of our algorithm. It will be very usefull to prove Theorem 3.1 and
reads as follows:

Proposition 3.2. Under the hypotheses of Theorem 3.1 , there exists δ > 0 such
that for all x0 ∈ Bδ(x∗) (x0 6= x∗) , the map φ0 has a fixed point x1 in Bδ(x∗)
satisfying ‖ x1 − x∗ ‖6 C ‖ x0 − x∗ ‖2+θ , where the constant C is given by
Theorem 3.1 .

Proof of Proposition 3.2. Fix δ > 0 such that

δ < min
{
a,

(
1
C

) 1
1+θ

,

(
b

κ1 + κ2

) 1
2+θ

, κ3

}
. (3.2)

By hypothesis (H2) we have

e(Q−1(y′) ∩ Ba(x∗), Q−1(y′′)) 6 M ‖ y′ − y′′ ‖, ∀y′, y′′ ∈ Bb(0). (3.3)
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We apply Lemma 2.2 to map φ0 by choosing

η0 := x∗ and r := r0 = C ‖ x∗ − x0 ‖2+θ,

r and λ defined in 2.2 are some numbers to be set for φ0 . By (2.2) we have

‖ Z0(x∗) ‖ =‖ A(x∗, x∗)−A(x0, x
∗) ‖

=‖ F (x∗)− F (x0)−
i=M∑

i=1

ai∇F (x0 + βi (x∗ − x0)) (x∗ − x0) ‖

6 A1 +A2, (3.4)

where

A1 =‖ F (x0)− F (x∗)−∇F (x∗) (x0 − x∗)− 1
2
∇2F (x∗) (x0 − x∗)2 ‖, (3.5)

and

A2 =‖ ∇F (x∗) (x0 − x∗)+
i=M∑

i=1

ai∇F (x0 + βi (x∗ − x0)) (x∗ − x0) +
1
2
∇2F (x∗) (x0 − x∗)2 ‖ . (3.6)

By Lemma 2.1 and for x0 ∈ Bδ(x∗) we obtain

A1 6 κ1 ‖ x0 − x∗ ‖2+θ . (3.7)

By (1.4) we can re–write A2 given by (3.6) in the following form

A2 (3.8)

=‖
i=M∑

i=1

ai(∇F (x∗)−∇F (x0 + βi (x∗ − x0))) (x∗ − x0)− 1
2
∇2F (x∗) (x0 − x∗)2 ‖ .

By the Mean Value Theorem (integral representation) we can write

∇F (x∗)−∇F (x0 + βi (x∗ − x0))

= (1− βi)
∫ 1

0
∇2F (x0 + (βi + t (1− βi)) (x∗ − x0)) dt (x∗ − x0). (3.9)

For x0 ∈ Bδ(x∗) and using (1.4), (3.8), (3.9) and the assumption (H1)? we can
estimate A2 by

A2 6
i=M∑

i=1

|ai| |1− βi|
∫ 1

0
‖ ∇2F (x0 + (βi + t (1− βi)) (x∗ − x0))−∇2F (x∗) ‖ dt

‖ x0 − x∗ ‖2

6
i=M∑

i=1

|ai| |1− βi|
∫ 1

0
σ(|1− t| |1− βi| ‖ x0 − x∗ ‖) (1− t)θ |1− βi|θ dt

‖ x0 − x∗ ‖2+θ

6 κ2 ‖ x0 − x∗ ‖2+θ . (3.10)
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Moreover, for all x0 ∈ Bδ(x∗) such that x0 6= x∗ we have by (3.4), (3.7) and
(3.10) the following estimate

‖ Z0(x∗) ‖6 (κ1 + κ2) ‖ x0 − x∗ ‖2+θ . (3.11)

Then (3.2) yields, ‖ Z0(x∗) ‖< b . Hence from (3.3) one has

e

(
Q−1(0)∩Bδ(x∗), φ0(x∗)

)
= e

(
Q−1(0)∩Bδ(x∗), Q−1[Z0(x∗)]

)
6 Mβ ‖ x∗−x0 ‖2 .

According to the definition of the excess, we get

dist (x∗, φ0(x∗)) 6 M (κ1 + κ2) ‖ x∗ − x0 ‖2+θ . (3.12)

Since C > M (κ1 + κ2) there exists λ ∈ ]0, 1[ such that C(1− λ) > M (κ1 + κ2).
Hence,

dist (x∗, φ0(x∗)) 6 C (1− λ) ‖ x0 − x∗ ‖2+θ . (3.13)

We can deduce from (3.‘3) that assertion (a) in Lemma 2.2 is satisfied. Now, we
show that condition (b) of Lemma 2.2 is satisfied. By (3.2) and ‖ x∗ − x0 ‖6 δ ,
we have r0 6 δ 6 a . Moreover we can write for x ∈ Bδ(x∗)

‖ Z0(x) ‖ =‖ F (x∗) +
i=M∑

i=1

ai∇F (x∗ + βi (x− x∗)) (x− x∗)

− F (x0)−
i=M∑

i=1

ai∇F (x0 + βi (x− x0)) (x− x∗ + x∗ − x0) ‖ (3.14)

6 B1 +B2,

where

B1 =‖ F (x∗)− F (x0)−
i=M∑

i=1

ai∇F (x0 + βi (x− x0)) (x∗ − x0) ‖, (3.15)

and

B2 =‖
i=M∑

i=1

ai

(
∇F (x∗+βi (x−x∗))−∇F (x0 +βi (x−x0))

)
‖ ‖ x−x∗ ‖ . (3.16)

By the Mean Value Theorem and assumption (H0) we obtain

B1 6
i=M∑

i=1

|ai|
∫ 1

0
‖ ∇F (x0 + βi (x∗ − x0))−∇F (x0 + βi (x− x0)) ‖ dt

‖ x0 − x∗ ‖

6 K

i=M∑

i=1

|ai|
∫ 1

0
‖ t (x∗ − x0)− βi (x− x0)) ‖ dt ‖ x0 − x∗ ‖

6 K δ2

2

i=M∑

i=1

|ai| (1 + 4 |βi|) (3.17)
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and

B2 6 K

i=M∑

i=1

|ai| ‖ (x∗ − x0) + βi (x− x∗ − (x− x0)) ‖ ‖ x− x∗ ‖

6 K δ2
i=M∑

i=1

|ai| (1 + |βi|). (3.18)

Using (3.17) and (3.18), the inequality (3.14) becomes

‖ Z0(x) ‖6 3K δ2

2

i=M∑

i=1

|ai| (1 + 2 |βi|) (3.19)

Then by (3.2) we deduce that for all x ∈ Bδ(x∗), Z0(x) ∈ Bb(0). Then it follows
that for all x′, x′′ ∈ Br0(x∗), we have

I = e(φ0(x′) ∩ Br0(x∗), φ0(x′′)) 6 e(φ0(x′) ∩ Bδ(x∗), φ0(x′′)), (3.20)

which yields by (3.3)
I 6 M ‖ Z0(x′)− Z0(x′′) ‖ . (3.21)

By Assumption (H0) and (3.2) we deduce that

I 6 M ‖
i=M∑

i=1

ai∇F (x∗ + βi (x′ − x∗)) (x′ − x′′ + x′′ − x∗)

−
i=M∑

i=1

ai∇F (x0 + βi (x′ − x0)) (x′ − x′′ + x′′ − x0)

−
i=M∑

i=1

ai∇F (x∗ + βi (x′′ − x∗)) (x′′ − x∗)

+
i=M∑

i=1

ai∇F (x0 + βi (x′′ − x0)) (x′′ − x0) ‖

6 M

(
‖
i=M∑

i=1

ai∇F (x∗ + βi (x′ − x∗))

−
i=M∑

i=1

ai∇F (x0 + βi (x′ − x0)) ‖ ‖ x′′ − x′ ‖ (3.22)

+ ‖
i=M∑

i=1

ai∇F (x∗ + βi (x′ − x∗))−
i=M∑

i=1

ai∇F (x∗ + βi (x′′ − x∗)) ‖‖ x′′ − x∗ ‖

+ ‖
i=M∑

i=1

ai∇F (x0 + βi (x′′ − x0))−
i=M∑

i=1

ai∇F (x0 + βi (x′ − x0)) ‖‖ x′′ − x0 ‖
)

6 M K δ

i=M∑

i=1

|ai| (1 + 4 |βi|) ‖ x′′ − x′ ‖ .
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By choosing λ such that δM K

i=M∑

i=1

|ai| (1 + 4 |βi|) < λ , the condition (b) of

Lemma 2.2 is satisfied. We can deduce the existence of a fixed point x1 ∈ Br0(x∗)
for the map φ0 . The proof of Proposition 3.2 is completed.

Now that we proved Proposition 3.2, the proof of Theorem 3.1 is straight-
forward as it is shown below.

Proof of Theorem 3.1. Proceeding by induction, keeping η0 = x∗ and set-
ting rk = C ‖ xk − x∗ ‖2+θ , the application of Proposition 3.2 to the map φk
respectively gives the desired result.

When the second Fréchet derivative satisfies w–condition given by (1.8), we
obtain the following result involving a quadratic convergence of algorithm (1.2).

Proposition 3.3. Let x∗ be a solution of (1.1). We suppose that assumptions
(H0), (H1) and (H2) are satisfied. For every C ′ > M (κ′1 + κ′2) , where κ′1 and
κ′2 are given respectively by

κ′1 =
∫ 1

0
(1− t) ω(t a) dt, (3.23)

and

κ′2 =
i=M∑

i=1

(
|ai| |1− βi|

∫ 1

0
ω(|1− βi| (1− t) a) dt

)
, (3.24)

there exist γ > 0 with

γ < min
{
a,

1
C ′
,

(
b

κ′1 + κ′2

) 1
2

, κ3

}
, (3.25)

such that for every starting point x0 ∈ Bγ(x∗) , and a sequence (xk) for (1.1) ,
defined by (1.2), which satisfies

‖ xk+1 − x∗ ‖6 C ′ ‖ xk − x∗ ‖2 . (3.26)

4. An improved local convergence and remarks

In this section, we show by using more precise estimates that under less computa-
tional cost, and weaker hypotheses (see (1.10) and (1.11)): the ratio of convergence
of method (1.2) is improved and the radius of convergence is enlarged. The idea
from the works on nonlinear equations [3], [4]. We consider the following constants:

κ1 =
∫ 1

0
tθ (1− t) σ(t a) dt, (4.1)
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κ2 =
i=M∑

i=1

(
|ai| |1− βi|1+θ

∫ 1

0
(1− t)θ σ(|1− βi| (1− t) a) dt

)
, (4.2)

κ′1 =
∫ 1

0
(1− t) ω(t a) dt, (4.3)

and

κ′2 =
i=M∑

i=1

(
|ai| |1− βi|

∫ 1

0
ω(|1− βi| (1− t) a) dt

)
. (4.4)

The following results improve Theorem 3.1 and Proposition 3.3.

Proposition 4.1. We suppose that assumptions (H0), (1.11) and (H2) are sa-
tisfied. For every C > M (κ1 + κ2) , where κ1 and κ2 are given respectively by
(4.1) and (4.2) , there exist δ > 0 such that for every starting point x0 ∈ Bδ(x∗) ,
and a sequence (xk) for (1.1) , defined by (1.2) , which satisfies

‖ xk+1 − x∗ ‖6 C ‖ xk − x∗ ‖2+θ . (4.5)

Proposition 4.2. We suppose that assumptions (H0), (1.10) and (H2) are sa-
tisfied. For every C ′ > M (κ′1 + κ′2) , where κ′1 and κ′2 are given respectively by
(4.3) and (4.4) , there exist γ > 0 such that for every starting point x0 ∈ Bγ(x∗) ,
and a sequence (xk) for (1.1) , defined by (1.2), which satisfies

‖ xk+1 − x∗ ‖6 C ′ ‖ xk − x∗ ‖2 . (4.6)

The proof of Proposition 4.1 and Proposition 4.2 is the same one as that of
the proof of Proposition 3.2. It is enough to make some modifications by choosing
the constants δ and γ in Proposition 4.1 and Proposition 4.2 respectively such
that

δ < min
{
a,

(
1
C

) 1
1+θ

,

(
b

κ1 + κ2

) 1
2+θ

, κ3

}
, (4.7)

and

γ < min
{
a,

1
C ′
,

(
b

κ′1 + κ′2

) 1
2

, κ3

}
. (4.8)

Remark 4.3. In general, ω and σ given in (1.8) and (1.9) are not easy to
compute. This is our motivation in this section for introducing weaker hypotheses
(1.10) and (1.11).
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Note that in general

ω 6 ω, (4.9)

σ 6 σ, (4.10)

κ1 6 κ1, (4.11)

κ2 6 κ2, (4.12)

κ′1 6 κ′1, (4.13)

and

κ′2 6 κ′2, (4.14)

holds, and
ω

ω
,
σ

σ
,
κ1 + κ2

κ1 + κ2
,
κ′1 + κ′2
κ′1 + κ′2

can be arbitrarily large [3], [4]. It then follows

from the definitions of C , C ′ , C , C ′ , (3.2), (4.7), (3.25) and (4.8) that

C 6 C, (4.15)

C ′ 6 C ′, (4.16)

δ 6 δ, (4.17)

and

γ 6 γ. (4.18)

Note that parameters ω and σ are easier to determine than ω and σ . Using the
above observations we have provided in this section under weaker hypotheses and
less computational cost a local convergence analysis with the following advantages:

(i) A larger radius of convergence which allows a larger choice of initial guesses
x0 .

(ii) A finer error estimates on the distances ‖ xn − x∗ ‖ (n > 0). These obse-
rvations are very important in computational mathematics [3], [4].

Remark 4.4. In order for us to compare our results with the corresponding ones
in [9]–[11], let us mention that stronger conditions (1.5)–(1.7) used in [9]–[11] to
prove a result similar to Theorem 3.1 are a particular cases of our hypotheses. Our
assumption (1.8) extends the condition (1.6) used in [9] by considering ω in the
form ω(t) = L tθ and if θ = 1 then ω(t) = L t corresponds to the condition (1.5)
used in [10]. We can also notice that the condition (1.7) used in [11] is reduced to
the particular case of our condition (1.10) by considering ω(t) = L0 t

θ .

Define also parameters δ and C used in [9] by

δ < min
{
a,

(
1

C

) 1
1+θ

,

(
b (1 + θ) (2 + θ)

K (1 + (2 + θ)
∑i=M
i=1 |ai| |1− βi|1+θ)

) 1
2+θ

, κ3

}
, (4.19)
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and

C =
M L

(1 + θ) (2 + θ)
(1 + (2 + θ)

i=M∑

i=1

|ai| |1− βi|1+θ). (4.20)

Clearly, if we suppose that σ in (1.9) is the constant function equal to L then a
simple computation of our constants κ1 and κ2 given by (2.3) and (2.4) respecti-
vely allows us to check that:

C = M (κ1 + κ2), (4.21)

and
δ = δ. (4.22)

Hence, the claims made in the introduction have been justified.
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