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Abstract: The Nyman-Beurling criterion states that the Riemann hypothesis is equivalent to
the density in L2(0, +∞; t−2dt) of a certain space. We introduce an orthonormal family in
L2(0, +∞; t−2dt) , study the space generated by this family and reformulate the Nyman-Beurling
criterion using this orthonormal basis. We then study three approximations that could lead to a
proof of this criterion.
Keywords: Riemann hypothesis, Nyman-Beurling criterion.

1. Introduction

Let H denote the Hilbert space L2(0,+∞; t−2dt), endowed with the scalar pro-
duct

〈f, g〉 =
∫ +∞

0
f(t)ḡ(t)

dt
t2
.

It contains the functions ρa(t) = {t/a} , a > 0. The Nyman-Beurling [5,7] criterion
states that the Riemann hypothesis is equivalent to the density in L2(1,+∞; t−2dt)
of the space spanned by the functions aρa − ρ1 , a > 1. As a matter of fact, the
condition may be replaced by the following one: the characteristic function of
the interval [1,+∞[ is the limit in H of linear combinations of the ρa , a > 1.
Báez-Duarte [2] even proved that one may assume a ∈ N in this last statement.

In this paper, we introduce an orthonormal family (En)n∈N∗ in H , and study
approximations properties with respect to this family. In Section 2 we describe the
space HP spanned by this family: the functions in HP are those of H that enjoy
two simple symmetry properties. This Hilbert space is smaller than H , and its
explicit orthonormal basis makes it easy to manipulate.

In Section 3, we relate the Hilbert space HP to the Riemann hypothesis:
the Riemann hypothesis is true if and only E1 is the limit (in HP) of a finite
linear combination of the functions eq(t) = {qt} − {t} , q ∈ N . In Section 4 we
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compute the coordinates of the functions eq in the orthonormal basis (En)n∈N∗
and present other useful computational lemmas.

The last three sections are devoted to the study of explicit approximations.
In section 5, we find a linear combination of the n functions (e2, . . . , en+1) whose
first n coordinates in the basis (En)n∈N∗ are precisely (1, 0, . . . , 0). The coeffi-
cients of (e2, . . . , en−1) do not depend on n . It is therefore natural to consider the
approximation given by these coefficients, and we study it in Section 6. Finally,
we slightly modify the natural approximation by introducing a smoothing factor.
For each approximation, we compute the coordinates of the linear combination in
the orthonormal basis (En)n∈N∗ , and we prove that each of these coordinates has
the requested limit when n goes to infinity. By Lebesgue’s dominated convergence
theorem, it is enough to find uniform bounds whose series of squares converges,
for the coordinates of a subsequence, in order to get a convergent subsequence. We
also show how to reduce the computation of these uniform bounds. These three
approximations lead to three weaker criterions for the Riemann hypothesis.

2. Orthonormality

For n, t ∈ R , let us define the function En of H by

En(t) =
sin(2πnt)− sin(2π(n− 1)t)

π
.

We shall need the following lemma to compute scalar products involving these
functions.

Lemma 1. For p, q > 0 , we have
∫ +∞

0

sin(2πpx) sin(2πqx)
x2 dx = π2 min(p, q) .

Proof. We get
∫ +∞

0

sin(2πpx) sin(2πqx)
x2 dx =

∫ +∞

0

cos(2π(p− q)x)− cos(2π(p+ q)x)
2x2 dx

=
∫ +∞

0

−2π(p− q) sin(2π(p− q)x) + 2π(p+ q) sin(2π(p+ q)x)
2x

dx

=
π2

2
(p+ q − |p− q|) ,

since
∫ +∞

0

sin(2πrx)
x

dx =





∫ +∞
0

sin(2πx)
x dx = π/2 if r > 0,

0 if r = 0,∫ +∞
0

sin(−2πx)
x dx = −π/2 if r < 0.

The lemma easily follows.

The next proposition motivates the introduction of the functions En .
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Proposition 1. The family (En)n∈N∗ is an orthonormal family of H .

Proof. For n,m ∈ N∗ , n > m , we use Lemma 1 to obtain

〈En, Em〉 = min(n,m) + min(n− 1,m− 1)−min(n,m− 1)−min(n− 1,m)

= m−min(n− 1,m) =
{

1 if n = m,
0 if n > m.

This proves the result, using the symmetry in m and n .

However this orthonormal family is not an orthonormal basis of H , and one
can ask for a description of the space spanned by the En ’s. The answer to this
question will be given by the next theorem.

Let HP denote the subspace of H whose elements are the functions f that
satisfy to the following two conditions:

i) f(x) = f(x+ 1) for almost all x > 0,
ii) f(x) = −f(1− x) for almost all x ∈]0, 1[.
The functions En clearly belong to HP for every positive integer n . As a

matter of fact, we even have the following fundamental result.

Theorem 1. The family (En)n∈N∗ is an orthonormal basis of HP .

Proof. By Proposition 1, it is enough to show that the family (En)n∈N∗ spans a
vector space which is dense in HP . We shall prove this by getting back to a known
space.

Let f, g ∈ HP . We set

ψ′(x) =
∑

n>0

1
(x+ n)2

so that

ψ′(x) + ψ′(1− x) =
∑

n∈Z

1
(x+ n)2 =

(
π

sin(πx)

)2

.

We then find

〈f, g〉 =
∫ +∞

0
f(x)ḡ(x)

dx
x2 =

∫ 1

0
f(x)ḡ(x)ψ′(x)dx

=
1
2

∫ 1

0
(f(x)ḡ(x) + f(1− x)ḡ(1− x))ψ′(x)dx

=
1
2

∫ 1

0
f(x)ḡ(x) (ψ′(x) + ψ′(1− x)) dx

=
1
2

∫ 1

0
f(x)ḡ(x)

(
π

sin(πx)

)2

dx

=
1
4

∫ 2

0
f(x)ḡ(x)

(
π

sin(πx)

)2

dx

=
1
2

∫ 1

0
f(2x)ḡ(2x)

(
π

sin(2πx)

)2

dx .
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Let us introduce the function f̃ defined by

f̃(x) =
π√

2 sin(2πx)
f(2x) .

We then have f̃ ∈ L2(0, 1; dt) and 〈f, g〉 =
∫ 1

0 f̃(t)g̃(t)dt . Let us expand f̃ in
Fourier series. From conditions i) and ii), we get f̃(1 − x) = f̃(x) for almost all
x ∈]0, 1[, and f̃(x) = −f̃(1/2 + x) for almost all x ∈]0, 1/2[. We deduce that

∫ 1

0
f̃(t) sin(2πnt)dt =

∫ 1

0
f̃(t) cos(4πnt)dt = 0

for every integer n . This in turn implies that

‖f‖2 =
∫ 1

0
|f̃(t)|2dt =

∞∑
n=1

∣∣∣∣
∫ 1

0
f̃(t)
√

2 cos(2π(2n− 1)t)dt
∣∣∣∣
2

.

One easily checks that Ẽn(t) =
√

2 cos(2π(2n − 1)t), from which we get the equ-
alities

‖f‖2 =
∞∑
n=1

∣∣∣∣
∫ 1

0
f̃(t)Ẽn(t)dt

∣∣∣∣
2

=
∞∑
n=1

|〈f,En〉|2 ,

and the proof of the theorem is complete.

This proof even gives more information. Let HP denote the function space

HP =
{
f ∈ L2(0, 1; dt) :

{
f(1− x) = f(x) for almost every x ∈]0, 1[,
f(x) = −f(1/2 + x) for almost every x ∈]0, 1/2[.

}

The application from HP to HP that maps f to f̃ is an isomorphism between
Hilbert spaces; the image of the basis (En)n∈N∗ is the usual canonical basis
(
√

2 cos(2π(2n− 1)t))n∈N∗ .

3. Density results and the Riemann hypothesis

Let Da denote the dilatation defined on H by Daf(x) = f(ax). Let H0 be the
vector space spanned by {DaE1 : a > 0} . We have the following density result.

Proposition 2. H0 = H .

Proof. It is enough to prove that continuous function f with compact support in
H is the limit of a sequence of elements in H0 . Let M be an upper bound of f and
T be a real number such that supp(f) ⊂ [0, T ] . Let us define gT : ]0,+∞[→ R
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by gT (t) = f(2T{x}) − f(2T{−x}). By construction, we know that gT satisfies
to the conditions i) and ii) that occur in the definition of HP . Moreover we have

∫ +∞

0
g2
T (x)

dx
x2 =

∫ +∞

0

(
f2(2T{x}) + f2(2T{−x})) dx

x2 =
∫ +∞

−∞
f2(2T{x})dx

x2

=
∫ 1

0
f2(2Tx)

(∑

n∈Z

1
(x+ n)2

)
dx

=
∫ 1/2

0
f2(2Tx)

(∑

n∈Z

1
(x+ n)2

)
dx

6 2
∫ 1/2

0
f2(2Tx)

(∑

n∈N

1
(x+ n)2

)
dx

6 2(1 + ζ(2))
∫ 1/2

0
f2(2Tx)

dx
x2 = 4(1 + π2/6)T‖f‖2 ,

which shows that gT ∈ HP . By Theorem 1, this implies that gT belongs to the
space spanned by {En : n ∈ N∗} . Since En = DnE1−Dn−1E1 , we already know
that gT ∈ H0 and thus DagT ∈ H0 for a > 0. The property

∫ +∞

0

(
gT

( x

2T

)
− f(x)

)2 dx
x2 =

∫ +∞

T

g2
( x

2T

) dx
x2 6 M2

∫ +∞

T

dx
x2 =

M2

T

shows that ‖f−D1/(2T )gT ‖ tends to zero as T goes to infinity. The result follows.

We can also deduce this proposition from a more general result of Wiener [8]:
the space spanned by {DaE : a > 0} is dense in H if and only if the Mellin
transform of the function E only vanishes on a set of zero measure. Since the
Mellin transform of the function E1 is (2π)−sπ−1 sin(πs/2)Γ(s), this condition
is fulfilled. However the proof given for Proposition 2 describes a sequence of
approximations and the rate of convergence.

Let us put eq(t) = {qt} − {t} for q ∈ N∗ and t ∈ R . One easily checks that
the function eq belongs to HP . The link to the Riemann hypothesis is given by
the following theorem.

Theorem 2. The following two propositions are equivalent.
i) E1 is the limit (in HP) of a finite linear combination of the eq ’s.

ii) The Riemann hypothesis is true.

Proof. From the work of Nyman [6] and Beurling [5], we know that the Riemann
hypothesis is true if the characteristic function of the interval [1,+∞[ is a limit of
linear combinations of the functions {1/(qt)} , q ∈ N , in the space L2(0,+∞; dt).
Recently Báez-Duarte [2] showed that this condition is indeed necessary. More-
over, Báez-Duarte, Balazard, Landreau and Saias [1,3] studied an isometry of
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L2(0,+∞; dt) which maps the characteristic function of the interval [1,+∞[ on
the function E1(t)/t , and the functions {1/(qt)} on the functions {qt}/(qt). The-
refore the Riemann hypothesis is true if and only if the function E1(t)/t is a limit
of linear combinations of the functions {qt}/(qt) in L2(0,+∞; dt). Equivalently,
the Riemann hypothesis is true if and only if the function E1(t) is a limit of linear
combinations of the functions {qt} in H . Since a finite linear combination of the
eq ’s is also a finite linear combination of the functions {qt} , we still have to show
that E1 is the limit of a finite linear combination of the eq ’s (in HP) as soon as
E1 is the limit of a finite linear combination of the {qt} ’s (in H).

Assume that the functions Rn(t) = E1(t)−∑16q6n cq,n{qt} tend to zero in
H . Noticing that Rn(t) +Rn(1− t) = −∑16q6n cq,n for t ∈ R \Q , we find

3
2


 ∑

16q6n
cq,n




2

6
∫ 2/3

1/3
(Rn(t) +Rn(1− t))2 dt

t2

6 2
∫ 2/3

1/3

(
Rn(t)2

t2
+
Rn(1− t)2

t2

)
dt

6 2
∫ 2/3

1/3

(
Rn(t)2

t2
+ 4

Rn(1− t)2

(1− t)2

)
dt

= 10
∫ 2/3

1/3

Rn(t)2

t2
dt 6 10‖Rn‖2 .

Put R′n(t) = Rn(t) +
∑

16q6n cq,n{t} = E1(t)−∑26q6n cq,neq(t). We obtain

‖R′n‖ 6 ‖Rn‖+

∣∣∣∣∣∣
∑

16q6n
cq,n

∣∣∣∣∣∣
‖{.}‖ 6

(
1 +

√
20/3‖{.}‖

)
‖Rn‖ ,

which proves that R′n also tends to zero in H . This shows that E1 is also the limit
of a finite linear combination of the eq ’s (in HP) and the proof of the theorem is
complete.

4. Computational lemmas

Let us first compute the coordinates of the function eq in the orthonormal basis
given in Theorem 1.

Lemma 2. For p, q ∈ N∗ , we have

〈Ep, eq〉 = log q −
∑

p/q6k<p

1
k
.
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Proof. We find
∫ +∞

0
sin(2πpx){qx}dx

x2 = q

∫ +∞

0
sin(2πpx)

dx
x
−
∞∑

k=1

k

∫ (k+1)/q

k/q

sin(2πpx)
dx
x2

=
πq

2
−
∞∑

k=1

∫ +∞

k/q

sin(2πpx)
dx
x2

=
πq

2
−
∞∑

k=1

1
k

∫ +∞

1/q
sin(2πpkx)

dx
x2

=
πq

2
−
∫ +∞

1/q

( ∞∑

k=1

sin(2πpkx)
k

)
dx
x2

=
πq

2
− π

∫ +∞

1/q

(
1
2
− {px}

)
dx
x2 = π

∫ +∞

1/q
{px}dx

x2 .

We deduce that

〈Ep, eq〉 =
∫ 1

1/q
({px} − {(p− 1)x}) dx

x2 = log q +
∫ 1

1/q
([(p− 1)x]− [px])

dx
x2

= log q −
∑

p/q6k<p

∫ k/(p−1)

k/p

dx
x2 = log q −

∑

p/q6k<p
1/k .

One can also compute scalar products of the eq ’s.

Lemma 3. For p, q ∈ N∗ , we have

〈ep, eq〉 =
p− 1

2
log q +

q − 1
2

log p

−π
2

(
V

(
p

gcd(p, q)
,

q

gcd(p, q)

)
+ V

(
q

gcd(p, q)
,

q

gcd(p, q)

)
− V (1, p)− V (1, q)

)
,

where V (p, q) denotes Vassiounine’s sum:

V (p, q) =
q−1∑

k=1

{
kp

q

}
cot

kπ

q
.

Proof. The result easily follows from the following form [4, Proposition 5] of
Vassiounine’s result [9]:

∫ +∞

0
{px}{qx}dx

x2 =
p+ q

2
(log(2π)− γ)− p− q

2
log

p

q

− π

2

(
V

(
p

gcd(p, q)
,

q

gcd(p, q)

)
+V

(
q

gcd(p, q)
,

q

gcd(p, q)

))
.
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By Theorem 2, we look after linear combinations of the eq ’s which converge
to E1 . In order to use Lebesgue’s dominated convergence theorem, we seek linear
combinations of the eq ’s, whose coordinates are uniformly bounded by terms of
a convergent series and converge to those of E1 . There are several candidates to
provide good approximations, and we shall study them in the following subsections.
For these approximations, we shall show the convergence of the coordinates and
upper bound the coordinates of large index with terms of a convergent series.

Let n > 2 be an integer. We shall extensively use the notations

Sn =
n−1∑
q=1

µ(q)
q

and S′n =
n−1∑
q=1

µ(q)
q

log q .

We shall also need to estimate these sums.

Lemma 4. For any A > 0 , we have

Sn = O
(
(log n)−A

)
and S′n = −1 +O

(
(log n)−A

)
.

Proof. It is well-known that
∑

16q6x
µ(q) = O

(
x(log x)−A

)

for any A > 0 (see [6, formula (2.48)] for instance). Since the prime number
theorem implies the evaluations

∞∑
q=1

µ(q)
q

= 1 +
∞∑
q=1

µ(q)
q

log q = 0 ,

the lemma follows from partial summation.

Finally define the harmonic sum

hx =
∑

16k<x
1/k .

5. The triangular approximation

It is natural to seek a linear combination of the n functions (e2, . . . , en+1) whose
first n coordinates in the basis (E1, E2, . . .) are precisely (1, 0, . . . , 0). This linear
combination is given in the next proposition and requires further notations. Put

λq,n =





µ(q)
q for 1 6 q 6 n− 1,

1+S′n−Sn log(n+1)
log(1+1/n) for q = n,

−1−S′n+Sn logn
log(1+1/n) for q = n+ 1.
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Proposition 3. We have the expansion

n+1∑
q=2

λq,neq + E1 =
∞∑

p=n+1

xn,pEp ,

with

xn,p =
n−1∑
q=1

µ(q)
q

(
hp/q − hp/n − log

n

q

)
+λn+1,n

(
log (1 + 1/n)− hp/n + hp/(n+1)

)

for p > n+ 1 .

Proof. By Theorem 1 and Lemma 2, we get

n+1∑
q=2

λq,neq =
∞∑
p=1

xn,pEp

with

xn,p =
n+1∑
q=2

λq,n


log q −

∑

p/q6k<p

1
k


 .

For p = 1 we find

xn,1 = S′n + λn,n logn+ λn+1,n log(n+ 1) .

For 2 6 p 6 n , we first notice that

n−1∑
q=1

µ(q)
q

∑

16k<p/q

1
k

=
∑

16m6p−1

1
m

∑

q|m
µ(q) = 1 .

We thus obtain

xn,p =
n−1∑
q=2

µ(q)
q


log q −

∑

p/q6k<p

1
k


+ λn,n〈Ep, en〉+ λn+1,n〈Ep, en+1〉

=
n−1∑
q=1

µ(q)
q


log q −

∑

p/q6k<p

1
k


+ λn,n(log n− hp) + λn+1,n(log(n+ 1)− hp)

= 1 +
n−1∑
q=1

µ(q)
q

(log q − hp) + λn,n(log n− hp) + λn+1,n(log(n+ 1)− hp)

= 1 + S′n + λn,n logn+ λn+1,n log(n+ 1)− (Sn + λn,n + λn+1,n)hp .
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The pair (λn,n, λn+1,n) is a solution of the system
{

1 + S′n + λn,n log n+ λn+1,n log(n+ 1) = 0 ,

Sn + λn,n + λn+1,n = 0 ,

which implies that

xn,p =
{−1 if p = 1,

0 if 2 6 p 6 n.

For p > n , we notice that

xn,p =
n+1∑
q=1

λq,n
(
log q − hp + hp/q

)

=
n+1∑
q=1

λq,n

(
hp/q − hp/n − log

n

q

)
+ (Sn + λn,n + λn+1,n)

(
hp/n − hp + log n

)

=
n−1∑
q=1

µ(q)
q

(
hp/q − hp/n − log

n

q

)
+ λn+1,n

(
log (1 + 1/n)− hp/n + hp/(n+1)

)

and the formula is proved.

By construction, it is obvious that limn→∞ xn,p = 0. In order to use Lebes-
gue’s dominated convergence theorem, we seek an upper bound |xn,p| 6 up , where
up is the general term of a convergent series. In the next proposition, we explicit
up for p > n4 .

Proposition 4. When n and p goes to infinity, we have

xn,p = O

(
n2

p logn

)
,

and therefore |xn,p| � 1/(
√
p log p) for p > n4 .

Proof. Euler-Maclaurin formula ensures that
∑

p/q6k<p/n

1
k

= log
n

q
+O

(
q

p

)
.

We get this way
n−1∑
q=1

µ(q)
q

(
hp/q − hp/n − log

n

q

)
=
n−1∑
q=1

O

(
n

qp

)
= O

(
n log n
p

)
.

Similarly we have log (1 + 1/n) − hp/n + hp/(n+1) = O(n/p) and Lemma 4
implies λn+1,n = O(n/ log n). Finally we obtain

xn,p = O

(
n log n
p

+
n2

p logn

)
= O

(
n2

p logn

)
.

The second estimate is an easy consequence of this one.

We deduce from these two propositions a sufficient condition for the Riemann
hypothesis to be true.
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Criterion 1. If there exists a sequence (up) with
∑
p u

2
p <∞ such that

∀p ∈ [n+ 1, n4] , |xn,p| 6 up

for infinitely many n ’s, then the Riemann hypothesis is true.

6. The natural approximation

From the last subsection, it is natural to consider the linear combination

n∑
q=1

µ(q)
q
eq :=

∞∑
p=1

yn,pEp ,

which enjoy the following properties.

Proposition 5. We have

lim
n→∞

yn,p =
{−1 if p = 1

0 otherwise
.

Morover yn,p = O(n/p) and therefore |yn,p| � 1/(
√
p log p) for p > n2 log n .

Proof. By Lemma 2, we get

yn,p =
n∑
q=1

µ(q)
q


log q −

∑

p/q6k<p

1
k




= S′n+1 − Sn+1

∑

16k<p

1
k

+
n∑
q=1

µ(q)
q

∑

16k<p/q

1
k
.

Note that

n∑
q=1

µ(q)
q

∑

16k<p/q

1
k

=
∑

16m<p

1
m

∑
q|m

16q6n

µ(q) =
{

0 if p = 1,
1 if n+ 1 > p > 2.

By Lemma 4, this implies that

lim
n→∞

yn,p =
{−1 if p = 1

0 otherwise
.

As in the proof of Proposition 4, we get 〈eq, Ep〉 = O(q/p), from which the
estimate yn,p = O(n/p) easily follows. The second estimate is a straightforward
consequence of the first one.
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We can also state another criterion.

Criterion 2. If there exists a sequence (up) with
∑
p u

2
p <∞ such that

∀p ∈ [1, n2 logn] , |yn,p| 6 up

for infinitely many n ’s, then the Riemann hypothesis is true.

The range [1, n2 logn[ is smaller than the range from the previous subsection,
namely [n+ 1, n4[ . However the sum of the y2

n,p ’s over the range [1, n+ 1[ can be
quite large, as shown by the next proposition.

Proposition 6. We have

∑

26p6n+1

y2
n,p

= n

(
1 + S′n+1 −

n+ 1
n

(hn+2 − 1)Sn+1

)2

+
(
n− n+ 1

n
h2
n+1 + hn+1

)
S2
n+1 .

Proof. From the proof of the proposition 5, we know that yn,p = 1+S′n+1−hpSn+1

for 2 6 p 6 n+ 1. We compute

∑

26p6n+1

hp =
∑

16k<p6n+1

1
k

=
∑

16k6n+1

n+ 1− k
k

= (n+ 1)(hn+2 − 1)

and ∑

26p6n+1

h2
p =

∑

16k,l<p6n+1

1
kl

=
∑

16k,l6n

n+ 1−max(k, l)
kl

= (n+ 1)h2
n+1 − 2

∑

16k<l6n

l

kl
−
∑

16k6n

k

k2

= (n+ 1)h2
n+1 − 2n(hn+1 − 1)− hn+1 .

This gives

∑

26p6n+1

y2
n,p = n(1 + S′n+1)2 − 2(n+ 1) (hn+2 − 1) (1 + S′n+1)Sn+1

+
(
(n+ 1)h2

n+1 + 2n− (2n+ 1)hn+1
)
S2
n+1

= n
(
1 + S′n+1 − (1 + 1/n) (hn+2 − 1)Sn+1

)2
+ δnS

2
n+1 ,

with

δn = (n+ 1)h2
n+1 + 2n− (2n+ 1)hn+1 − (n+ 1)2/n (hn+1 − n/(n+ 1))2

= n− (1 + 1/n)h2
n+1 + hn+1 .
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It follows from this proposition and Criterion 2 that we can restrict our
study to sequences of integers n for which there exists an absolute constant C
such that we simultaneously have |Sn+1| 6 C/

√
n and |1 + S′n+1 − Sn+1 logn| 6

C/
√
n . These two conditions are quite restrictive, and it seems difficult to find

infinite sequences for which they hold together. Indeed, it is well-known [8] that∑
16q6n µ(q) = Ω(

√
n).

7. Smooth approximations

Let us slightly modify the natural approximation by introducing a smoothing
factor:

n∑
q=1

µ(q)
q1+ε eq :=

∞∑
p=1

yn,p(ε)Ep .

Proposition 7. Assume εn > 2 log log n/ log n and εn = o(1) . Then we have

lim
n→∞

yn,p(εn) =
{−1 if p = 1,

0 otherwise.

Moreover yn,p(εn) = O(n/p) and therefore |yn,p(εn)| � 1/(
√
p log p) for

p > n2 logn .

Proof. We proceed as in the proof of Proposition 5:

n∑
q=1

µ(q)
q1+εn

∑

16k<p/q

1
k

=
∑

16m<p

1
m

∑
q|m

16q6n

µ(q)
qεn

=
∑

16m<p

1
m

∏

p|m

(
1− 1

pεn

)

=
{
o(1) if p = 1,
1 + o(1) if n+ 1 > p > 2.

Therefore we get

yn,p(εn) = −〈E1, Ep〉+ 1 +
∑

16q6n

µ(q) log q
q1+εn

− hp
∑

16q6n

µ(q)
q1+εn

+ o(1)

= −〈E1, Ep〉+ 1− (1/ζ)′(1 + εn)− hp(1/ζ)(1 + εn)

−
∑
q>n

µ(q) log q
q1+εn

+ hp
∑
q>n

µ(q)
q1+εn

+ o(1)

= −〈E1, Ep〉 −
∑
q>n

µ(q) log q
q1+εn

+ hp
∑
q>n

µ(q)
q1+εn

+ o(1) .

We now use direct estimates for n > 4
∣∣∣∣∣
∑
q>n

µ(q) log q
q1+εn

∣∣∣∣∣ 6
∑
q>n

log q
q1+εn

6
∫ ∞
n

log x
x1+εn

dx =
εn log n+ 1
ε2nn

εn
= O

(
1

log logn

)
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and
∣∣∣∣∣
∑
q>n

µ(q)
q1+εn

∣∣∣∣∣ 6
∑
q>n

1
q1+εn

6
∫ ∞
n

1
x1+εn

dx =
1

εnnεn
6 1

2 log n log log n

to complete the proof of first part the proposition. The second part is a straight-
forward generalisation of Proposition 5.

We still have another criterion.

Criterion 3. Assume there exists a sequence (εn)n∈N , with εn > 2 log log n/ logn
and εn = o(1) , and a sequence (up) with

∑
p u

2
p <∞ such that

∀p ∈ [1, n2 log n] , |yn,p(εn)| 6 up

for infinitely many n ’s, then the Riemann hypothesis is true.

This criterion is quite efficient. Indeed, Balazard [2, Proposition 3.1] proved
that, under the Riemann hypothesis, the criterion is fulfilled with εn = c/ log log n ,
for some positive constant c ; he even upper bounded the distance between this
approximation and its limit.

Acknowledgements. The author warmly thanks the anonymous referee for va-
luable suggestions.
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