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ON A FORMULA OF BLOCH

William Duke & Özlem Imamoḡlu

To Jean-Marc Deshouillers,
on his sixtieth birthday

Abstract: We give a new proof of a formula of Bloch for a special value of a certain Eisenstein
series of weight one with an additive character.
Keywords: Kronecker limit formulas, elliptic curves, dilogarithm.

1. Introduction

In his influential Irvine lecture notes of 1978, Bloch [2] expressed the value at
s = 2 of the L -function for a CM elliptic curve E defined over Q in terms of
a regulator map K2(EC) → C . An important component of his argument is an
analytic formula for a special value of an Eisenstein series of weight one with an
additive character. Later Zagier [8] proved a generalization of this formula to other
weights by computing the Fourier expansion of the Eisenstein series with respect
to the additive character.

In this note we will deduce Bloch’s formula from another Fourier expansion
of an Eisenstein series, but in the τ -variable and that holds for any value of s .
Here τ ∈ H, the upper half-plane, determines the elliptic curve E in the usual
way. Our proof proceeds along lines similar to that given by Chowla and Selberg
[3] of Kronecker’s first limit formula. The Fourier expansion is given as Theorem 1
in §3 below. Although the technique we use to prove it is well-known, it seemed
worthwhile to record this result, which does not appear to have been explicitly
noted before. We will also clarify the relationship between Bloch’s result and the
Kronecker limit formulas.
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2. Bloch’s formula

After Zagier, Bloch’s formula can be written for u = (u1, u2) ∈ R2 and τ =
x+ iy ∈ H as

y2

π

∑′
m,n∈Z

e2πi(nu2−mu1)(mτ + n)
|mτ + n|4 = D(q; z) + iJ(q; z), (1)

where the prime in the sum indicates that the term (0, 0) is to be omitted
1
. Here

q = e(τ) = e2πiτ , z = e(u1 + u2τ) and

D(q; z) =
∑

`∈Z
D(q`z), (2)

where D(z) is the Bloch-Wigner dilogarithm defined by

D(z) = arg(1− z) log |z| − Im
∫ z

0
log(1− t)dt

t
. (3)

Also,

J(q; z) =
∞∑

`=0

J(q`z)−
∞∑

`=1

J(q`z−1) +
log3 |z|
3 log |q| −

log2 |z|
2

+
log |z| log |q|

6
, (4)

where J(z) = log |z| log |1− z| .
Bloch’s formula (1) should be compared with the Kronecker limit formulas

2
.

Kronecker’s first limit formula states that

lim
s→1

(
ys

2π

∑′
m,n∈Z

1
|mτ + n|2s −

1
2s− 2

)
= γ − log 2− log

(√
y|η(τ)|2) ,

where γ is Euler’s constant and η(τ) = q1/24∏∞
n=1(1 − qn) is the Dedekind eta

function. This follows readily from the Fourier expansion

π−sΓ(s)
ys

2

∑′
m,n
|mτ + n|−2s = ysϕ(s) + y1−sϕ(1− s)

+ 2
√
y
∑

n,m>1

(
m

n
)s−

1
2Ks− 1

2
(2πmny) cos(2πmnx),

where ϕ(s) = π−sΓ(s)ζ(2s) and K is the usual Bessel function, proved using the
Poisson summation formula in one variable. To get the limit formula from this one
uses the special value [4, p.978]

K 1
2
(t) =

√
π

2t
e−t (5)

1
We have corrected a sign error in the formula of Theorem 1 of [8].

2
The best reference for the Kronecker limit formulas is [7]. See also [9, p.73].
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and the Taylor series − log(1 − t) =
∑
n>1 t

n/n, together with the well-known
expansion of ζ(s) around s = 1. A similar proof can be given of Kronecker’s
second limit formula, which states that for u /∈ Z2

lim
s→1

ys

2π

∑′
m,n∈Z

e2πi(nu2−mu1)

|mτ + n|2s = − log |P (τ, u)|, (6)

where again for z = e(u1 + u2τ)

P (τ, u) = q
B2(u2)

2 (1− z)
∞∏
n=1

(1− qnz)(1− qnz−1).

Here Bn(x) is the (periodic) Bernoulli polynomial. In the following we will show
that Bloch’s formula (1) can also be deduced from the Fourier series of an Eisen-
stein series.

Before proceeding to this, we remark that the imaginary part of Bloch’s
formula (1) can be written in a form more reminiscent of the second limit formula
(6), namely:

iy

2π2

∑′
m,n∈Z

e2πi(nu2−mu1)(mx+ n)
|mτ + n|4 = log |Q(τ, u)|, (7)

where

Q(τ, u) = q
B3(u2)

3 (1− z)u2

∞∏
n=1

(1− qnz)n+u2

(1− qnz−1)n−u2
. (8)

Furthermore, by using the transformation τ 7→ −1/τ, we can express the elliptic
dilogarithm (2) in terms of the infinite product Q :

1
2π
D(q; z) = log |Q(−1/τ, u′)| − x log |Q(τ, u)|, (9)

where u′ = (u2,−u1). This is particularly simple in case x = 0.
It is well known that logP (τ, u) is the integral of a weight two holomorphic

Eisenstein series and that its transformation properties under the modular group
can be found by computing periods. Similarly, the transformation properties of
logQ can be determined from those of an integral of a weight three holomorphic
Eisenstein series; unfortunately they are complicated since we must perform only
one integration, whereas it is the two-fold integral that transforms simply by a
linear period polynomial. An interesting special case of the transformation under
inversion appears in Ramaunujan’s lost notebook (see [1]).
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3. The Fourier expansion

We now calculate the Fourier expansion of the Eisenstein series defined for
u, v ∈ R2 and Re(s) > 1 by

Eu,v(s, τ) = ys
∑′

m−v2∈Z
n−v1∈Z

e(nu2 −mu1)(mτ + n)
|mτ + n|2s+1 . (10)

Now E∗u,v(s, τ) = π−s−1/2Γ(s+ 1/2)Eu,v(s, τ) is entire and satisfies the nice func-
tional equation [7, p.71]:

E∗u,v(s, τ) = e(v1u2 − v2u1)E∗v,u(1− s, τ). (11)

We need the 1-dimensional version given for Re s > 1 and a, b ∈ R by

ψ(s; a, b) = π−s−
1
2 Γ(s+

1
2

)
∑
n−b∈Z
n6=0

e(an)n|n|−2s−1, (12)

also entire with functional equation [7, p.69]

ψ(
1
2
− s; b, a) = ie(ab)ψ(s;−a, b). (13)

We will show in the next section that Bloch’s formula (1) is an easy con-
sequences of the following Fourier expansion. Let (.x) = 0 unless x ∈ Z , when
(.x) = 1.

Theorem 1. For u, v ∈ R2 , τ ∈ H and any s ∈ C we have

E∗u,v(s, τ) = Fu,v(s, τ) + e(v1u2 − v2u1)Fv,u(1− s, τ),

where

Fu,v(s, τ) =δ(v2)ysψ(s;u2, v1)

− 2iye(v1u2)
∑

m−v2∈Z
n+u2∈Z
m,n 6=0

e(−mu1 + nv1)n|m
n
|1−sKs−1(2π|mn|y)e(mnx).

(14)

Proof. Write E∗u,v(s, τ) = A+B , where

A =π−s−
1
2 Γ(s+

1
2

)ys
∑′

m−v2∈Z
n−v1∈Z

e(nu2 −mu1)(mx+ n)
|mτ + n|2s+1 and (15)

B =iπ−s−
1
2 Γ(s+

1
2

)ys+1
∑′

m−v2∈Z
n−v1∈Z

e(nu2 −mu1)m
|mτ + n|2s+1 . (16)
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Theorem 1 follows from the equations

A = Fu,v(s, τ) and B = e(v1u2 − v2u1)Fv,u(1− s, τ). (17)

We will establish (17) by applying Poisson summation in both A and B , but
in a different way in each. From (15) we get that A = A1 + A2 where A1 =
(.v2)ysψ(s;u2, v1) and

A2 = ys
∑

m−v2∈Z
m 6=0

e(−mu1)

×
∫ ∞

0
e−πty

2m2 ∑

n−v1∈Z
(mx+ n)e(nu2)e−πt(mx+n)2

ts+
1
2
dt

t
,

which can be written

A2 = ys
∑

m−v2∈Z
m6=0

e(−m(u1 + xu2)) (18)

×
∫ ∞

0
e−πty

2m2 ∑

n−v1−mx∈Z
ne(nu2)e−πtn

2
ts+

1
2
dt

t
.

By Poisson summation for t > 0 and a, b ∈ R it follows that
∑

n−a∈Z
n e−πtn

2
e(bn) = −it− 3

2 e(ab)
∑

n+b∈Z
n e−

π
t n

2
e(an),

so from (18) we get that

A2 = −iyse(v1u2)
∑

m−v2∈Z
m 6=0

e(−mu1)
∑

n+u2∈Z
n6=0

ne ((v1 +mx)n)

×
∫ ∞

0
e−πty

2m2−πt n2
ts−1 dt

t
.

Employing the formula [4, p.384 #9]:

∫ ∞
0

e−at−
b
t ts

dt

t
= 2

(
b

a

)s/2
Ks(2

√
ab) (a, b > 0), (19)

we easily get the first equation of (17), in view of the definition (14).
Consider now B . From (16)

B = iys+1
∑

m−v2∈Z
m 6=0

me(−mu1)
∫ ∞

0
e−πty

2m2 ∑

n−v1∈Z
e(nu2)e−πt(mx+n)2

ts+
1
2
dt

t
.
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By Poisson summation again for t > 0 and a, b ∈ R :∑

n−a∈Z
e−πtn

2
e(bn) = t−

1
2 e(ab)

∑

n+b∈Z
e−

π
t n

2
e(an),

so for the sum inside the integral we have∑

n−v1∈Z
e(nu2)e−πt(mx+n)2

= e(−mxu2)
∑

n−v1∈Z
e((n+mx)u2)e−πt(mx+n)2

= e(−mxu2)
∑

n−v1−mx∈Z
e(nu2)e−πn

2

= t−
1
2 e(−mxu2)e((v1 +mx))u2)

∑

n+u2∈Z
e((v1 +mx)n)e−

π
t n

2

= t−
1
2 e(u2v1)

∑

n+u2∈Z
e((v1 +mx)n)e−

π
t n

2
.

Thus

B = ie(u2v1)ys+1
∑

n+u2∈Z
m−v2∈Z
m 6=0

me(−mu1 + nv1)e(mnx)
∫ ∞

0
e−πty

2m2−πt n2
ts
dt

t

= i(.u2)y1−sπ−sΓ(s)
∑

m−v2∈Z
m 6=0

e(−mu1)m|m|−2s

+ 2iye(u2v1)
∑

n+u2∈Z
m−v2∈Z
m,n 6=0

e(−mu1 + nv1)m
∣∣∣m
n

∣∣∣
−s
Ks(2π|mn|y)e(mnx),

by (19). After changing variables in the second sum, using the fact that Ks = K−s
and referring to (12), it follows that

B = i(.u2)y1−sψ(s− 1
2

;−u1, v2)

− 2iye(u2v1)
∑

m−u2∈Z
n+v2∈Z
m,n6=0

e(−mv1 + nu1)n
∣∣∣m
n

∣∣∣
s

K−s(2π|mn|y)e(mnx).

Thus by (13) we derive the second equation in (17) and complete the proof of
Theorem 1.

Before turning to the derivation of Bloch’s formula (1), we remark that the
method used in the proof of Theorem 1 can clearly be extended to get the Fourier
expansion of the Eisenstein series given for any nonnegative integer k by

ys
∑′

m−v2∈Z
n−v1∈Z

e(nu2 −mu1)(mτ + n)k

|mτ + n|2s+k , (20)

which still satisfies a nice functional equation [7, p.71].
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4. Specialization

In order to obtain Bloch’s formula (1) from Theorem 1, we will show that

−iπy 1
2Fu,0(

3
2
, τ) = J(q; z) and (21)

πy
1
2F0,u(−1

2
, τ) = D(q; z). (22)

We may assume that 0 6 u1, u2 < 1. Applying (5) we get

Fu,0(
3
2
, τ) = y

3
2ψ(

3
2

;u2, 0)− iy 1
2

∑
m,n+u2∈Z
m,n 6=0

e(−mu1)e(mnx)
n

|m|e
−2π|mn|y,

where ψ( 3
2 ;u2, 0) = 2i

π2

∑
n>1

sin 2πu2n
n3 = 4πi

3 B3(u2). Thus

− iπy 1
2Fu,0(

3
2
, τ)

=
4π2y2

3
B3(u2)−

∑

n+u2∈Z
(−2πny) log |1− e(−u1 + nx+ i|n|y)|

=
4π2y2

3
B3(u2)−

∑

`>1

log |q`z−1| log |1− q`z−1|+
∑

`>0

log |q`z| log |1− q`z|,

after writing n = `−u2 and splitting the sum over n into n > 0 and n < 0. This
proves (21) in view of (4) and the fact that for 0 6 x < 1,

B3(x) = x3 − 3
2
x2 +

1
2
x.

Turning next to (22), we first employ [4, p.978]

K 3
2
(t) =

√
π

2t
e−t

(
1 +

1
t

)
(23)

and obtain, after using (13) in (14), that

πy1/2F0,u(−1
2
, τ) = (.u2)πiψ(1;−u1, 0)

− πiy
∑

m−u2,n∈Z
m,n 6=0

e(nu1)e(mnx)e−2π|mn|y
(

1 +
1

2π|mn|y
)
n|m|
|n|2

= − i
2

∑
m−u2,n∈Z

n 6=0

e(nu1)e(mnx)e−2π|mn|y
(

2πy
n|m|
|n|2 +

n

|n|3
)

=
∑

m−u2∈Z

(− 2π|m|yIm log(1− e(u1 +mx+ iy|m|))

+ Im Li2(e(u1 +mx+ iy|m|))),
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where Li2(x) =
∑∞
n=1

xn

n2 , for |x| 6 1. Hence by (3)

πy1/2F0,u(−1
2
, τ) =

∑

m−u2∈Z
D(e(u1 +mx+ iy|m|))

=
∑

m−u2∈Z
D(e(u1 +mx+ imy)) =

∑

`∈Z
D(q`z) = D(q; z),

upon using the identity D(e(z̄)) = D(e(z)) and writing ` = m − u2 . This proves
(22) and hence Bloch’s formula (1).

Finally, we remark that when s = 1/2, the formula of Theorem 1 can be
evaluated in terms of geometric series, after applying (5) again. In particular, this
gives Hecke’s [5] well-known formula for the Fourier expansion of a holomorphic
Eisenstein series of weight 1 (see also [6]). Generally, when s = 1/2+` for ` ∈ Z+ ,
we can use Theorem 1 to evaluate Eu,v(s, τ) in terms of higher logarithms, at least
when v2 = 0. For this we use the following easily proved extension of (5) and (23)
to any ` > 0:

K`+ 1
2
(t) =

√
π

2t
e−t

∑̀
n=0

(`+ n)!
(`− n)!n!

(2t)−n.

Such a formula for Eu,0(s, τ) is known from Theorem 1 of [8].
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