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EIGENVALUES IN THE LARGE SIEVE INEQUALITY

Olivier Ramaré

D’un spécialiste des nombres moyens à un
spécialiste des nombres . . . et des moyens

Abstract: D’un spécialiste des nombres moyens à un spécialiste des nombres . . . et des moyens.
We provide some evidence that the eigenvalues of the hermitian form

P
a/q |

P
n6N ϕne(na/q)|2

tend to have a limit distribution when N and Q go simultaneously to infinity in such a way that
N/Q2 tends to a constant. We also present some background material, as well as a large sieve
equality, when N Log7 N = o(Q) , that follows from our results.
Keywords: large sieve inequality, circle method.

1. Introduction

The additive arithmetical form of the large sieve inequality relies on a bound for

∑

q6Q

∑

amod∗q

∣∣∣
∑

n6N
ϕne(na/q)

∣∣∣
2

usually when Q2 and N are of comparable size – in a vague sense. In this con-
text, the result comes from forgetting the arithmetical nature and bounding the
hermitian form ∑

θ∈Θ(Q),
m,n6N

ϕnϕme((n−m)θ) (1)

where Θ(Q) = {a/q, q 6 Q, amod
∗q} is the beginning of the Farey series. The

information we use is that the largest of its eigenvalues is 6 N + Q2 , and it
comes from the sole fact that any two points of Θ(Q) are at least Q−2 apart.
See [23]. For such an approach to hold, every point a/q has to appear with an
identical weight and deviating from this line costs a high price in understanding,
as shown for instance by the weighted version of [24], or of [27]. The quantity we
evaluate can also be thought of as a version of the circle method, and Gallagher
in [15] indeed derived a good bound for the above inequality by comparing it to
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the integral
∫ 1

0 |
∑
n ϕne(nθ)|2dθ . The same path is taken in [12]. However, this

comparison is not the key point in many applications, and this line of thought
leads to Iwaniec’δ -symbol method as it appears for instance in [8]. Examining this
generalization/modification, it transpires that the circle method situation corre-
sponds more to the above inequality weighted with a 1/(qQ) and that is also what
appears in the form of a reversed large sieve inequality that Duke & Iwaniec proved
in [9]. Conversely, it is not obvious that the important points in the circle method
should be the rationals, and [6] shows that the quadratic Harcos sequence may be
equally regular. Our first idea was simply to try to understand the bilinear form
in (1) as it stands.

When Q2 is small with respect to N , most (non-zero) eigenvalues are expec-
ted to be close to N . The reason is as follows: the matrix B of the above her-
mitian form has (m,n)-entry

∑
θ e((n−m)θ) and can be written as A∗A where

A = (e(nθ)) has lines indexed by the integers between 1 and N and columns by
points of Θ. Its non-zero eigenvalues are the same as the ones of AA∗ , whose
entries are now ∑

16n6N
e(n(θ − θ′)).

Such an expression divided by N is 1 if θ = θ′ and small otherwise, explaining
our claim. See [10] for more on this aspect.

The situation when Q2 is of size N is much less satisfactorily understood
(in arithmetical situations, Q2 is most often � N but, ideally, of its size) and
we can look at the large sieve inequality as a comparison between our hermitian
form and (N + Q2) Id. Another comparison pertaining to the same area is due
to Franel [13] and consists in measuring the discrepancy between Θ(Q) and a set
of uniformly spaced points, but there does not seem to have been any use of this
idea in the large sieve area despite the fairly large amount of work it induces (see
e.g. [20], [3], [7], [18], [16], [14]).

The large sieve inequality being so efficient, one can believe it to be nearly an
equality, meaning that most eigenvalues are indeed close to the largest one. With
such a belief, we started to compute the distribution function of the eigenvalues,
namely

D(N,Q, λ) = #{i/λi 6 λN}/N (2)

where (λi) are the eigenvalues associated with N and Q . A particularly interesting
case is when |Θ(Q)| = N , and is the one we chose for the computations, but it is
clear that we are most generally interested in the situation when |Θ(Q)| is around
N . Recall that (see (16) and the discussion therein)

|Θ(Q)| =
∑

q6Q
φ(q) =

3
π2Q

2(1 + o(1)). (3)

As a consequence, in the plot below, we have N ∼ 3Q2/π2 ; note that the large
sieve inequality ensures us that D(N,Q, 1+Q2N−1) = 1. As a further consequence
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Figure 1. Densities of eigenvalues/N for Q = 20 and Q = 25.

D(N,Q, u) equals 1 when u is just larger than 1 + π2/3, where the ”just” is a
o(1) when N goes to infinity.

We see on this plot that only a fraction of the eigenvalues are indeed close to
the maximal value! Furthermore, an extremely strong asymptotic behaviour arises,
for which we do not have the slightest proof. In fact we are not able to relate in
any way the eigenvalues corresponding to Q to the ones corresponding to another
Q′ , and surely not able to relate them when they are rescaled. We note here that
Selberg’s proof of the large sieve inequality in the “lectures on sieve” published in
[29] provides a refinement of the upper bound N +Q2 when Q2 is comparable to
N (see discussion around (20.22) there).

We are however able to provide some support to the existence of an asymp-
totical distribution. To do so, we introduce the moments

M(`) =
∑

i

λ`i . (4)

One easily discovers that M(1) = N |Θ(Q)| and the main result of this paper is an
evaluation of M(2). Our statement requires the bounded function G of the real
variable u defined by

G (u) =
∫ ∞

1

sin(uξ)
ξ5 (1− 4 Log ξ) dξ. (5)

With it we form C2 -function f by

f(x) =
1

9π2ζ(3)x2 +
3

π4x3

∑

n>1

φ(n)
n4 G (2πxn). (6)
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We prove here

Theorem 1.1. For N,Q > 2 , we have

M(2) = N2|Θ(Q)|+N2Q2f(N/Q2) + O
(
NQ3 Log7 Q

)
.

It is likely that the Log7 Q is too large, but any further improvement on the
exponent of Q would be highly valuable. Note that using M(1), we get

|Θ(Q)|−1
∑

16i6|Θ(Q)|
(N−1λi − 1)2 = Q2|Θ(Q)|−1f(N/Q2) + O

(
QN−1 Log7 Q

)
(7)

which shows that deviation to the mean is measured by f . The reader should
see that we are able to save a power which is not obvious when noticing that
the summatory function of the Moebius function intervenes. Since it is shown that
x2f(x) is asymptotic to a positive constant when x goes to infinity, we see that the
N−1λi differs noticeably from 1 at least when Q8/3 � N , and this corresponds to
a Q appreciably smaller than

√
N . When x nears 0, we show in the next section

that f(x) = 9
π4x + o(1).

Theorem 1.1 is robust in three ways: the interval in [1, N ] may be replaced
by any interval of length N ; further the method shows that we can even replace the
characteristic function of [1, N ] by a smoothed version, say g , provided

∑
n |g(n)−

1| = o(
√
N) ; and it gives an asymptotic for Q and N in a fairly wide range.

Lemma 10.1 below enables us to compute π2

3 f(3/π2) = 0.447 7 · · · which is
in excellent agreement with the numerical data we compiled

Q N M(2)/N3 M(3)/N4 M(4)/N5 M(5)/N6

4 6 1.37037 2.11111 3.46091 5.89712
7 18 1.41118 2.20165 3.63594 6.22759
9 28 1.41308 2.20770 3.68719 6.46904

11 42 1.42782 2.26342 3.84129 6.84514
14 64 1.41824 2.24114 3.82707 6.94221
16 80 1.44517 2.34570 4.13771 7.79376
22 150 1.44206 2.33303 4.10684 7.74225
24 180 1.44144 2.32558 4.07203 7.61456
27 230 1.44469 2.34246 4.12686 7.76518
30 278 1.44488 2.33670 4.10450 7.71174
35 384 1.44388 2.33885 4.12364 7.78983
37 432 1.44459 2.33884 4.11674 7.75043

For Q > 30, the precision used for the computations was beginning to show its
weakness and some marginally negative eigenvalues showed up. This means that
any further computations will require more precision and a more sturdy algorithm
than the simplistic use of charpoly followed by a polroots in PARI/GP.

Theorem 1.1 is difficult to prove It holds for N and Q varying independently.
For N = |Θ(Q)| , we can add the following estimate:
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Theorem 1.2. When N = |Θ(Q)| and for any c > 1 , we have

N−1
∑

16i6N
Log (N−1λi) = −1

2
Log N − c + Oc((Log Q)−c)

where

c =
1
2

+
6ζ ′(2)
π2 +

1
2

Log (π2/3) = 0.525 538 . . .

It shows that one eigenvalue at least is not more than
√
N if N is large

enough, but the whole average could be dominated by a single eigenvalue of size
exp(− 1

2 (1 + o(1))N Log N), which is the sole lower bound for λi that stems from
this Theorem (and the large sieve inequality).

This theorem is much less flexible than the previous one but it should be
noted that the error term depends on the one in the prime number theorem.

Even in case |Θ(Q)| = N , we do not have an expression of f(N/Q2) in terms
of more usual constants. Chasing for an understanding of this apparent asymptotic
distribution (in order to phrase a conjecture), we tried different random processi.
The only model that looks promising gives that:

Figure 2.

We have plotted the previous distribution as well as the new arising one
(which starts above and ends below). We generated N = |Θ(Q)| random integer
points between 1 and 100N and divided them by 100N to get points θ in [0, 1].
In this model, the generation imposes the spacement condition: starting from all
points being 0, each of them is successively changed randomly so as to be at
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distance at least 1/Q2 of all the others. We then considered the eigenvalues of
A∗A with A = (e(nθ)).

2. Change of viewpoint and perspectives

We put in this section material linked with our main matter but slightly off focus.
The exposition is pedestrian and this walk will be much less painful by setting

r = Log7 Q. (8)

(This is a lower case gothic r). We initiate our journey by noticing that

∑

θ,θ′∈Θ(Q)

∣∣∣N−1
∑
n

e(n(θ − θ′))− δθ=θ′
∣∣∣
2
= Q2f(N/Q2) + O

(
N−1Q3r

)
(9)

which is surprising enough in that we do not reach a o(Q2) when Q2 is about N .
The main term we have removed, namely δθ=θ′ , corresponds to the comparison
of the initial hermitian form with N Id; And it would be interesting to find a
main term to remove that would lead to a smaller right hand side. Note that
f(x)� 1/x2 so that (9) is fairly good when x is large enough.

The statement of Theorem 1.1 is dissymetrical in N and |Θ(Q)| ; we exchange
their roles by writing

N2Q2
( 3
π2 + f(N/Q2)

)
= N2Q2

( 9
π4Q

2N−1 + g(Q2/N)
)

(10)

where g(y) + 9
π4 y = 3

π2 + f(1/y). This leads to

M(2) = |Θ(Q)|2N +N2Q2g(Q2/N) + O
(
N2Q Log Q+NQ3r

)
(11)

and thus to

∑
m,n

∣∣∣|Θ(Q)|−1
∑

θ∈Θ(Q)

e((m− n)θ)− δm=n

∣∣∣
2

= N2Q−2g(Q2/N) + O
(
N2Q−3 Log Q+NQ−1r

)
. (12)

This inequality has of course the same weakness when Q2 is about N , but is also
rather good when Q2 is much larger than N since g(y) = 3

π2 + o(1) as y goes to
infinity.

Proof. We start from (50)

g(y) = −9y
π4 +

3
π2 +

24/π2

2iπ

∫ 9
8 +i∞

9
8−i∞

ζ(s)
ζ(1 + s)

(y/(2π))s cos(πs/2)Γ(s)ds
(1− s)(2− s)(1 + s)2
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and we shift the line of integration to the curve L of equation

σ = −c(Log t)−2/3(LogLog t)−1/3 (13)

for a suitable c (see chapter 8 of [19]) chosen so that ζ(1 + s) does not vanish on
the right hand side of L . We encounter a single simple pole at s = 1 with residue
9y/π4 . No further pole arising, and especially none at s = 0, we see that the term
3/π2 remains uncancelled! Completing the proof is then a matter of routine.

As a consequence, we note that when
∑
n |ϕn|2 = 1 we have

∑

θ∈Θ(Q)

∣∣∣∣
∑
n

ϕne(nθ)
∣∣∣∣
2

=
∑
m,n

ϕmϕn
∑

θ∈Θ(Q)

e((n−m)θ)

= |Θ(Q)|+
∑
m,n

ϕmϕn

( ∑

θ∈Θ(Q)

e((n−m)θ)− |Θ(Q)|δm=n

)

= |Θ(Q)|+ O
(
NQ

√
g(Q2/N) +N

√
Q Log Q+

√
NQ3r

)

thus getting equality in the large sieve, but only when N Log7 N = o(Q). This is
a drastic condition that is never met in any example I could think of. At best, the
above proof could yield equality when Q = N but any further reduction seems
hopeless with the material presented here. We state formally:

Theorem 2.1. We have when Q > N :

∑

θ∈Θ(Q)

∣∣∣∣
∑
n

ϕne(nθ)
∣∣∣∣
2

= |Θ(Q)|
∑
n

|ϕn|2
(

1 + O
(√

NQ−1 Log7/2 Q
))

.

The corresponding ”dual” statement we can get is, when Q 6 N1/3 ,

∑
n

∣∣∣∣
∑

θ

ψθe(nθ)
∣∣∣∣
2

= N
∑

θ

|ψθ|2
(

1 + O
(√

Q3N−1 Log7/2 Q
))

. (14)

We restrained the statements to the cases Q > N and Q3 6 N respectively
because otherwise, the bound we got is superseded by the one steming from the
large sieve inequality. Furthermore Kobayashi in Theorem 2.1 of [21] proves in a
general framework that

∑
n

∣∣∣∣
∑

θ

ψθe(nθ)
∣∣∣∣
2

= N
∑

θ

|ψθ|2
(
1 + O(N−1Q2)

)
(15)

which is much better. An equality as the one of our Theorem 2.1 for slightly smaller
Q ’s would provide a general approach to the Barban-Davenport-Halbertam The-
orem (see [1], [4] and [5]) in the version of [22] and [17] (more recent developments
appear in the sequel of papers of Hooley with the same title and also in [31]).
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The equalities above tell us that all eigenvalues are at least as large as
|Θ(Q)| − C1

√
NQ Log7/2 Q for some constant C1 and provided Q > N . Ko-

bayashi’s equality yields that these eigenvalues are > N − C2Q
2 . In both cases,

these eigenvalues are as large as possible. But Theorem 1.2 tells us that this is not
the case when |Θ(Q)| = N .

We use this last paragraph to show where a usual approach fails to work.
One of the main problem is to prove the existence of an asymptotic distribution
for these eigenvalues. A first idea would be to consider the step function on [0, 1]
that at t equals the number of points in Θ(Q) that are not more than t , number
that we divide by |Θ(Q)| . By Helly’s selection principle (see for instance Theorems
2.2/2.3 of chapter 2 of [2]), this collection admits a subsequence that converges
towards a function, say H , and in such a way that, for any continuous function
on [0, 1], we have

|Θ(Q)|−1
∑
a,q

f(a/q)→
∫ 1

0
f(t)dH(t)

when Q runs through this special sequence. We may thus think that we have
found an invariant ”at infinity”. However the fact that the Farey quotients are
well-distributed implies that H(t) is ... t ! This equi-distribution follows from
Theorem 2.1 in an interesting manner: approximate uniformly the characteristic
function of an interval [α, β] by a finite trigonometric polynomial and use our
Theorem to deduce that the number of points of Θ(Q) in this interval is asympo-
tically (β − α)|Θ(Q)| . The reader may want to consult [18] for shapenings of this
equi-distribution. Several different constructions of an asymptotic limit in various
spaces and relying on the Banach-Alaoglu Theorem ended in this very same way.
Kargaev & Zhigljavsky got in [20] an extremely interesting result that partially
relies on this type of argument and that indeed pertains to the local distribution
of the Farey quotients. It should be pointed out that such an understanding arose
from Kloostermann’s memoir on representation by quaternary diagonal quadratic
forms; this is made most clear in Iwaniec’s presentation of it, as can be for instance
seen in chapter 20 of [19] (see in particular proposition 20.7 therein). Any link with
our present work is left for a future paper.

The proof we presented shows exactly where the catch lies: we needed only a
trigonometric polynomial of fixed length, while we should consider also polynomials
of length up to Q2 .

3. General store

We open this section to store some general comments, facts and other kind of
notes. The first of these concerns the quantity |Θ(Q)| for which we shall often use
the estimate

|Θ(Q)| = 3
π2Q

2 + O(Q Log Q) (Q > 2). (16)

The reader may use (33) for s = 0, but the remainder term there is larger than
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the above by a Log factor. A direct use of the convolution method using

φ(q)/q =
∑

d|q
µ(d)/d (17)

would suffice. As a matter of fact, obtaining the proper power of V in (33) is more
difficult than it seems, when one imposes the use of the Mellin transform. Using
this transform indeed allows for some flexibility than the convolution misses. That
is why we devoted an entire section to the problem. We shall also use the estimate

|ζ(s)| � (2 + |t|) 1
2−<s (<s 6 0, t = =s) (18)

which is classical. In the critical strip |ζ(s)| is surely not more than (2+|t|)(1−<s)/2

· Log (2 + |t|) which is enough to ensure the various convergences conditions we
shall meet.

We need numerous notations. We decided to use many variations of the
letters f and g for the functions. The reader will thus meet f , F , F and f .

{u} denotes the fractionnal part of u and the parenthesis are used with
no other meaning. When numerical approximations are involved, we will use the
O-like notation defined by f = O∗(g) if |f | 6 g .

4. Access to the moments

We now proceed to compute an expression of M(`) in terms of the coefficients of
the hermitian form only. We first note that the matrix of the hermitian form in
(1) has (n1, n2)-coefficient:

∑

θ1

e((n1 − n2)θ1). (19)

We readily compute that the (n1, n`+1)-coefficient of its ` -th power is

∑

θ1,...,θ`,
n2,...,n`

e((n1 − n2)θ1 + . . .+ (n` − n`+1)θ`). (20)

The trace of the ` -th power is thus

M(`) =
∑

θ1,...,θ`,
n1,n2,...,n`

e((n1 − n2)θ1 + . . .+ (n` − n1)θ`). (21)

According to (4), its size is at most N(N +Q2)` . Since the length of summation
is N2` , this means tremendous cancellation when ` is large. Note the easy

M(1) = N |Θ(Q)|. (22)
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Expression (21) has another interest: it is possible to introduce therein a smoothing
on the variables ni . This smoothing would not alter significantly the main term
if it would differ from the characteristic function of the interval [1, N ] only on a
finite number of intervals of length o(N1/`). So, the larger the ` , the more difficult
it would be to smoothen our summation. In case ` = 2, the next paragraph offers
an unusual approach that asks for the variables to be non-smoothed but let us
first provide a sketch of our claim on the smoothing part. We consider functions
gi over [1, N ] such that ∑

n6N

∣∣gi(n)− 1
∣∣� L

for some L > 1. As a direct consequence, we get
∣∣∣
∑

n6N
gi(n)e(nθ)

∣∣∣� min(N, ‖θ‖−1) + L.

We consider

M(`, (gi)) =
∑

θ1,...,θ`,
n1,n2,...,n`

g1(n1) . . . g`(n`)e((n1 − n2)θ1 + . . .+ (n` − n1)θ`)

=
∑

θ1,...,θ`,
n1,n2,...,n`

g1(n1) . . . g`(n`)e(n1(θ1 − θ`) + . . .+ n`(θ` − θ`−1))

which we are to compare to M(`). It is enough to compare any two such expressions
with same g2 , ... , g` and different g1 since the variables n1 , ... , n` have an
identical role. The difference between the corresponding smoothed moments is

�
∑
n1

|g1(n1)− g′1(n1)|
∑

θ1,...,θ`

(
min(N, ‖θ2 − θ1‖−1) + L

)×
(
min(N, ‖θ3 − θ2‖−1) + L

)
. . .
(
min(N, ‖θ` − θ`−1‖−1) + L

)

in which we evaluate the summation in θ` with θ`−1 being fixed. It is not more
up to a multiplicative constant than

N +Q2 Log Q+Q2L.

Next we proceed similarly with the summation over θ`−1 and so on until we reach
the variable θ2 . The variable θ1 yields the contribution |Θ(Q)| � Q2 so that our
difference is

O
(
L
(
N +Q2(L+ Log Q)

)`−1
Q2
)
.

Since we are interested in the case when N ' Q2 , the introduction of a smoothing
would not alter the main term if L` = o(N) since our moment is of size N `+1 . In
fact the following inequalities hold for ` > 1/2

(
N/
√
N +Q2

)2`
6 M(`)/|Θ(Q)| 6 (N +Q2)`. (23)
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Proof. We simply apply Hölder inequality:

∑

16i6|Θ(Q)|
λi 6

( ∑

16i6|Θ(Q)|

√
λi

2`
)1/(2`)( ∑

16i6|Θ(Q)|

√
λi

2`
2`−1

)(2`−1)/(2`)

and conclude by using (22) for the first summation and λi 6 N + Q2 in the last
one.

Variations of this proof involving M(2) instead of M(1) would slightly im-
prove the bounds of (23).

5. Exact expression for the dispersion

Lemma 5.1. For integer N > 1 and d > 1 , we have

(1/d)
∑

n,m6N
d|n−m

1 =
N2

d2 +
{
N/d

}− {N/d}2
.

This lemma tells us that we can compute the left-hand side by only using
N/d and its fractional part. The most straightforward path yields only

∑

n,m6N
d|n−m

1 =
∑

amod d

(
N

d
+ O(1)

)2

=
N2

d
+ O(d+N)

but such an approximation is valid for N any real number while the one of the
lemma is not.

Proof. Case N < d is most readily handled so we assume N > d . We find that

S =
∑

n,m6N
d|n−m

1 =
∑

16a6d

(
N − a
d
−
{
N − a
d

}
+ 1
)2

.

Let b be the integer in [1, d] that is congruent to N modulo d . We have

S =
∑

16a6b

(
N − a
d
− b− a

d
+ 1
)2

+
∑

b+16a6d

(
N − a
d
− b− a

d

)2

=
∑

16a6b

(
N − b
d

+ 1
)2

+
∑

b+16a6d

(
N − b
d

)2

= d

(
N − b
d

)2

+ 2b
N − b
d

+ b =
N2

d
− b2/d+ b.
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If d does not divide N , then b = d{N/d} , while b = d if d|N . In both cases we
get ∑

n,m6N
d|n−m

1 =
N2

d
+ d
({N

d

}
−
{N
d

}2)
. (24)

6. A Mellin transform

We introduce a Mellin transform that transforms the expression of Lemma 5.1 into
something multiplicative in d .

Lemma 6.1. For any positive real number X of fractionnal part ξ , we have

1
2iπ

∫ − 1
4 +i∞

− 1
4−i∞

ζ(s)
Xs+1

s(s+ 1)
ds =

1
2

(ξ − ξ2).

Proof. Let us first note that

1
2iπ

∫ 2+i∞

2−i∞

ts+1

s(s+ 1)
ds =

{
t− 1 if t > 1,
0 if 1 > t > 0,

(25)

which we prove by shifting the line of integration to the far right if t < 1 and to
the far left otherwise. We thus get for X a positive real number

∑

n6X
n

(
X

n
− 1
)

=
∑

n>1

n

2iπ

∫ 2+i∞

2−i∞

(X/n)s+1

s(s+ 1)
ds

=
1

2iπ

∫ 2+i∞

2−i∞
ζ(s)

Xs+1

s(s+ 1)
ds. (26)

We next modify both sides of this equation. Write X = N + ξ , with N ∈ N and
ξ ∈ [0, 1[. We get

∑

n6X
n

(
X

n
− 1
)

= XN − 1
2

(N2 +N) =
1
2

(N2 −N) + ξN. (27)

We now transform the RHS of (26)

1
2iπ

∫ 2+i∞

2−i∞
ζ(s)

Xs+1

s(s+ 1)
ds =

1
2
X2 + ζ(0)X +

1
2iπ

∫ − 1
4 +i∞

− 1
4−i∞

ζ(s)
Xs+1

s(s+ 1)
ds

and recall that ζ(0) = −1/2. The last integral converges since ζ(− 1
4 + it) =

O((1 + |t|)3/4). By comparing what we just obtained with (27), we infer

1
2iπ

∫ − 1
4 +i∞

− 1
4−i∞

ζ(s)
Xs+1

s(s+ 1)
ds =

1
2

(N2 −N) + ξN − 1
2
X2 +

1
2
X =

1
2

(ξ − ξ2)

as claimed.
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7. A truncated Perron summation formula

The easiest way to deal with the evaluation of the next paragraph goes through
some standard techniques that were already well-known in the beginning of the
twentieth century. We present in this preliminary paragraph our own version, which
we find more convenient.

Let Y be the function that is 0 on ]0, 1[, then 1/2 in 1 and 1 afterwards.

Lemma 7.1. For κ > 0 and x > 0 , we have

∣∣∣∣∣Y (x)− 1
2iπ

∫ κ+iT

κ−iT

xzdz

z

∣∣∣∣∣ 6
xκ

π
min

(
7
2
,

1
T | Log x|

)
.

The proof will show that we could have taken any value for Y (1), provided
it lies in [0, 1].

Proof. When x < 1, we write for K > κ going to infinity :

(∫ κ+iT

κ−iT
+
∫ K+iT

κ+iT
+
∫ K−iT

K+iT
+
∫ κ−iT

K−iT

)
xzdz

z
= 0.

The third integral dwindles to zero when K increases. Both integral on the hori-
zontal segments are bounded by xκ/(T | Log x|). This implies

∣∣∣∣∣Y (x)− 1
2iπ

∫ κ+iT

κ−iT

xzdz

z

∣∣∣∣∣ 6
xκ

πT | Log x| (0 < x < 1).

The same bound holds for x > 1: the proof goes as above except that we shift
the line of integration towards the left hand side. These bounds are efficients when
T | Log x| is large enough; else we write

∫ κ+iT

κ−iT

xzdz

z
= xκ

∫ κ+iT

κ−iT

dz

z
+ xκ

∫ T

−T

(xit − 1)idt
κ+ it

.

The first integral is 2 arctan(T/κ) 6 π while we deal with the second one by using

∣∣∣∣
xit − 1
it Log x

∣∣∣∣ =
∣∣∣∣
∫ 1

0
eiutLogxdu

∣∣∣∣ 6 1.

This leads to the upper bound 2T | Log x| (even if x = 1), and thus

∣∣∣∣∣
1

2iπ

∫ κ+iT

κ−iT

xzdz

z

∣∣∣∣∣ 6
xκ

π

(π
2

+ T | Log x|
)
.
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This is enough if x < 1. If x > 1, we note that

1− xκ

2iπ

∫ κ+iT

κ−iT

dz

z
= 1− xκ

π
arctan(T/κ)

which is bounded below by −xκ/2 and above by 1 6 xκ . As a consequence, we
reach

∣∣∣∣∣Y (x)− 1
2iπ

∫ κ+iT

κ−iT

xzdz

z

∣∣∣∣∣ 6
xκ

π
min

(
π + T | Log x|, 1

T | Log x|
)
.

We simplify this upper bound by noticing that

min(π + u, 1/u) 6 min(α, 1/u)

with α = 1/u0 = π + u0 . This entails α 6 7/2, and the lemma follows readily.

This lemma leads to the aforementioned Theorem.

Theorem 7.1 [Truncated Perron’s formula]. Let F (z) =
∑
n an/n

z be a
Dirichlet series that converges absolutely for <z > κa , and let κ > 0 be strictly
larger than κa . For x > 1 and T > 1 , we have

∑

n6x
an =

1
2iπ

∫ κ+iT

κ−iT
F (z)

xzdz

z
+ O∗



∫ ∞

1/T

∑

|Log(x/n)|6u

|an|
nκ

2xκdu
Tu2


 .

In this Theorem, the error term is essentially raw. There appear the sums
∑

|Log(x/n)|6u
|an|/nκ

where the conditions on n may be rewritten as e−ux 6 n 6 eux . When u > 1,
the majorant

∑
n>1 |an|/nκ is usually enough. When u is smaller, we appeal

most of the times to an upper bound of the shape uxκaB/xκ for some sensible B
(a constant times Log x for instance), which leads to the error term

O


Bxκa Log T

T
+
xκ

T

∑

n>1

|an|/nκ

 .

Note that the shorter sums we are to consider are of length ' x/T .

Proof. Following Lemma 7.1, we first write
∑

n6x
an =

∑

n>1

anY (x/n)

=
∑

n>1

an
1

2iπ

∫ κ+iT

κ−iT

(x/n)zdz
z

+ O∗


∑

n>1

|an|xκ
πnκ

min
(

7
2
,

1
T | Log (x/n)|

)
 .
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Let us set ε = 1/T . Integers n such that | Log (x/n)| 6 ε give a contribution to
the error term that we keep as it is. Else we write

∑

ε6|Log(x/n)|

|an|xκ
nκ| Log (x/n)|

=
∑

ε6|Log(x/n)|

|an|xκ
nκ

∫ ∞
|Log(x/n)|

du

u2

=
∫ ∞
ε

∑

|Log(x/n)|6u

|an|xκ
nκ

du

u2 −
∫ ∞
ε

∑

|Log(x/n)|6ε

|an|xκ
nκ

du

u2

which is enough.

8. An arithmetical sum

This part is of independant interest. Analytic number theorists know that Theorem
7.1 does not lead to a proof of

∑
n6X 1 = X + O(1); indeed the natural error

term that arises is at least of size O(X1/3) (by shifting the line of integration to
<s = 1/ Log X ). One can reach Oε(Xε) for any positive ε by shifting the line of
integration far to the left hand side, but not to <s = −∞ . However we do not have
this scheme at our disposal when looking at a simple arithmetical modification of
1, like for summing φ(n)/n and <s = 0 seems the limit as to where we can shift
<s . We propose a method that still uses Theorem 7.1, relies only on shifting the line
of integration essentially to <s = 0 and that gives

∑
n6X 1 = X + O(Log3 X).

The main outcome is the flexibility of the method which we can thus apply to
arithmetical modifications of 1, like in the example we treat here.

The leading idea of the method is to use the dependance if =s and not to
work only on <s as usually. The main lemma reads as follows.

Lemma 8.1. There exists a constant For 0 < a 6 1/2 , D > 2 and any real
number b , we have

∣∣∣∣∣
∫ b

0
ζ(a+ it)Da+itdt

∣∣∣∣∣ 6 4Da(1 + |b|)
(
| LogLog D|+ Log (1 + |b|) +

3
a

)
.

The term 2/a is most probably not required but is harmless in our subse-
quent proof while allowing for the simplistic proof that follows.

Proof. For |b| 6 1, we simply introduce the absolute values inside the integral
and are left with bounding

∫ 1
0 |ζ(a + it)|dt . This is a constant and its value has

no impact whatsoever on our result. However, we ran the following simpleminded
GP-script (with 28 digits precision):
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maximum = 0;
auxiliary = 0;
forstep(a = 0, 1/2, 0.01,

auxiliary = intnum(t=0,1,abs(zeta(a+I*t)));
if(auxiliary > maximum, print(a," -> ",auxiliary);

maximum = auxiliary, ));

which told us the maximum to be at a = 0 with value 0.465 · · · . This is by no
means a rigorous proof for this maximum, and especially not of the fact that it is
indeed reached at a = 0, but tells us that we will be able to prove this maximum
to be not more than 1. This is the value we use. We handle only the case b > 0.
The expression we use for ζ on the critical line is simple enough:

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1
{u} du

us+1 . (28)

We start with an integration by parts

∫ a+ib

a

s (D/u)sds =
(a+ ib)(D/u)a+ib − a(D/u)a

Log (D/u)
−
∫ a+ib

a

(D/u)s
ds

Log(D/u)

from which we readily infer the bound for u > 0

∣∣∣∣∣
∫ a+ib

a

s(D/u)sds

∣∣∣∣∣ 6 min
(

2(a+ b)
| Log(D/u)| , (a+ b)b

)
(D/u)a. (29)

This gives us that

∣∣∣∣∣
∫ a+ib

a

s

∫ ∞
1
{u} du

us+1

Dsds

(a+ b)Da

∣∣∣∣∣ 6
∫ ∞

1
min

(
2

| Log(D/u)| , b
) {u}du

u1+a

6
∫ De2/b

De−2/b

b du

Dae−2a/bu
+
∫ De−2/b

1

2du
u Log(D/u)

+
∫ ∞
De2/b

2du
u1+a Log(u/D)

6 4D−ae2a/b +
∫ D

e2/b

2dv
v Log v

+D−a
∫ ∞
e2/b

2dv
v1+a Log v

6 4D−ae2a/b + 2 LogLog D − 2 Log(2/b)

+ 2D−a
(

LogLog e− Log(2/b)
e2a/b

+
1

aea Log e

)
.

We simplify our bound further by noticing that 2e2a/b 6 12 6 6/a .
We are to study

W (s, V ) =
∑

v6V

∏

pk‖v

(
pk(1−s) − p(k−1)(1−s)) (30)
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for <s < 0. In our application <s will be larger than −1/ Log V , which means
that the dependance in this parameter will be nominal only. The dependance in
t = =s will also not be very important but has to be carried out. We proceed via
a here properly tuned but otherwise standard method and introduce

W(s, z) = ζ(z − 1 + s)MV/2(z) =
∑

v>1

f ](v, 1− s)v−z (31)

with
MV/2(z) =

∑

`6V/2
µ(`)/`z.

The coefficients f ](v, 1− s) are indeed f(v, 1− s) when v 6 V/2. The cut at V/2
will be important later on. For v such that V/2 < v 6 V , the only missing divisor
is v and then f ](v, 1− s) + µ(v) = f(v, 1− s). The fact that µ(v) is bounded in
absolute value will be enough to ensure that it does not change our final result.

We invoke Theorem 7.1 to write with a = 1/ Log (2+V ) and κ = 2−<s+a
that W (s, V ) equals

1
2iπ

∫ κ+iT

κ−iT
W(s, z)

V zdz

z
+ O∗



∫ ∞

1/T

∑

|Log(V/v)|6u

|f ](v, 1− s)|
vκ

2V κdu
Tu2


 . (32)

Note that f ](v, 1− s) =
∑
w|v,2w6V µ(w)(v/w)1−s so that

|f ](v, 1− s)| 6 v1−<s∑

w|v
µ2(w)/w.

As a consequence, this yields for 0 < u < 1
∑

|Log(V/v)|6u
|f ](v, 1− s)|/vκ 6 (euV )1−<s−κ ∑

e−uV6v6euV

∑

w|v
µ2(w)/w

6 (euV )1−<s−κ ∑

w6euV

µ2(w)
w

(
(eu − e−u)V

w
+ 1
)

� (euV )1−<s−κ (uV + u+ Log V ) .

By considering separately the cases 1/T < u 6 1/V , 1/V < u 6 1 and u > 1
of the error term of (32), we find it is O of

V 2−<sT−1(Log T+ Log (2 + V )
)

+ V Log V.

We then shift κ to κ′ = 1−<s+ a ; we encounter a pole at z = 2− s , getting

W (s, V ) =
V 2−sMV/2(2− s)

(2− s) +
1

2iπ

∫ κ′+iT

κ′−iT
MV/2(z)ζ(z − 1 + s)

V zdz

z

+ O

(∫ 2−<s

1
(|t|+ T + 1)(1−w)/2V w

dw

T

)
+ O

(
V 2−<sT−1 Log (T (2 + V ))

)
.
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This last integral asks for a refined treatment and is the reason why we introduced
MV/2(z) instead of 1/ζ(z). We expand MV/2(z) and get

∑

`6V/2

µ(`)V 1−s

`1−s
1

2iπ

∫ κ′+iT

κ′−iT
ζ(z − 1 + s)

(V/`)z−1+sdz

z
.

At this level, we recall Lemma 8.1. It has been patterned to handle the above inte-
gral via an integration by parts while the restriction ` 6 V/2 has been introduced
to be able to use this lemma. We thus get that the above is not more, up to a
multiplicative constant, than

∑

`6V/2
(V/`)1−<s(V/`)a×

(LogLog (V + 3)+ Log (T + |t|+ 3)+ Log (2 + V )) Log (2 + T )

which is O(V 1−<s Log3 (2 + V + T + |t|)). We take T = (2 + V ). We can replace
MV/2(2− s) by 1/ζ(2− s) with a cost of O(1/V ) and conclude that

W (s, V ) =
V 2−s

ζ(2− s)(2− s) + O
(
V 1−<s Log3 (2 + V + |t|)). (33)

Note as a mean of verification that we recover the classical result on the Euler
φ-function for s = 0, upto the power of logarithm.

9. An undergraduate divertimento

We continue our preparation by studying the special function

F (u) =
1

2iπ

∫ 9
8 +i∞

9
8−i∞

u−s cos(πs/2)Γ(s)ds
(1− s)(2− s)(1 + s)2 . (34)

that will appear in the subsequent study. This function clearly does not carry any
arithmetic anymore and we should be able to grasp its behaviour quite fully. It
turns out that achieving such an understanding is more difficult expected and we
prefer to spend a full section on this task. The study will have two distinct parts
: one for small u ’s, and one for large ones.

Bounded values

Recall that the Stirling formula tells us that Γ(s) ∼ |t|σ− 1
2 e−π|t|/2 when σ is fixed

and |t| goes to infinity. By writing

Γ(z −m) =
Γ(z)

(z −m)(z −m+ 1) . . . (z − 1)
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we see that we can send the line of integration to the far left provided we compute
the contribution of the poles. The first three candidates, namely s = 1, s = 0 and
s = −1, are singular because of the denominator. In s = 1 there is in fact no pole
due to the cos(πs/2). In s = 0 the pole is simple with residue 1/2.

In s = −1, the pole is double, so we have access to the residue via the
computation of the derivative at s = −1 of

u−s
(
cos(πs/2)/(s+ 1)

)
Γ(s+ 2)

s(1− s)(2− s) =
u−s

(
sin(π(s+ 1)/2)/(s+ 1)

)
Γ(s+ 2)

s(1− s)(2− s)

which is π
12u Log u + (6γ−11)π

72 u . Next we are to take care of the contribution of
the poles at −m for m > 2. To do so we use the complement formula and write

u−s cos(πs/2)Γ(s)
(1− s)(2− s)(1 + s)2 =

πu−s cos(πs/2)
sin(πs)(1− s)(2− s)(1 + s)2Γ(1− s)

=
πu−s

2 sin(πs/2)(1 + s)2Γ(3− s)

which shows we have a pole only if m = 2` and that its residue is then

(−1)`u2`

(2`− 1)2(2`+ 2)!
.

Since this gives rise to an entire series of infinite radius of convergence, we conclude:

Lemma 9.1. For u > 0 , we have

F (u) =
1
2

+
π

12
u Log u+

(6γ − 11)π
72

u+
∑

`>1

(−1)`u2`

(2`− 1)2(2`+ 2)!
.

Larges values

Note first that the Stirling formula tells us that Γ(s) ∼ |t|σ− 1
2 e−π|t|/2 when σ is

fixed and |t| goes to infinity. By sending the line of integration to the right hand
side, one can then easily prove that |F (u)− 1/(9u2)| �ε |u|−7/2+ε for any ε > 0.
Our aim here is to find expressions that will lead to a better understanding to F ,
and in particular will enable a fast computation. Here is our Theorem.

Theorem 9.1. We have

F (u) =
1

9u2 +
∫ ∞
u

sin y
y4

(
u

y
+ 4

u

y
Log

u

y

)
dy

Furthermore, |F (u)− 1/(9u2)| 6 12/u4 .
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Our first lemma runs as follows.

Lemma 9.2. For any real number c verifying 1 > c > 0 , we have

1
2iπ

∫ c+i∞

c−i∞

x−sds
(1− s)(2− s)(s+ 1)2 =

{
5
36x− 1

6x Log x if 0 < x 6 1,
1

4x − 1
9x2 if x > 1.

Proof. When x > 1, we send the line of integration to the far right. When x 6 1
we send it to the far left. We compute the residues by using

1
(1− s)(2− s)(1 + s)2 = − 1

4(s− 1)
+

1
9(s− 2)

+
5

36(s+ 1)
+

1
6(s+ 1)2 .

We next transform the initial expression for F into a real variable integral,
i.e. perform an explicit Mellin inversion. The main tool is the following formula

cos
πs

2
Γ(s) =

∫ ∞
0

cos(y)ys−1dy =
∫ ∞

0
cos(y)ysdy/y (35)

for 0 < <s < 1. An integration by parts easily gives the following approximation
of the above:

u−s cos
πs

2
Γ(s) =

∫ Y

0
cos(y)(u/y)−sdy/y + O(u−<sY <s−1). (36)

We first note that

F (u) =
1

2iπ

∫ 1
2 +i∞

1
2−i∞

u−s cos(πs/2)Γ(s)ds
(1− s)(2− s)(1 + s)2 (37)

and we use the above representation of the integrand. We get

F (u) =
1

2iπ

∫ 1
2 +i∞

1
2−i∞

∫ Y

0
cos(y)(u/y)−s

dy

y

ds

(1− s)(2− s)(1 + s)2 +O(u−1/2Y −1/2)

and using our lemma, we find that

F (u) =
∫ ∞
u

cos y
(5u

6y
− u

y
Log (u/y)

)dy
6y

+
∫ u

0
cos y

( 1
4u
− y

9u2

)
dy. (38)

We integrate by parts the first term to get

F (u) = −5 sinu
36u

+
∫ ∞
u

sin y
( u

3y
− u

y
Log (u/y)

) dy
3y2 +

5 sinu
36u

− cosu− 1
9u2 .

We integrate by parts one more time and get

F (u) =
1

9u2 +
∫ ∞
u

u cos y
y4 Log

u

y
dy. (39)
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And yet another integration yields

F (u) =
1

9u2 +
∫ ∞
u

sin y
y4

(
u

y
+ 4

u

y
Log

u

y

)
dy

and we carry a last one to reach

F (u) =
1

9u2 +
cosu
u4 −

∫ ∞
u

cos y
y5

(
9u
y

+ 20
u

y
Log

u

y

)
dy

Noticing that the maximum of t 7→ |9t− 20t Log t| over [0, 1] is at exp(−11/20),
we get

|F (u)− 1/(9u2)| 6 12/u4.

We set

GX(u) =
∫ X

1

sin(uξ)
ξ5 (1− 4 Log ξ) dξ (40)

and G (u) = G∞(u), which is (5), so that

F (u) =
1

9u2 +
GX(u)
u3 + O∗((5 + 4 Log X)/(u3X4)). (41)

10. The moment of order 2

From section 4, we infer

M(2) =
∑

θ,θ′∈Θ(Q)
n,m6N

e((m− n)(θ − θ′)). (42)

Introducing therein the value of the Ramanujan sum, we find

M(2) =
∑

16n,m6N

∑
u,v

u,v|m−n

uvM(Q/u)M(Q/v) (43)

with M(z) =
∑
d6z µ(d). We use Lemma 5.1 with Lemma 6.1 to modify (43).

There comes

M(2) = N2
∑
u,v

(u, v)M(Q/u)M(Q/v)

+
∑
u,v

uvM(Q/u)M(Q/v)
[u, v]
iπ

∫ − 1
4 +i∞

− 1
4−i∞

ζ(s)
Ns+1

[u, v]s+1s(s+ 1)
ds.
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We note that (using (45) below with s = 1)

∑

u,v6Q
(u, v)M(Q/u)M(Q/v) =

∑

q6Q
φ(q) = |Θ(Q)|

so that

M(2) = N2|Θ(Q)|+ 1
iπ

∫ − 1
4 +i∞

− 1
4−i∞

ζ(s)
∑
u,v

uvM(Q/u)M(Q/v)
[u, v]s

Ns+1

s(s+ 1)
ds.

We shift the line of integration to −ε = −1/ Log (QN) so that |ζ(s)| � (1 +
|t|) 1

2 +ε Log (QN). Concerning the sum over u and v , we get

F (s) =
∑
u,v

uvM(Q/u)M(Q/v)
[u, v]s

=
∑
u,v

(u, s)s
uvM(Q/u)M(Q/v)

usvs
.

We use at this level the so called Selberg diagonalization process which most
commonly appears in the study of Selberg sieve. See also [25] and [26]. It consists
in introducing the multiplicative function defined by

f(pk, s) = pks − p(k−1)s (k > 1) (44)

when p is a prime. This function enables us to write

(u, v)s =
∑

d|(u,v)

f(d, s) =
∑

d|u
d|v

f(d, s) (45)

with the neat effect of separating the contribution of u and v . This leads us to

F (s) =
∑

d6Q
f(d, s)

( ∑

u/d|u6Q
u1−sM(Q/u)

)2
.

Further recall (30) and note that

∑

u/d|u6Q
u1−sM(Q/u) =

∑

v6Q

∑

u/d|u|v
u1−sµ(v/u)

= d1−s ∑

v6Q/d
f(v, 1− s) = d1−sW (s,Q/d).

Let us start with a wide range upper bound for the inner sum:
∣∣∣∣
∑

u/d|u6Q
u1−sM(Q/u)

∣∣∣∣ 6 Q
∑

u/d|u6Q
uε � Q2/d.
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This enables us to truncate on <s = −ε the series defining F :

F (s) =
∑

d6D

f(d, s)
d2s−2 W (s,Q/d)2 + O(Q4D−1 Log Q).

For D = 1/2 this also yields an upper bound for F (s) that will enables us to
restrict the integral in height. We get

M(2) = N2|Θ(Q)|+ 1
iπ

∫ −ε+iT0

−ε−iT0

ζ(s)
∑

d6D

f(d, s)
d2s−2 W (s,Q/d)2 Ns+1

s(s+ 1)
ds

+ O
(NQ4 Log Q

D

)
+ O

(NQ4 Log Q√
T0

)
.

We use (33) to replace W (s,Q/d)2 by (Q/d)4−2s/(ζ(2 − s)(2 − s))2 with cost
(since D 6 Q and T0 6 N2 )

�
∫ T0

0
(1 + t)

1
2 +ε

∑

d6D

|f(d, s)|
d2<s−2

(
(Q/d)3−2<s

1 + t
Log3 (Q+ |t|)

+ (Q/d)2−2<s Log6 (Q+ |t|)
)

N

(1 + t)2 dt.

The above is

�
∫ T0

0

∑

d6D
|f(d, s)|d2

(
(Q/d)3

1 + t
+ (Q/d)2 Log3 (Q+ t)

)
N Log3 (Q+ t) dt

(1 + t)3/2

or
�
(
Q3 Log2 D +Q2D Log D Log3 Q

)
N Log3 Q.

We select
D = Q, T0 = N2. (46)

We reach

M(2) = N2|Θ(Q)|+ NQ4

iπ

∫ −ε+iT0

−ε−iT0

∑

d6D

f(d, s)
d2

ζ(s)(N/Q2)sds
ζ(2− s)2s(s+ 1)(2− s)2

+ O(NQ3 Log7 Q).

We replace the sum over d by a complete sum with loss at most O(NQ4T
−5/2
0 )

and note that ∑

d>1

f(d, s)
d2 = ζ(2− s)/ζ(2). (47)
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We then replace T0 by ∞ and ε by −1/8. We have thus reached an expression of
the shape M(2) = N2|Θ(Q)|+N2Q2f(N/Q2) + error but we still have to modify
the expression defining f to recognize (6).

A different expression for f

Using the change of variables s 7→ 1− s , we reach

f(x) =
6/π2

iπ

∫ 9
8 +i∞

9
8−i∞

ζ(1− s)x−sds
ζ(1 + s)(1− s)(2− s)(1 + s)2 (48)

The functionnal equation of the Riemann ζ -funtion (see [30] or [19]) may be
written as

ζ(1− s) = 21−sπ−s cos(πs/2)Γ(s)ζ(s). (49)

so that

f(x) =
24/π2

2iπ

∫ 9
8 +i∞

9
8−i∞

ζ(s)
ζ(1 + s)

(2πx)−s cos(πs/2)Γ(s)ds
(1− s)(2− s)(1 + s)2 . (50)

Note that
ζ(s)

ζ(s+ 1)
=
∑

n>1

φ(n)
n1+s . (51)

Recalling (34) we get

f(x) =
24
π2

∑

n>1

φ(n)
n

F (2πxn). (52)

We approximate f as follows:

f(x) =
24
π2

∑

n>1

φ(n)
n

(
F (2πxn)− 1

36π2x2n2

)
+

2
3π4x2

∑

n>1

φ(n)
n3

and this is Theorem 1.1. We continue by appealing to Theorem 9.1:

f(x) =
1

9π2ζ(3)x2 +
3

π5x3

∑

16n6N

φ(n)
n4 G (2πxn) + O∗

( 18
π6x4

∑

n>N
φ(n)n−5

)
.

A more thorough numerical study of the remainder term would use a summation
by parts together with Lemma 3.2 of [28], but we contend ourselves with a simple
appeal to the inequality φ(n) 6 n .

Lemma 10.1. For N > 2 , we have

f(x) =
1

9π2ζ(3)x2 +
3

π5x3

∑

16n6N

φ(n)
n4 G (2πxn) + O∗

( 6
π6x4(N − 1)3

)
.

We are now in a position to compute values of f : we simply use (40) via (41)
to restrict the domain of integration for G . The reader should keep in mind that
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f is most probably a non-negative function, simply because of (7). This is a highly
non trivial property when looking at the expression given by the lemma!

11. Additional information

Using the notation of the introduction, we note B = AA∗ and remark that A is
a Vandermonde matrix. This last statement is true only if A is square, namely if
|Θ(Q)| = N . As a consequence, and when |Θ(Q)| = N , the determinant of B is

detB =
∏

0<θ 6=θ′61,
θ,θ′∈Θ(Q)

|e(θ)− e(θ′)|.

This is valid for any set Θ and we now utilize more specific informations:

Log detB = −
∑

θ 6=θ′∈Θ(Q)

Log (1− e(θ − θ′)) = −
∑

θ 6=θ′∈Θ(Q)

∑

k>1

e(k(θ − θ′))
k

= −
∑

k>1

∑
θ 6=θ′∈Θ(Q) e(k(θ − θ′))

k

= −
∑

k>1

∣∣∑
θ∈Θ(Q) e(kθ)

∣∣2 − |Θ(Q)|
k

= −
∑

k>1

(∑
d|k dM(Q/d)

)2
− |Θ(Q)|

k

= − lim
K→∞

∑

16k6K

(∑
d|k dM(Q/d)

)2
− |Θ(Q)|

k
.

The development of − Log (1− z) is valid of course for any |z| < 1, but also for
all z 6= 1 on the unit circle, the limit being this time definitely not absolute. The
next step consists in expanding the square to find that our quantity is

∑

d1,d26Q

d1d2

[d1, d2]
M(Q/d1)M(Q/d2)

(
Log

K

[d1, d2]
+ γ + O([d1, d2]/K)

)

− |Θ(Q)|
(

Log K + γ + O(1/K)
)

which gives us our first expression of Log detB :

Log detB =
∑

d1,d26Q

d1d2

[d1, d2]
M(Q/d1)M(Q/d2) Log [d1, d2].
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Estimation of this sum is easy enough, appealing to [d1, d2] = d1d2/(d1, d2). We
first note that

∑

d1,d26Q

d1d2

[d1, d2]
M(Q/d1)M(Q/d2) Log d1

=
∑

δ6Q
φ(δ)

∑

δ|d16Q
M(Q/d1) Log d1

∑

δ|d26Q
M(Q/d2).

The sum over d2 is 1, and the one over d1 is
∑

δ|d16Q
M(Q/d1) Log d1 =

∑

d16Q/δ
M((Q/δ)/d1)(Log δ+ Log d1)

= Log δ +
∑

d16Q/δ
M((Q/δ)/d1)

∑

`|d1

Λ(`)

= Log δ + ψ(Q/δ).

We proceed similarly to get
∑

d1,d26Q
(d1, d2) Log (d1, d2)M(Q/d1)M(Q/d2)

=
∑

`6Q
Λ(`)

∑

`|d1,d26Q
(d1, d2)M(Q/d1)M(Q/d2)

=
∑

`6Q
Λ(`)`

∑

d6Q/`
φ(d)

so that we reach a second and much more tractable expression for Log detB :

Log detB =
∑

δ6Q
φ(δ)

(
2 Log δ + 2ψ(Q/δ)−

∑

`6Q/δ
`Λ(`)

)
. (53)

At this level, it is better to recall two simple results.

Lemma 11.1. For any c > 0 , we have
∑

`6L
Λ(`)/` = Log L− γ + Oc((Log L)−c).

We have ∑

`6L

φ(`)
`2

=
6
π2

(
Log L− 6ζ ′(2)

π2 + γ + O(L−1/3)
)
.

The first estimate is a form classically equivalent to the prime number The-
orem. The error term therein could be O(r(L)) with

r(L) = exp
(−c(Log L)3/5(LogLog L)−1/5) (54)
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for some positive constant c (and c = 0.2 is a possible choice thanks to [11]) or
even r(L) = (Log L)/

√
L if the Riemann hypothesis holds. The second estimate is

equally classical and can for instance be obtained by applying Lemma 3.2 of [28],
the relevant Dirichlet series being the one from (51), though shifted by s 7→ s+ 1
(in rough details: g(n) = φ(n)/n2 , H(s) = 1/ζ(s+ 2) and kn = 1/n).

Evaluating the last sum in (53), say S2 , requires Dirichlet hyperbola princi-
ple. We write

S2 =
∑

`6L
Λ(`)`

∑

d6Q/`
φ(d) +

∑

d6Q/L
φ(d)

∑

L<`6Q/d
Λ(`)`

=
∑

`6L
Λ(`)`

(
3Q2

π2`2
+ O((Q/`) Log Q)

)

+
∑

d6Q/L
φ(d)

(
1
2

(
(Q/d)2 − L2)+ Oc((Q/d)2(Log L)−c)

)

=
3Q2

π2 (Log L− γ) + O(QL Log2 Q) + Oc(Q2(Log L)−c)

+
Q2

2

∑

d6Q/L

φ(d)
d2 − L2 3Q2

π2L2

which ends in

S2 =
3Q2

π2 Log Q− 18ζ ′(2)
π4 Q2 − 3

2π2Q
2 + O(Q2(Log Q)−c) (55)

by taking L = Q1/4 . On another side we have

S1,1 =
∑

δ6Q
φ(δ) Log δ =

∑

δ6Q
φ(δ) Log Q−

∑

δ6Q
φ(δ)

∫ Q

δ

dt

t

= Log Q
(

3
π2Q

2 + O(Q Log Q)
)
−
∫ Q

1

(
3
π2 t

2 + O(t Log Q)
)
dt

t

=
3
π2Q

2 Log Q− 3
2π2Q

2 + O
(
Q Log2 Q

)

while another use of Dirichlet hyperbola principle yields

S1,2 =
∑

δ6Q
φ(δ)ψ(Q/δ) =

∑

δ6∆

φ(δ)ψ(Q/δ) +
∑

`6Q/∆
Λ(`)

( ∑

∆<δ6Q/`
φ(δ)

)

= Q
∑

δ6∆

φ(δ)
δ

+ O(Q2(Log (Q/∆))−c) +
3Q2

π2

∑

`6Q/∆

Λ(`)
`2

= −18ζ ′(2)
π4 Q2 + O(Q2(Log Q)−c)
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on taking ∆ = Q1/2 . Finally

Log detB = 2S1,1 + 2S1,2 − S2

=
6
π2Q

2 Log Q− 3
π2Q

2 − 36ζ ′(2)
π4 Q2

− 3Q2

π2 Log Q+
18ζ ′(2)
π4 Q2 +

3
2π2Q

2 + O(Q2(Log Q)−c)

=
3
π2Q

2 Log Q−
(

1
2

+
6ζ ′(2)
π2

)
3
π2Q

2 + Oc(Q2(Log Q)−c)

Gathering our results yields (remember (16) and that N = |Θ(Q)|)

N−1 Log detB =
1
2

Log N − 1
2
− 6ζ ′(2)

π2 +
1
2

Log (π2/3) + Oc((Log Q)−c). (56)
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